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Split-vacancy defect complexes of oxygen in hcp and fcc cobalt
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One of the most ubiquitous and important defects in solids is oxygen. Knowledge about the solubility and
diffusivity of oxygen in materials is crucial to understand a number of important technological processes, such as
oxidation, corrosion, and heterogeneous catalysis. Density-functional theory calculations of the thermodynamics
and kinetics of oxygen in cobalt show that oxygen diffusing into the two close-packed phases, namely α (hcp) and
β (fcc), strongly interacts with vacancies. We observe the formation of oxygen split-vacancy centers (V-Oi-V) in
both phases, and we show that this defect complex exhibits a similar migration energy barrier to the vacancy and
oxygen interstitials. In contrast to the vacancy and oxygen interstitials, the oxygen split-vacancy centers exhibit
an anisotropic strain field that couples to applied stress, making it possible to observe them through an internal
friction experiment on quenched cobalt.
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I. INTRODUCTION

Point defects in solids influence the mechanical, electronic,
and optical properties of these materials. Often, small changes
in defect chemistry can have a large effect on the way a
material behaves. In transition-metal oxides, for example,
the parent compounds of the high-temperature cuprate su-
perconductors are insulators, but the introduction of atomic
point defects—either the removal of some oxygen ions or
the substitution of some metal cations by others of different
valence—is essential for the normal-state conductivity from
which superconductivity emerges [1].

Furthermore, these defects can move around (see Fig. 1).
This results in atomic transport, which can play a significant
role in the synthesis and processing of materials. In iron-
copper alloys, vacancies are strongly bound to copper atoms,
dragging them along to facilitate the precipitation of copper
around vacancy sinks [2,3]. Flux coupling can also result in
the nucleation of thermodynamically unstable phases such as
Ni3Si in undersaturated Ni(Si) alloys [4].

Some of the most interesting defect complexes involve
the formation of a split-vacancy center (V-Xi-V), where two
adjacent lattice sites are unoccupied, and a host or impurity
atom occupies the interstitial position midway between the
two vacant sites. The “semivacancy pair” (V-Sii-V) [5] and
“tin-vacancy pair” (V-Sni-V) [6] in silicon were the first ex-
perimentally observed self and impurity split-vacancy centers,
respectively. Several self V-Xi-Vs have been observed since in
pyrochlores and other complex oxides [7,8]. The known impu-
rity V-Xi-Vs, however, are limited to metal impurity atoms in
open diamond structures [9]. The formation of such impurity
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defect complexes has been attributed to the argument of strain
relaxation of oversized impurities upon movement to the more
spacious interstitial sites [9].

One of the most ubiquitous and important defects in solids
is oxygen (O), which strongly reacts with most metals to form
oxides. Many recent studies have shown that metal-oxygen
systems exhibit a rich and complex surface phase space de-
termined by pressure, temperature, and stoichiometry [10,11].
Clearly, a precise knowledge of the detailed atomic structure
of these systems is desired to improve our control of impor-
tant technological processes such as oxidation, corrosion, and
heterogeneous catalysis, which involve interaction between
metals and oxygen [12].

Cobalt (Co) and its oxides have recently received con-
siderable attention for their applications in gas sensing,
heterogeneous catalysis, intercalation compounds for energy
storage, electrochromic devices, and as thermoelectric mate-
rials [13–17]. Co has a rich phase diagram with three nearly
degenerate crystal structures: α-Co (hcp), β-Co (fcc), and ε-
Co (cubic) [18]. Under ambient conditions, cobalt crystallizes
into α-Co [19]. Upon heating, the hcp phase transforms to the
fcc β-Co structure at ∼700 K, which is then stable all the way
up to the melting temperature of ∼1770 K [19]. The ε-Co
phase possesses a more complex structure, and its synthesis
has only been possible through solution-phase chemistry pro-
cesses [20,21]. All three phases are ferromagnetic; however,
a Curie temperature (Tc = 1388 K) has been defined only for
the fcc β-Co phase [19] since both α-Co and ε-Co transform
to the fcc phase before achieving a paramagnetic structure.

