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Phase field simulation of martensitic-transformation-induced plasticity in steel
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The influence of martensitic-transformation-induced plastic deformation in steel is studied using phase field
simulations. A phase field framework that incorporates elastic as well as plastic effects is used. A high-carbon
steel is considered as an example to illustrate the coupling of martensitic transformations and plasticity. In
this work, all 24 transformation variants associated with the Kurdjumov-Sachs orientational relationship are
considered to realistically describe the martensitic transformation in steel. Temperature-induced as well as
stress-induced transformations are studied. The role of plasticity is investigated by performing simulations
with and without the plastic flow. It is found that transformation plasticity plays a dual role: (1) in the case of
temperature-induced transformations it helps in the initial nucleation of the martensite by stabilizing the initial
embryo, and (2) once the martensite starts to grow, transformation-induced plasticity resists the further growth
and results in stabilization of retained austenite. In contrast, the simulations in the absence of transformation-
induced plasticity show that the entire system transforms into martensite. For stress-induced transformations, it
is found that transformation induces plastic deformations, even though the applied (macroscopic) stress is lower
than the yield stress. Although the dominant contribution to the stress-induced strain arises due to the formation
of favored martensite variants, transformation-induced plasticity generates significant additional deformation
that can influence the mechanical properties and the resulting martensite domain pattern.
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I. INTRODUCTION

Martensitic transformation in steel is an important phase
transformation that is often exploited to increase the hard-
ness [1]. Rapid quenching from the face-centered-cubic
(fcc) austenite phase leads to the formation of a body-
centered-tetragonal (bct) martensite structure. The martensitic
transformation is a diffusionless phase transformation that
leads to a shape change of the unit cell. The elastic en-
ergy generated due to the shape-changing transformation
significantly influences the final microstructure of the marten-
site. Accommodation of the elastic energy is often achieved
by formation of internally twinned martensite plates, such
that an invariant habit plane is obtained [2]. Such a mor-
phology is usually observed in steels with high carbon
contents [3]. Another mechanism, usually associated with
low-carbon steels, is that of elastic energy accommodation
by slip, leading to the formation of lath martensite [3]. Thus,
both elastic and plastic effects play an important role dur-
ing martensitic transformations in steel. In fact, steels that
exhibit transformation-induced plasticity (TRIP) have been
shown to lead to a good combination of strength and ductil-
ity [4]. The understanding of the interplay between martensitic
transformations and plasticity in steel is therefore very impor-
tant [4–6].

There are two fundamental mechanisms associated
with transformation-induced plasticity: (1) the Greenwood-
Johnson [7] mechanism by which the deformation associated
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with the martensitic transformation leads to plastic flow in
the weaker austenite phase at stresses that are lower than the
yield stress and (2) the Magee effect, in which a crystallo-
graphically preferred martensite variant forms due to applied
stress and leads to a macroscopic shape change [8]. These
effects have been theoretically studied using micromechanical
models [4,9] which have led to improved understanding of the
phenomena. The interaction of martensitic transformations
and plasticity has also been studied in the context of shape
memory alloys [10] using Finite Element Method (FEM)
models. However, such models do not consider the morpho-
logical aspects of the underlying martensitic transformation.

The martensitic transformation in steel can result in the
formation of 24 equivalent variants. The complex morphology
can significantly influence the effective mechanical behavior.
Thus, there is a need for models that study transformation-
induced plasticity, taking into account the complex martensite
domain patterns that are observed in steel. Over the last two
decades, phase field models have been successful in simulat-
ing the complex martensitic microstructure [11–16]. Plastic
effects have also been considered by using discrete disloca-
tion dynamics as well as continuum plasticity [17–20]. In the
context of steel, phase field models with elastic and plastic
effects have been extensively used to study the martensite
patterns [21,22].