Even though we have detailed knowledge about the struc-
ture, properties, and processing of different Co phases, very
little is known about the thermodynamics and kinetics of O
in Co. In this work, we use density-functional theory (DFT)
to show that both close-packed phases of Co display complex

2475-9953/2020/4(10)/103608(9) 103608-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6615-5257
https://orcid.org/0000-0003-4933-7686
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.4.103608&domain=pdf&date_stamp=2020-10-14
https://doi.org/10.1103/PhysRevMaterials.4.103608


HONRAO, RIZZARDI, MAAß, TRINKLE, AND HENNIG PHYSICAL REVIEW MATERIALS 4, 103608 (2020)

FIG. 1. Defects in α-Co (hcp) and β-Co (fcc) shown with the
help of blue (cobalt), red (oxygen), and hollow (vacancy) circles.
Depth fading is used to make atoms that lie further back appear
lighter.

defect structures in the presence of O (see Fig. 1), affecting
the transport of O as well as of vacancies (V) in Co. We first
predict the equilibrium point defect structures for O, V, and
their complexes in α-Co and β-Co, and then we determine
how these defects migrate through the crystal structures. We
show that O has a high solubility and diffusivity as an in-
terstitial (Oi). Surprisingly, however, Oi strongly reacts with
V to form split-vacancy centers (V-Oi-V), which provide an
alternate pathway for O and V diffusion in Co. We show that
these V-Oi-Vs exhibit an anisotropic strain field that couples
to applied stress, in contrast to the isotropic strain fields of the
individual V and Oi defects. This leads to a behavior similar
to the observed Snoek effect for carbon and nitrogen in bcc
Fe [22], and it allows for the experimental detection of these
complexes by internal friction measurements.

II. METHODS

We perform the DFT calculations with the projector aug-
mented wave method [23,24] as implemented in the VASP

code [25–28] using the gradient-corrected PBE exchange-
correlation functional [29]. Calculations are carried out with
periodic boundary conditions, with wave functions expanded
on a plane-wave basis set. The energy cutoff and the corre-
sponding cutoff for the augmentation functions are set to 400
and 650 eV, respectively, to ensure convergence of the total
energy to within 1 meV/at. The k-point integration of the Bril-
louin zone is performed using Monkhorst and Pack meshes
[30] with a density of 30 k-points per inverse Ångström. We
use spin polarization to account for the magnetism in these
materials. We also constrain the cell shape and volume for all
defect calculations to those of the relaxed bulk phases.

For a defect-mediated diffusion mechanism, the activation
energy of diffusion, E act

def , is given by the sum of the defect for-
mation energy, E f

def , and the defect migration energy barrier,
Em

def . We calculate the migration barriers with the climbing
image nudged elastic band (NEB) method [31,32] using one to
three intermediate images to describe the transition pathways
between neighboring lattice and interstitial defect sites. We
look at simple paths as well as more complex ones involving
a concerted movement of multiple species. Comparing the
total activation energies for competing mechanisms helps us

TABLE I. Finite-size effects on the defect formation energies
(E f

def ) in cobalt. We find that E f
def is accurate to within 0.03 eV for

larger supercells.

Defect Structure Supercell size Natoms E f
def (eV)

VCo α (hcp) 2 × 2 × 2 16 1.87
3 × 3 × 2 36 1.94
4 × 4 × 3 96 1.92

V-Oi-V β (fcc) 3 × 3 × 3 27 2.58
4 × 4 × 4 64 2.52
5 × 5 × 5 125 2.49

to determine the dominant diffusion processes controlling the
kinetics in these systems.

III. FINITE-SIZE ERROR OF DEFECT ENERGIES

The formation energies of defects in DFT calculations that
employ periodic boundary conditions are affected by the size
of the unit cell. Table I and Fig. 2 compare the effects of vary-
ing cell size on defect formation energies. To reduce finite-size
effects, we choose our unit cells to be as large as possible
while being computationally feasible. We use a 4 × 4 × 3
supercell (96 atoms) of α-Co and a 5 × 5 × 5 supercell (125
atoms) of β-Co for all our calculations, which provide defect
formation energies accurate to within 0.03 eV.

IV. DEFECT STABILITY

To determine the stability of point defects in Co, we cal-
culate formation energies for (i) a vacancy on a cobalt site
(VCo), (ii) a substitutional oxygen atom on a cobalt site (OCo),
(iii) a substitutional oxygen atom and a neighboring vacancy
(OCo + VCo), (iv) an oxygen atom on an interstitial site (Oi),
and (v) a cobalt atom on an interstitial site (Coi). We use the
chemical potential of oxygen in rocksalt CoO as a reference.

FIG. 2. Finite-size effects on the defect formation energies (E f
def )

in cobalt. We find that E f
def is accurate to within 0.03 eV for larger

supercells.
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TABLE II. Defect formation energies (E f
def ) in cobalt. Interstitial

atoms in hcp and fcc can occupy either the octahedral or tetrahedral
sites. Both energies are reported (Eoct , Etet).