In the present work, the role of transformation plastic-
ity in steel is studied using the phase field approach with
a focus on temperature-induced transformations as well as
stress-induced transformation. The advantage of using the
phase field model is that both the Greenwood-Johnson mech-
anism and the Magee mechanism can be studied within a
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unified framework. The aim of this study is to exploit ca-
pabilities of the phase field approach to shed light on how
plasticity due to martensitic transformations influences the
martensite morphology as well as the mechanical behavior
over a range of temperatures. Barring a recent work on lath
martensite [23], the phase field studies have used the Bain
orientation relationship [24] with only three crystallographic
variants to simulate the martensitic domain patterns. It is well
known that the commonly observed orientational relationships
in steel are the Nishiyama-Wassermann (NW; 12 crystallo-
graphically equivalent variants) [25] and Kurdjumov-Sachs
(KS; 24 crystallographically equivalent variants) [26]. There-
fore, in the present model, all 24 variants associated with the
KS orientational relationship are considered (the transforma-
tion strains are obtained in terms of the lattice parameters
for a 1 wt% steel). Since a temperature-dependent driving
force is considered, a temperature-dependent plasticity is
also incorporated using the methodology developed by Guo
et al. [18]. Temperature-dependent flow curves with isotropic
plasticity for AISI 52100 (a steel composition with carbon
concentration close to 1 wt%) are used to study the role
of plasticity [27]. To study temperature-induced martensitic
transformations, quenches from the austenite phase to a range
of temperatures below the T0 temperature (temperature where
austenite and martensite have same free energy) are consid-
ered. Deformation-induced transformations are studied for a
range of temperatures between T0 and Ms (martensitic start
temperatures). To isolate the role of transformation plasticity,
some cases without plastic effects for both temperature-
induced and stress-induced transformations are also studied.

II. PHASE FIELD MODEL

The martensitic transformation is described by a multiple-
order-parameter phase field model. The variants of the
martensite phase are described by a vector order parameter �η
with components ηi such that the mth variant is represented
by ηi = ηm �= 0 and ηi = 0 for i �= m. The components ηm

(m = 1, . . . , 24) describe the 24 variants of the martensite
phase. The parent austenite is described by the case when
all components of the order parameter vanish, i.e., ηm = 0
for m = 1, . . . , 24. The free energy considered in this work
is given as

F =
∫

V
dV ( fchem + fel ), (1)

where fchem is the free energy density describing the marten-
sitic transformation and fel represents the elastic strain energy
density associated with the transformation. The free energy
density fchem is expressed in terms of the order parameter
components as

fchem = G0

⎡
⎣τ

(
24∑

i=1

η2
i

)
− 2

(
24∑

i=1

η3
i

)
+

(
24∑

i=1

η2
i

)2
⎤
⎦

+
24∑

i=1

K

2
(∇ηi )

2, (2)

where G0 is the reference free energy density that is re-
lated to the driving force of the transformation and τ = (T −

Tc)/(T0 − Tc) is a temperature-dependent coefficient. Here T0

is the temperature at which the austenite and martensite have
the same free energy (τ = 1), and Tc is a temperature at which
the martensite phase becomes unstable (τ = 0). Here, the spa-
tially homogeneous part of Eq. (2) describes a function with
25 minima corresponding to 24 martensitic variants and one
austenitic well. This choice of the free energy has been shown
to describe thermomechanical behavior of martensites [28].
Since martensitic transformations in steel are associated with
a large shape and/or volume change, the growth of martensitic
nuclei may lead to enormous elastic energy. The local stresses
can be so large that localized plastic deformation may be in-
duced. Thus, both elastic and plastic deformations need to be
incorporated in the phase field model. The elastic contribution
to the free energy is expressed as

fel = C11

2

(
e2

xx + e2
yy + e2

zz

) + C12(exxeyy + exxezz + eyyezz )

+ 2C44
(
e2

xy + e2
yz + e2

xz

)
, (3)

where

ei j = εi j −
24∑

m=1

H (ηm)εKS,m
i j − ε

p
i j . (4)

Here, εi j = 1
2 [∂ui/∂x j + ∂u j/∂xi] is the infinitesimal strain

tensor calculated using the displacement variables ui, εKS,m
i j

represents the transformation associated with the mth KS vari-
ant, and εp are the components of the plastic strain tensor. The
function H (ηm) = η2

m is chosen. The constants C11, C12, and
C44 are the elastic constants of cubic symmetry. For simplicity,
the contribution that arises from differences in the hardening
of austenite and martensite has been neglected. The details of
calculation of the transformation strains εKS,m

i j and the plastic
strains εp are described below.

A. Transformation strain for the KS orientation relationship

In this section, the transformation strains obeying the
Kurdjumov-Sachs relationship are described [26]. According
to the KS relationship, a typical martensite variant satisfies the
conditions

(111)A ‖ (011)M [101̄]A ‖ [111̄]M . (5)

By symmetry, 24 such equivalent variants can be formed.
In order to compute the transformation strains for all variants,
the deformation gradient is first defined as

Fi j = δi j + ∂ui

∂x j
, (6)

where ui represents the displacement field, xi is the mate-
rial coordinate, and δi j is the Kronecker delta. To derive the
deformation gradient for the KS orientation relationship, the
strain-based approach proposed by Koumatos and Muehle-
mann [29] is adopted. To begin with, the deformations for the
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simple Bain strain [24] are defined as

B1 =
[
β 0 0
0 α 0
0 0 α

]
, B2 =

[
α 0 0
0 β 0
0 0 α

]
,

B3 =
[
α 0 0
0 α 0
0 0 β

]
, (7)

where α =
√

2a
a0

and β = c
a0

are calculated from the lattice pa-
rameters of the cubic phase (a0) and the tetragonal martensite
phase (a, c). The overall deformation can be decomposed into
stretch due to Bain strain and rigid-body rotation, giving the
desired orientation relationship. For the KS relationship, the
deformation associated with the first KS variant is expressed
as

T KS,1
i j (r) = Rim[θ (r), [111]A]Rmn[θ (r), [1̄10]A]B3n j , (8)

where r is the ratio of tetragonality (r = c
a ) and R[θ, o] de-

notes a rotation matrix describing a counterclockwise rotation
by an angle θ about a vector o. The angles θ and φ in the
rotation matrices can be identified as [29]

θ (r) = arccos

(√
3
√

r2 + 1 + 1

2
√

r2 + 2

)
,

φ(r) = arccos

(
1 + √

2r√
3
√

1 + r2

)
. (9)

The deformation gradients associated with the remaining
KS variants T KS,m

i j are calculated by applying the group of
rotations P24 that maps a cube to itself:

F KS,m
i j = Pik (m)T KS,1

kl Pl j (m). (10)

Assuming the geometrically linear theory, the transforma-
tion strain is calculated as

εKS,m
i j (r) = 1

2

(
F KS,m

i j (r) + F KS,m
ji (r)

) − δi j . (11)

The advantage of this approach is that the transformation
strains now explicitly depend on the tetragonality ratio r.

B. Plasticity model

The evolution of plastic strain is computed within the
theory of phenomenological rate-independent plasticity with
the associated flow rule that distinguishes between the yield
stress of the austenite σ A

y and the yield stress of the martensite
σ M

y . The model proposed by Guo et al. [18] is used here for
its computational efficiency in connection with phase field
models [21,30]. The evolution equation for the plastic strain
εp presented by [18] is derived from minimizing the shear
strain energy density W shear by solving

∂ε
p
i j (xp, t )

∂t
= −ki jkl

δW shear

δε
p
kl (xp, t )

, (12)

where xp is the yielding region. The shear strain energy is
defined as

W shear = 1
2 edev

i j Ci jkl e
dev
kl , (13)

where the superscript dev refers to the deviatoric part of
the strain tensor. Numerically, the equation is evolved only

in the region xp, where the consistency condition has been
violated. We would also like to note that this is a homogenized
plasticity model, and the authors [18] have shown that Eq. (12)
can also be written in the more standard form known from the
Prandtl-Reuss theory in which dε

p
i j = dλ

∂ f
∂σi j

.
In the present case of anisotropic (cubic) elasticity we as-

sume that ki jkl equals the compliance tensor Si jkl = [C̃i jkl ]
−1

,
where the shear-related components in C̃i jkl are calculated as
C11−C12

2 , instead of C44 defined in Ci jkl . This is necessary in
order to be consistent with the flow rule of the associated
plasticity model. The equations of plastic strain [Eq. (12)] are
evolved to satisfy the yielding condition f (σ) = 0, where the
plastic potential f (σ) is defined of a von Mises material as

f (σi j )

=
√

3

2
√

σi j : σi j − {
σ A

y + [
σ M

y − σ A
y

]
g(ηi) + h(ηi, ε̂

p)
}
,

(14)

where σ A
y and σ M

y are the initial yield stresses of the austenite
and martensite phases, g is a step function to distinguish
between the phases (austenite for g = 0 and martensite for
g = 1), and h is the hardening modulus function of the equiv-
alent plastic strain ε̂p. The function that distinguishes between
the yield stress of martensite and austenite is defined as

g(ηi ) =
{

1 if
∑24

i=1 ηi > 0.5,

0 if
∑24

i=1 ηi � 0.5.
(15)

Further, the model accounts for the isotropic hardening
defined by the following power-law functions:

h(ηi, ε̂
p) =

{
CM

1 (ε̂p)CM
2 if

∑24
i=1 ηi > 0.5,

CA
1 (ε̂p)CA

2 if
∑24

i=1 ηi � 0.5,
(16)

where the constants C1 and C2 are defined for both the marten-
site and austenite phases. These constants are temperature
dependent and are presented in Eq. (19).