Defect α-Co (hcp) β-Co (fcc)

VCo 1.92 1.79
OCo 1.84 1.92
OCo+VCo 2.51 2.49
Oi 0.52, 1.28 0.49, 1.25
Coi 5.19, 4.49 4.48

Table II compares the formation energies for the various de-
fects in α-Co and β-Co. We do not report an energy for the
tetrahedral Coi defect in β-Co as it always relaxes into an
octahedral position.

We make an interesting observation for the case of a sub-
stitutional O atom sitting next to a vacancy in β-Co: the
OCo + VCo defect complex relaxes to form a highly stable
V-Oi-V split-vacancy center with the O atom occupying the
interstitial space between two vacancies. This is similar to
the tin split-vacancy center (V-Sni-V) in silicon studied by
Watkins et al. [6]. We also see that the same defect occurs
in α-Co; however, the formation of V-Oi-V in the hcp phase is
limited to the case in which the two neighboring vacancies lie
in separate basal planes. If the neighboring vacancies occupy
positions in the same basal plane, the O atom no longer relaxes
to a symmetric center position.

To search for other split-vacancy centers, we extend our
calculations to include the OCo + VCo defect with V and O as
second and third nearest neighbors to each other (2NN and
3NN). We observe the formation of V-Oi-V in the 2NN case
but not 3NN for both α-Co and β-Co.

Table III shows the strong binding energies for the split-
vacancy O defect in the 1NN and 2NN configurations in α-Co
and β-Co. Even in the 3NN case, where a split-vacancy center
does not form, we still see significant binding between O and
V. We define the binding energy as the difference in energies
between a system with interacting defects and a system with
isolated defects far away from each other. A large positive
binding energy implies there is a strong attraction between the
individual defects. We find that the binding is equally strong
in the 1NN and 2NN configurations but gets weaker as the
individual defects move further apart from each other (3NN).

As stated earlier, previous research showed the occurrence
of impurity split-vacancy centers being limited to open dia-
mond structures thus far, where a large metal impurity atom
(M) relaxed to occupy the more spacious position between

TABLE III. Binding energies (in eV) of the oxygen-vacancy
complex in α-Co and β-Co for first- (1NN), second- (2NN), and
third-nearest-neighbor (3NN) sites relative to the isolated defects.
The symmetric V-Oi-V configuration is observed to be the most
stable one for 1NN and 2NN sites in both α-Co and β-Co.

1NN 2NN 3NN

α-Co 1.25 1.14 0.68
β-Co 1.22 1.32 0.68

TABLE IV. Diffusion activation energies for the various defects
in Co. The considered mechanisms include Co diffusing through
vacancies (VCo): CoCo+VCo → VCo+CoCo; O diffusing through in-
terstitials (Oi): Ooct

i → Otet
i → Ooct

i ; 1NN V-Oi-V defect diffusing
to 1NN V-Oi-V sites (1NN): V-Oi-V1NN → V-Oi-V1NN and 1NN
V-Oi-V defect diffusing to 2NN V-Oi-V sites (2NN): V-Oi-V1NN →
V-Oi-V2NN.

Diffusion α-Co (hcp) β-Co (fcc)
E f

def Em
def E act

def E f
def Em

def E act
def

VCo 1.92 0.86 2.78 1.79 1.00 2.79
Oi 0.52 0.91 1.43 0.49 0.99 1.48
V-Oi-V (1NN) 2.51 0.90 3.41 2.49 0.91 3.40
V-Oi-V (2NN) 2.51 1.31 3.82 2.49 1.38 3.87

two neighboring vacancies (V-Mi-V). The reason for the for-
mation of such complexes was not completely understood.
The argument of strain relaxation of oversized impurities that
was proposed to explain the formation of the Sn-V complex
in Si [9] does not fit our description of a smaller O atom
forming a similar complex in close-packed Co. While strain
probably plays a role, we believe there might also be other
factors at play. On closer examination, we see that O sits on
a distorted octahedral site in the V-Oi-V configuration, albeit
with two missing Co neighbors. This resembles the geometry
and coordination in the rocksalt CoO phase that would form
with sufficient O present. The Co-O distance in the V-Oi-V
configuration is found to be 2.0 Å, which is intermediate be-
tween the Co-O distances in the interstitial and substitutional
configuration of 1.9 and 2.5 Å, and closer to the value for CoO
of 2.1 Å. This suggests that strain coupled with the natural
tendency of the impurity O atoms to stabilize into a CoO-like
local configuration might explain the formation of these O
split-vacancy centers in Co.

V. DEFECT REACTIONS AND MIGRATION

Next, we calculate migration barriers for Co and O atoms
diffusing from one defect site to another to infer the most
likely mechanism for diffusion in α-Co and β-Co. We identify
mechanisms of diffusion for Co through vacancies, and for
O through vacancies and interstitial sites. Table IV lists the
formation energies, migration barriers, and total activation en-
ergies for the various defects in Co. We find that the migration
barriers for diffusion through the two close-packed phases are
surprisingly similar for VCo, Oi, and V-Oi-V. For the oxygen
interstitial, we find that the octahedral-tetrahedral-octahedral
interstitial path exhibits the lowest migration energy barrier.
Figures 3 and 4 illustrate the diffusion pathways of the 1NN
V-Oi-V defect through other 1NN V-Oi-V and 2NN V-Oi-V
sites.

Finally, we combine the defect formation energies with
knowledge of the migration barriers to obtain a complete
picture of the diffusion of O in Co (Table IV). The formation
energies indicate that O prefers to sit on the Oi sites in Co.
Not only does O have the highest solubility on such sites,
but it also has a small migration barrier to move between
them, providing what appears to be the fastest mechanism for
O diffusion in Co. If such an Oi were to encounter a VCo,
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FIG. 3. Diffusion between two neighboring 1NN oxygen split-
vacancy centers (V-Oi-V) is shown for β-Co (fcc). This mechanism
involves a concerted motion of Co and O atoms.

however, they can exothermally combine to form OCo,

Oi + VCo � OCo. (1)

The reaction energies are −0.60 and −0.36 eV in α-Co and
β-Co, respectively. This substitutional OCo can only move
when it encounters another VCo, at which point they combine
exothermally to form the V-Oi-V split-vacancy center,

OCo + VCo � V-Oi-V, (2)

with a reaction energy of −1.25 and −1.22 eV in α-Co and
β-Co, respectively. Table IV shows that the migration barriers
for V-Oi-V are similar to the barriers for Oi and VCo, sug-
gesting that the formation of V-Oi-V complexes does not trap
oxygen and vacancies, and that V-Oi-V diffusion could pro-
vide an alternate mechanism for O and Co transport through
close-packed Co.

FIG. 4. Diffusion between a 1NN and 2NN oxygen split-vacancy
center (V-Oi-V) is shown for α-Co (hcp). This mechanism involves
a concerted motion of Co and O atoms.

To experimentally detect the presence of V-Oi-V com-
plexes, they must form in sufficient concentrations, which will
depend on the processing of the material. To determine the
equilibrium concentration of the V-Oi-V defects, we obtain
the equilibrium constant for the combined reaction of Eqs. (1)
and (2),

Oi + 2VCo � V-Oi-V, (3)

Keq = exp

(
−�E

kT

)
= [V-Oi-V]

[Oi][VCo]2
. (4)

The concentration of V-Oi-V is clearly limited by the total
number of VCo in our system, since two vacancies are needed
to form every split-vacancy center. Using the vacancy for-
mation energy for β-Co, we estimate the room-temperature
equilibrium concentration of vacancies, [VCo] = 9 × 10−31,
implying a negligibly small concentration of V-Oi-V.

The vacancy concentration in a material can generally be
increased by quenching from high temperature or by irradia-
tion. A quench from 1700 K, just below the melting point of
1770 K, to 700 K increases [VCo] in β-Co to 5 × 10−6. As-
suming the quenched vacancy concentration and the oxygen
concentration of 1 × 10−3 are fixed in the bulk of the sample
away from any sources or sinks, we calculate the equilibrium
concentration of V-Oi-V at 700 K to be 2.45 × 10−6. This
result, namely that at intermediate temperatures essentially all
vacancies are bound in the form of the V-Oi-V complexes, is a
direct consequence of the significantly higher reaction energy
of the reaction in Eq. (2).

For V-Oi-V to form, the Oi and VCo must also encounter
each other fairly quickly. For [VCo] = 5 × 10−6, we estimate
the time scale for the encounters at 700 K to be of a few ms
according to 〈

R2
n

〉 = nr2 = t�r2 = 6Dt, (5)

where 〈R2
n〉 is the mean-square displacement after time t , n

is the number of jumps, r is the individual jump length, � is
the jump frequency, and D is the diffusion coefficient. This
timescale is sufficiently short to convert all VCo into V-Oi-
V split-vacancy centers during the quench while avoiding
thermal equilibration of the vacancy concentration at grain
boundaries and interfaces. We conclude that as long as there
is a sufficient number of quenched VCo, and mobile Oi en-
counter the VCo, V-Oi-V will form even against the observed
formation energy trend in Table II.

VI. INTERNAL FRICTION

The experimental assessment of a damping mechanism
in metals has a long history [33], where cross-comparison
between different reported damping mechanisms is not always
easy since each particular measurement technique is limited
to a given frequency range. Consequently, most experiments
have been done in different frequency regimes and over a
range of temperatures that is either above or below room
temperature.