The equivalent plastic strain is calculated as the accumula-
tion of equivalent plastic strain increments:

ε̂p =
∫ t

0
d ε̂pdt, d ε̂p =

√
2

3
dε

p
i jdε

p
i j . (17)

The numerical implementation of the plasticity equations is
similar to the standard radial-return algorithm. Beginning with
a trial stress σtr , if the stress point is found to lie outside of the
yield surface (here defined by the domain xp), the amount of
plastic strain is calculated to push the stress point back onto
the yield surface. The directions of the plastic strain tensor
components are given by Eq. (12), and the equation is evolved
sufficiently long with a relatively small time step t until
Eq. (14), f (σ) = 0, is satisfied. This is a process similar to
finding λ in the radial return algorithm. The consistency is
ensured at each loading increment of each time step of the
phase field simulation.
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TABLE I. Transformation strains.

B1 B2 B3

εKS,2 =
⎡
⎣−0.182 −0.005 −0.023

−0.005 0.116 −0.005
−0.023 −0.005 0.106

⎤
⎦ εKS,4 =

⎡
⎣ 0.106 −0.023 −0.005

−0.023 −0.182 −0.005
−0.005 −0.005 0.116

⎤
⎦ εKS,1 =

⎡
⎣ 0.106 −0.005 −0.023

−0.005 0.116 −0.005
−0.023 −0.005 −0.182

⎤
⎦

εKS,3 =
⎡
⎣−0.182 −0.023 −0.005

−0.023 0.106 −0.005
−0.005 −0.005 0.116

⎤
⎦ εKS,5 =

⎡
⎣ 0.116 −0.005 −0.005

−0.005 −0.182 −0.023
−0.005 −0.023 0.106

⎤
⎦ εKS,6 =

⎡
⎣ 0.116 −0.005 −0.005

−0.005 0.106 −0.023
−0.005 −0.023 −0.182

⎤
⎦

εKS,7 =
⎡
⎣−0.182 0.005 0.023

0.005 0.116 −0.005
0.023 −0.005 0.106

⎤
⎦ εKS,9 =

⎡
⎣0.106 0.023 0.005

0.023 −0.182 −0.005
0.005 −0.005 −0.116

⎤
⎦ εKS,8 =

⎡
⎣0.106 0.005 0.023

0.005 0.116 −0.005
0.023 −0.005 −0.182

⎤
⎦

εKS,10 =
⎡
⎣−0.182 0.023 0.005

0.023 0.106 −0.005
0.005 −0.005 0.116

⎤
⎦ εKS,12 =

⎡
⎣0.116 0.005 0.005

0.005 −0.182 −0.023
0.005 −0.023 0.106

⎤
⎦ εKS,11 =

⎡
⎣0.116 0.005 0.005

0.005 0.106 −0.023
0.005 −0.023 −0.182

⎤
⎦

εKS,13 =
⎡
⎣−0.182 0.005 −0.023

0.005 0.116 0.005
−0.023 0.005 0.106

⎤
⎦ εKS,15 =

⎡
⎣ 0.106 0.023 −0.005

0.023 −0.182 0.005
−0.005 0.005 0.116

⎤
⎦ εKS,14 =

⎡
⎣ 0.106 0.005 −0.023

0.005 0.116 0.005
−0.023 0.005 −0.182

⎤
⎦

εKS,16 =
⎡
⎣−0.182 0.023 −0.005

0.023 0.106 0.005
−0.005 0.005 0.116

⎤
⎦ εKS,18 =

⎡
⎣ 0.116 0.005 −0.005

0.005 −0.182 0.023
−0.005 0.023 0.106

⎤
⎦ εKS,17 =

⎡
⎣ 0.116 0.005 −0.005

0.005 0.0106 0.023
−0.005 0.023 −0.182

⎤
⎦

εKS,19 =
⎡
⎣−0.182 −0.005 0.023

−0.005 0.116 0.005
0.023 0.005 0.106

⎤
⎦ εKS,21 =

⎡
⎣ 0.106 −0.023 0.005

−0.023 −0.182 0.005
0.005 0.005 0.116

⎤
⎦ εKS,20 =

⎡
⎣ 0.106 −0.005 0.023

−0.005 0.116 0.005
0.023 0.005 −0.182

⎤
⎦

εKS,22 =
⎡
⎣−0.182 −0.023 0.005

−0.023 0.106 0.005
0.005 0.005 0.116

⎤
⎦ εKS,24 =

⎡
⎣ 0.116 −0.005 0.005

−0.005 −0.182 0.023
0.005 0.023 0.106

⎤
⎦ εKS,23 =

⎡
⎣ 0.116 −0.005 0.005

−0.005 0.106 0.023
0.005 0.023 −0.182

⎤
⎦

C. Equations of motion

The kinetics of the martensitic transformation is simulated
using the phase field dynamical equations

− 1

�

∂ηi

∂t