In the particular case of damping due to interstitials, con-
siderable efforts have been dedicated to studying hydrogen
(H), oxygen (O), or nitrogen (N) in bcc lattices [34,35],
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whereas hcp lattices, and in particular Co, have been less com-
monly investigated. However, a series of earlier studies using
the torsion pendulum method, often operated at frequencies at
or close to 1 Hz, were dedicated to interstitial site relaxation
processes in hcp crystals [36–40]. This body of experimental
work reports mechanical relaxation that occurs in the range
of 700–750 K, depending on the metal (Ti, Hf, Zr). This
temperature range overlaps with the allotropic phase transition
from α-Co to β-Co and may be the main reason for the lack
of experimental evidence of Snoek-type losses.

In the case of Ti, Pratt et al. reported that the purest
polycrystalline grade only exhibits an internal friction signa-
ture from grain-boundary processes [36], whereas the careful
introduction of 1.5–4.5 at. % O revealed a relaxation peak
at ∼700 K, the magnitude of which was proportional to the
O-content. Qualitatively, the same was reported for reactor-
grade Hf (containing 6 wt. % Zr) by Bisogni et al. [38],
where the loss process is seen at ∼750 K and a frequency
of 0.9 Hz. These experimental observations were in contrast
to the conclusion that losses of Snoek type ought not to be
seen for interstitials in fcc or hcp due to the geometry of
the octahedral and tetrahedral site [38], where O is expected
to occupy the former because of its atomic size. Gupta and
Weinig convincingly addressed this discrepancy experimen-
tally by demonstrating that substitutional impurities are the
cause for the observed damping. Due to the local lattice distor-
tion caused by the substitutional element, the relaxation of an
interstitial-solute (i-s) pair was consequently shown to depend
on the relative atomic size mismatch between the base element
and the solute and scale with solute concentration at con-
stant O-content [37]. Interstitial-interstitial (i-i) pair relaxation
had been theoretically predicted [41], and was subsequently
shown for dilute Ti, Hf, and Zr alloys [40] in the aforemen-
tioned temperature range. These experimental efforts have in
common that they use low-frequency excitations and study a
temperature regime from room temperature to ∼875 K and
are limited to Ti, Hf, and Zr.

With a view to experimentally confirm the presence of
V-Oi-V and study its diffusion, we determine how the defect
couples to applied stress in β-Co. The V-Oi-V complexes in
β-Co are oriented along any of the 〈110〉 directions, produc-
ing six different orientations ([110] and [1̄1̄0] are identical).
The derivative of the defect energy with respect to strain is
the elastic dipole tensor, P. For the case of a V-Oi-V defect
oriented along the [110] direction, we find

P =
⎛
⎝−2.70 0.13 0

0.13 −2.70 0
0 0 −4.30

⎞
⎠ GPa. (6)

This dipole tensor indicates an anisotropic compression of the
structure. The compression is expected for a defect involving
two vacancies. The anisotropy of the dipole tensor is a neces-
sary ingredient for internal friction loss due to an oscillating
applied stress. The largest coupling to applied stress is due
to the difference between the “in-plane” (−2.70 GPa) normal
component and the “out-of-plane” (−4.30 GPa) normal com-
ponent, which can couple to either uniaxial or shear stresses
differently for each of the 12 〈110〉 V-Oi-V complexes. The

FIG. 5. Predicted internal friction loss per cycle at ν = 1 Hz due
to V-Oi-V complexes in β-Co. Under a cyclic nonhydrostatic load,
the lowered symmetry of the complexes produces different changes
in energy for different sites; this drives transitions from higher to
lower energy states, producing loss in energy, similar to the Snoek
effect from C in bcc-Fe. The loss is proportional to the concentration
of V-Oi-V, and it reaches a peak near 330 K.

in-plane shear component (0.13 GPa) is an order of magni-
tude smaller and plays a negligible role in internal friction.
The appendix provides a detailed derivation of the loss due
to internal friction. The loss Q−1 depends on the jump rate
λ = ν0 exp(−Em

def/kBT ), where Em
def = 0.91 eV (Table IV);

only one eigenvalue of the transition matrix couples strongly
to shear strains, so

Q−1 ∝ [V-Oi-V]

kBT

12λν

ν2 + (12λ)2
, (7)

which is plotted in Fig. 5. The prediction for internal friction
shows that for a torsional pendulum of a quenched Co wire
with ν = 1 Hz, the peak loss Q−1 corresponding to maximum
damping should occur near 330 K.

Snoek-type relaxations in Co remain experimentally unex-
plored, but the consistently observed features for other hcp
metals suggest that similar i-s and i-i mechanisms could occur
in Co. It is worth noting that torsion pendulum data recorded
when studying the hcp-fcc transition at 0.5 Hz in Co displays
at least one unexplored small peak at ∼550 K during both
cooling and heating [42]. The room-temperature loss mecha-
nism theoretically predicted here was not identified in any of
the studied hcp metals; it may find its origin in the contin-
uously increasing damping with temperature that will drown
small-amplitude peaks at the low-temperature end. Additional
experimental efforts that carefully examine low-frequency ex-
citations at and around room temperature are thus critically
needed so as to test our predictions and to potentially identify
a loss mechanism that is generic to hcp lattices that contain
solved O.

VII. CONCLUSION

We performed DFT calculations to measure the forma-
tion energies and migration barriers of O point defects in α

(hcp) and β (fcc) cobalt. We predict that in both phases O
strongly interacts with vacancies to form oxygen split-vacancy
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centers V-Oi-V in the presence of sufficiently high vacancy
concentrations. We show that the oxygen split-vacancy centers
do not trap oxygen, and they provide an alternate mecha-
nism for oxygen diffusion in close-packed cobalt. We propose
a way to observe and measure their diffusion through an
internal friction experiment. We show that the oxygen split-
vacancy centers exhibit an anisotropic strain field, in contrast
to the isolated vacancies and oxygen interstitials. This strain
field couples to applied stress, and the diffusion of V-Oi-V
leads to a maximum damping in internal friction at exper-
imentally accessible frequencies and temperatures. Similar
split-vacancy centers may also occur for oxygen and other
interstitial species in various close-packed materials.
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APPENDIX: LOSS UNDER CYCLIC LOADING

1. Definitions

To consider the energy loss per cycle under mechanical
load due to transitions between defect sites, we use the nomen-
clature introduced for the derivation of transport coefficients
for interstitial defects [44]. We have a set of N defects in our
unit cell that can be indexed using i = 1, . . . , N , and where a
series of possible transitions between these defects are possi-
ble. For a defect state i in the unit cell, it has an equilibrium
site probability ρi that follows the Arrhenius relationship,

ρi := cZ−1ρ0
i exp (−βEi ) (A1)

for site energy Ei, concentration per unit cell c, en-
tropic prefactor ρ0

i = exp(Si/kB), and partition function Z =∑
i ρ

0
i exp (−βEi ). The transition from site i to site j has a

rate λi→ j ,

λi→ j := λ0
i j

ρ0
i

exp
(−β

[
E ts

i j − Ei
])

(A2)

for transition state energy E ts
i j and entropic prefactor λ0

i j =
exp(Sts

i j/kB), following [45]. In this formulation, the transition
state energy and entropic prefactors are equal for i → j and
for j → i, while it is not necessary that λi→ j and λ j→i are
equal. Finally, the probabilities obey detailed balance, where
ρiλi→ j = ρ jλ j→i for all i, j.

We will assume that the stress amplitude is sufficiently
small that we are in a linear elastic regime, there is a small
defect concentration, and the energy loss is a small perturba-
tion in the system energy. The dilute limit permits us to ignore
defect-defect interactions. The linear elastic limit allows us
to transform from a stress amplitude into a strain amplitude,

and to write the changes to our site probabilities and transition
rates to first order in the strain using the elastic dipole. The
elastic dipole tensor Pi for a site i is

Pi := −dEi

dε
. (A3)

The elastic dipole can be conveniently evaluated in a supercell
calculation from the stress in the cell: an interstitial is added
to an initially undefected, unstressed supercell containing N
atoms (with equilibrium volume V0 per atom), resulting in a
stress σ , then to first order in N−1,

P ≈ NV0σ , (A4)

which is straightforward to evaluate with density-functional
theory methods, e.g., see [46–49]. Similarly, the energy of
a transition state can also change with strain, as dictated by
the elastic dipole tensor for the transition state Pts

i j for the
transition state between i and j,

Pts
i j := −dE ts

i j

dε
. (A5)

This, too, can be approximated by the stress at the transition
state in a supercell calculation as in Eq. (A4); e.g., see [48,50].
The definitions of elastic dipoles allow the introduction of a
small strain perturbation δε to produce site energy changes
δEi and transition energies δE ts

i j as

δEi = −Pi : δε,

δE ts
i j = −Pts

i j : δε, (A6)

which is correct to first order in strain.