= δF

δηi
= G0

[
2τηi − 6η2

i + 4ηi

(
24∑
j=1

η2
j

)]

− K∇2ηi + δ fel

δηi
, (18)

which is solved together with enforcing the mechanical equi-
librium ∂σi j

∂x j
= 0, σi j = ∂ fel

∂εi j
at each numerical time step. Here,

� is a kinetic coefficient related to the mobility of the in-
terface. For computational convenience, dimensionless time
and space variables are introduced as �r = δ�r′ and t = t∗t ′,
where t∗ = 1/(�G0) is the characteristic timescale of the
simulations and δ is the smallest length scale in the simula-
tion. Similarly, a rescaled gradient coefficient is introduced as
K ′ = K/δ2G0. Since reliable data for the kinetic coefficient �

are not available, all timescales are measured in units of t∗.

D. Material parameters

A high-carbon steel (AISI 52100) is used as an ex-
ample in the present simulations. The chemical driving
force in Eq. (2) is specified by choosing the reference free
energy G0 = 3000 J/mol and the equilibrium temperature

T0 = 723 K, which is the typical value for steel with
1 wt% carbon [31]. The temperature Tc is regarded as an
adjustable parameter. The value of Tc = 315 K is chosen
such that the fraction of martensite at room temperature
during the temperature-induced transformation is close to
the experimentally observed value for AISI 52100 (see
Sec. III). The gradient coefficient is chosen to be K = 0.106 ×
10−10 J/m [32], and the grid spacing is 1 nm. The trans-
formation strains in Eq. (11) are calculated for a steel with
1 wt% carbon with the lattice parameters a0 = 0.36 nm, a =
0.285 nm, c = 0.298 nm [31]. Table I shows the transforma-
tion strain matrices for all 24 variants obtained using the above
lattice constants. Figure 12 in the Appendix illustrates the
corresponding unit cell deformations associated with each of
the 24 variants. The elastic constants used in the simulations
are C11 = 209 GPa, C12 = 133 GPa, and C44 = 121 GPa [21].
To incorporate plastic effects, temperature-dependent power
laws [see Eq. (16)] for AISI 52100 are adopted from Ref. [27],
and the coefficients CA

1 , CM
1 and CA

2 , CM
2 for the austenite and

martensite phases are given as

CM
1 = 4.35 × 103 − 4.11T,

CM
2 = 7.97 × 10−3 + 1.27 × 10−4T,

CA
1 = 1.06 × 103 − 1.09T,

CA
2 = 1.22 × 10−1 + 3.88 × 10−5T, (19)
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FIG. 1. Martensite embryo at T = 623 K (left) and equivalent plastic strain ε̂p (right) on three mutually perpendicular planes passing
through the center. The box shows the shape of the initial untransformed austenite (with dimensions 64 × 64 × 64 nm3).

where CM
1 and CA

1 are given in megapascals. The initial
yield stresses are calculated from Eq. (16) assuming ε̂p =
0.00005 [27] and are therefore also temperature dependent.
The initial yield stress of austenite varies between 283 MPa
at T = 350 K and 253 MPa at T = 422 K. Similarly, the
initial yield stress of martensite varies between 3383 MPa at
T = 350 K and 2863 MPa at T = 422 K.