2. Master equation

The evolution of the defects is defined by the Master
equation, and we can include the effect of a (perturbative)
time-dependent strain. The time-dependent occupancy ci(t ) of
site i is given by

dci

dt
=

∑
j

λ j→ic j (t ) − λi→ jci(t ). (A7)

We introduce the rate matrix i j ,

i j :=
{
λi→ j : i �= j,

−∑
j λi→ j : i = j,

(A8)

and so Eq. (A7) is simply ċ = c. By detailed balance, the
equilibrium site probability ρ satisfies ρ = 0. Similar to our
expressions for changes in site and transition energies, a small
strain introduces a change in the rate matrix δi j : δε,

δi j : δε :=
{
λi→ j (kBT )−1(Pts

i j − Pi ) : δε : i �= j,

−∑
j λi→ j (kBT )−1(Pts

i j − Pi ) : δε : i = j,
(A9)

based on Eq. (A2). If we consider that our system is close to
equilibrium, so that

ci(t ) = ρi + F i : δε(t ), (A10)
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then the (time-dependent) Master equation in the perturbative limit is

F i : δε̇(t ) =
∑

j

[ρ j + F j : δε(t )][ ji + δ ji : δε(t )]

=
∑

j

(F j ji ) : δε(t ) +
∑

j

ρ jδ ji : δε(t ) + O(δε2). (A11)

This can be solved for a cyclic strain δε(t ) = δε0eiνt with frequency ν, so that δε̇(t ) = iν δε(t ), and we have∑
j

F j (iνδ ji −  ji ) =
∑

j

ρ jδ ji

F i =
∑

jk

ρ jδ jk (iν1 − )−1
ki . (A12)

The first term in the sum,
∑

j ρ jδ jk , simplifies as∑
j

ρ jδ jk =
∑

j

ρ jλ j→k (kBT )−1
(
Pts

jk − P j

) −
∑

j

ρkλk→ j (kBT )−1
(
Pts

k j − Pk

)

= (kBT )−1
∑

j

ρ jλ j→k
[
Pts

jk − P j − Pts
k j + Pk

] = −(kBT )−1
∑

j

ρ jP j jk (A13)

so that Eq. (A12) becomes

F i = −(kBT )−1
∑

jk

ρ jP j jk (iν1 − )−1
ki . (A14)

To compute the loss per cycle, we integrate the time derivative of the energy multiplied by the instantaneous occupancy of
each site over one cycle. The time derivative of energy is the work done on each defect, which is at the expense of the elastic
energy in the system. The instantaneous energy of each site is Ei(t ) = Re(Ei − Pi : δε0eiνt ), while ci(t ) = Re(ρi + F i : δε0eiνt ),
and so

−
∑

i

ci(t )Ėi(t ) = −
∑

i

(ρi + ReF i : δε0 cos(νt ) − ImF i : δε0 sin(νt ))(νPi : δε0 sin(νt )). (A15)

We integrate the change in energy over one cycle to find

�Ecycle = −
∫ 2πν−1

0
dt

∑
i

ci(t )Ėi(t )

=
∫ 2πν−1

0
dt

∑
i

[(Pi : δε0)(ImF i : δε0)ν sin2(νt )]

= π
∑

i

(δε0 : Pi )(ImF i : δε0). (A16)

To convert this to a fractional loss per cycle, we need to divide by the elastic energy per cycle, which is π�0δε0 : C : δε0, for
the elastic constant tensor C and volume per unit cell �0.

We can find the solution for the loss by eigendecomposing the matrix , and rewriting Eqs. (A14) and (A16) in terms of its
eigenvectors and values. While the matrix  is generally not symmetric, the matrix

ωi j := ρ
1/2
i i jρ

−1/2
j (A17)

is. Moreover, it is a negative semidefinite matrix, with exactly one zero eigenvalue; let rn be the real, negative eigenvalues where
r0 = 0, and let sn be the corresponding eigenvectors, where s0

i = ρ
1/2
i . As i j = ρ

−1/2
i ωi jρ

1/2
j , it follows that

∑
k

 jk (iν1 − )−1
ki =

∑
n

rn

iν − rn
ρ

−1/2
j sn

j s
n
i ρ

1/2
i . (A18)

We note that

Im
rn

iν − rn
= − νrn

ν2 + (rn)2
(A19)
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and so the fourth-rank tensor in Eq. (A16) is

L(ν, T ) :=
∑

i

Pi ⊗ ImF i = (kBT )−1
∑
n>0

νrn

ν2 + (rn)2

(∑
i

ρ
1/2
i sn

i Pi

)
⊗

(∑
i

ρ
1/2
i sn

i Pi

)
, (A20)

which is symmetric and negative-definite, as rn < 0 for all n > 0, and hence the loss per cycle Q−1 is

Q−1 = −δε0 : L(ν, T ) : δε0

�0δε0 : C : δε0

. (A21)

Note that the temperature dependence appears explicitly in Eq. (A20) and in the temperature dependence of the rates in , and
hence rn and sn. There is a linear dependence in concentration c from the linear dependence of ρi in Eq. (A20).