III. SIMULATION OF TEMPERATURE-INDUCED
TRANSFORMATIONS

Starting from an initial austenite phase, quenches to dif-
ferent temperatures below T0 are simulated using the model
described in Sec. II. The representative volume element is
subjected to periodic boundary conditions. Note that the pe-
riodicity of the displacement variables implies that 〈εi j〉 = 0.
The mechanically constrained condition has been imposed to
model a single grain, deep inside a polycrystal. Such a grain
cannot be stress free as it will be mechanically constrained by
the surrounding grains. The initial austenite phase is set up
by setting all order components to zero, except in a spherical
region of radius 5δ, δ = 1 nm, at the center of the simulation
cell where η1 = 1. This represents an initial embryo of the
martensite corresponding to KS1 (B3).

Figure 1 shows the initial martensite embryo (left) and the
associated equivalent plastic strain (right) at T = 623 K for
the case when plasticity is incorporated. It is clear that plastic
deformations occurred inside the embryo (martensite) as well
as in its surroundings (austenite). This plastic deformation
relaxes the elastic energy that arises from the misfit between
the austenite and martensite.

Interestingly, the simulation result shows that the initial
martensitic embryo in this case remains stable and does
not further evolve. However, an analogous simulation per-
formed at the same temperature but assuming purely elastic
conditions (both martensite and austenite) showed that the

initial embryo shrank. Therefore, the stabilization of the
martensite in the elastoplastic case can be attributed to the
transformation-induced plasticity.

The temperature-induced transformation for the same
elastoplastic problem simulated at lower quenching temper-
atures is depicted in Figs. 2 and 3. Figure 2 shows the fraction
of martensite as a function of the rescaled time for different
temperatures, and Fig. 3 shows the associated equilibrium
martensitic patterns. The transformed fraction is calculated by
counting the fraction of spatial points for which any one of
the order parameter components is larger than 0.2. In Fig. 3,
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t/t* ×105
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FIG. 2. The transformed fraction of the martensite for the case
with plasticity as a function of time for different temperatures. The
volume fraction of martensite increases with decreasing quenching
temperature.
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FIG. 3. Simulated martensite domain patterns at different temperatures. The box shows the shape of the initial untransformed austenite.
The volume fraction and the complexity of the martensite increase with decreasing temperature (with dimensions 64 × 64 × 64 nm3).

each color corresponds to one of the 24 variants, and the
empty regions represent the austenite phase. The color map is
labeled such that the KS variants belonging to the same Bain
group share a similar color (B1, blue; B2, green; B3, red). The
martensite start temperature Ms for the model is calculated
to be T = 414 K, above which the martensitic embryo does
not grow. While at lower temperatures the embryo evolves
into a microstructure of finely twinned martensitic variants,
it is clear that the entire domain does not fully transform
into martensite. The amount of martensite increases as the
temperature decreases, and at room temperature, the fraction
of transformed austenite is about 85%, which is close to the
experimental value of bulk AISI52100 [27]. (As discussed
earlier, the free energy parameters, mainly G0 and Tc, were
adjusted to obtain this value of the transformed fraction).

Analyzing Fig. 3, we notice that the critical temperature
for embryo growth is T = 414 K. At the temperature T =
415 K, the initial defect does not grow. Although a localized
yielding similar to that in Fig. 1 relaxes the elastic energy,
the driving force is still not sufficient to cause growth of
the transformation. At T = 414 K, the driving force is large

enough, and the formation of internally twinned martensite
plates in austenite matrix is observed. However, it is clear that
the entire simulation domain does not transform and retained
austenite is observed. At lower temperatures, the fraction of
martensite increases. It can be further observed that at higher
temperatures, only some of the variants are formed after the
transformation; at lower temperatures (e.g., T = 350 K), al-
most all 24 variants are formed.