3. Isotropic representation

The fourth-rank loss tensor L can be simplified by converting to rotationally averaged scalar quantities: bulk Lb, shear L′,
and uniaxial Lu corresponding to bulk, shear, or uniaxial strains in a random polycrystal,

Lb = 1
9 {L1111 +L2222 +L3333 + 2L1122 + 2L1133 + 2L2233},

L′ = 1
5

{
1
3 (L1111 +L2222 +L3333 −L1122 −L1133 −L2233) +L1212 +L1313 +L2323

}
,

Lu = Lb + 4
3L

′. (A22)

For the case of loss per cycle in a torsion pendulum, L′ is the
quantity of interest.

4. Loss for oxygen-vacancy complexes in fcc cobalt

For the case of the fcc Co oxygen-vacancy complex, the
loss calculation simplifies to two eigenmodes. We can identify
an oxygen-vacancy complex in an fcc material based on the
positions of the oxygen atom alone, as the two neighbor-
ing vacancy positions are unique. Crystallographically, this is
similar to the “crowdion” interstitial defect. In the space group
of fcc (Fm3̄m), these are the d sites, of which there are six
compared with the a sites for the solvent atoms. These sites,
in Cartesian coordinates, are(
0, 1

4 , 1
4

) (
0, 3

4 , 3
4

) (
1
2 , 1

4 , 3
4

) (
1
2 , 3

4 , 1
4

)
(
0, 3

4 , 1
4

) (
0, 1

4 , 3
4

) (
1
2 , 3

4 , 3
4

) (
1
2 , 1

4 , 1
4

)
(

1
4 , 0, 1

4

) (
1
4 , 1

2 , 3
4

) (
3
4 , 0, 3

4

) (
3
4 , 1

2 , 1
4

)
(

1
4 , 0, 3

4

) (
1
4 , 1

2 , 1
4

) (
3
4 , 0, 1

4

) (
3
4 , 1

2 , 3
4

)
(

1
4 , 1

4 , 0
) (

1
4 , 3

4 , 1
2

) (
3
4 , 1

4 , 1
2

) (
3
4 , 3

4 , 0
)

(
3
4 , 1

4 , 0
) (

3
4 , 3

4 , 1
2

) (
1
4 , 1

4 , 1
2

) (
1
4 , 3

4 , 0
)
.

(A23)

In the primitive unit cell, we only need one entry from each
row, as each row represent the same orientation: [011], [01̄1],
[101], [101̄], [110], and [1̄10]. As all of the sites have the same
energy, hence ρ = c. From any site, there are eight jumps
that all have the same rate, λ; the transitions involve moving
one of the two vacancies to a neighboring site that is also
a neighbor of the other vacancy while it remains in place.
This is equivalent to the oxygen atom displacing by 〈 1

4
1
4 0〉;

however, only eight jumps are possible for each orientation.

The transition rate matrix is

 = ω = λ

⎛
⎜⎜⎜⎜⎜⎝

−8 0 2 2 2 2
0 −8 2 2 2 2
2 2 −8 0 2 2
2 2 0 −8 2 2
2 2 2 2 −8 0
2 2 2 2 0 −8

⎞
⎟⎟⎟⎟⎟⎠. (A24)

The elastic dipole for a site with orientation [110] is

P[110] =
⎛
⎝P‖ Ps 0

Ps P‖ 0
0 0 P⊥

⎞
⎠, (A25)

where P‖ = −2.70 GPa, P⊥ = −4.30 GPa, and Ps =
0.13 GPa. The six eigenvalues of ω are the trivial 0, the
doubly degenerate −12λ, and the triply degenerate −8λ.
The contributions from the −12λ eigenmodes couple to
P‖ − P⊥ while the −8λ eigenmodes couple to Ps. Because
the second dipole contribution is more than an order of
magnitude smaller, it does not significantly change the peak
loss temperature. Both terms contribute to L′, while Lb = 0.
To identify the peak loss temperature for a single dominant
eigenmode, we note that the maximum in Eq. (A20) occurs
when ν = −r. Writing λ = ν0 exp(−E ts/kBT ), we find that
the peak loss temperature at

Tmax loss = E ts

kB ln (12ν0/ν)
. (A26)

For systems in which Ps was significant compared with
P‖ − P⊥, the peak loss temperature equation would change.
The computational results for the damping are available at
Ref. [51].
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