In order to understand the role played by plasticity, the
transformation case at T = 414 K is analyzed by comparing
the martensitic domain pattern (Fig. 4, left) with the corre-
sponding equivalent plastic strain distribution (Fig. 4, right).
Plastic strains are observed within the martensite as well as
in the surrounding austenite. The plastic deformation of the
austenite is akin to the Greenwood-Johnson mechanism where
the weaker austenite undergoes plastic deformation to accom-
modate the shape change due to martensitic transformation.
As the martensite domain grows, it also inherits the preex-
isting plastic deformation of the austenite. This was found in
earlier works [33,34]. Note that there are additional plastic
strains at the twin boundaries. These arise due to shear stresses
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FIG. 4. Martensite domain pattern at T = 414 K (left) and equivalent plastic strain ε̂p (right) on three mutually perpendicular planes
passing through the center of the simulation box. The white arrows in the right panel indicate regions of the austenite that have undergone
plastic deformation (with dimensions 64 × 64 × 64 nm3). The interfacial width of austenite-martensite interfaces is about 4–5 nm, whereas
that for martensite-martensite interfaces is about 1–2 nm.

that exist at the diffuse twin interface [35,36]. Figure 4 clearly
shows that the plastic deformation provides an additional
mechanism to accommodate the phase transformation.

In order to isolate the role of plasticity, analogous simu-
lations without incorporating plastic effects were performed
under conditions identical to those in the case with plasticity.
Quenches to several temperatures were considered. As dis-
cussed earlier, for the case without plasticity, it is found that at
high temperatures, the initial defect is not stable and shrinks.
For this case, at lower temperatures (T < 412 K), the driving
force is sufficiently large to transform the incompatible spher-
ical embryo into a region of fine twins so that the initial defect
survives and leads to the growth of the martensite domains.
Figure 5 shows the time evolution of the transformed fraction
for the case without plasticity for different temperatures. It is
interesting to note that no retained austenite is observed at any
temperature for this case.

Figure 6 shows the martensite patterns at two temperatures.
In contrast to the elastoplastic case in Fig. 3, no retained
austenite is found in this case. Also, it is noticeable that
the twins are finer in this case. Furthermore, a large number
of variants are observed, even at higher temperatures. This
should be contrasted with the plastic case, where fewer vari-
ants appeared at the same temperatures.

Figures 1–6 describe the transformation for a mechanically
constrained system. However, it is known that the observed
martensite patterns can be quite different for the stress-free
case where a macroscopic shape change is allowed. For
example, simulations by Yeddu et al. [21] showed that a
single domain state with only one variant is formed for the
stress-free case, whereas multiple variants formed for the
constrained case. In order to understand the role played
by the mechanical boundary conditions, we also simulated
the transformation in the stress-free case for both the
plastic and purely elastic cases, just below their respective
martensite start temperatures. The stress-free case

was implemented by defining a strain tensor εi j =
1
2 (∂ui/∂x j + ∂u j/∂xi ) + εa

i j , where the strains εa
i j are chosen

so that the average stress 〈σi j〉 = 0. For both cases, the initial
domain fully transformed to a macroscopically tetragonal
state, which is in contrast to the constrained case in Fig. 3,
where retained austenite is observed for the plastic case.

The differences in the morphology between the plastic and
elastic cases can be understood in terms of the role played
by transformation plasticity and the mechanical boundary
conditions. As the martensite starts to grow, for a mechani-
cally constrained system, for both elastic and plastic cases, it
generates predominantly compressive strains in the surround-
ing austenite. The compressive strains are observed due to the
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FIG. 5. The transformed fraction of the martensite for the case
without plasticity as a function of rescaled time t∗ for different
temperatures.
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FIG. 6. Simulated martensite domain patterns for the case without plasticity at two different temperatures (for a system with dimensions
64 × 64 × 64 nm3).

fact that the martensite undergoes volume expansion and leads
to a compression of the surrounding austenite as macroscopic
shape change is not allowed. For the purely elastic case, the
additional elastic energy due to compressed austenite can be
overcome by forming a fine twinned pattern with a large
number of variants, without any retained austenite (Fig. 6). As
a result, there is no retained austenite. However, for the elasto-
plastic case, the plasticity induced in the austenite competes
with the tendency to form a large number of variants to relieve
the elastic energy. Therefore, the constraint of zero average
strains is met by retaining the austenite that is compressed
and plastically deformed. On the other hand, for the stress-free
case, the volume change is accommodated by a macroscopic
shape change, and the transformation is not suppressed, even
for the case with plasticity.

These results clearly demonstrate the crucial role of the
plastic deformation on the stability of retained austenite. It
should be noted that the stability of austenite is crucial in the
optimization of mechanical properties in steels that exhibit the
TRIP effect, particularly to obtain both strength and ductility.

An important conclusion drawn from the above results is
that plasticity plays a dual role during the transformation. On
the one hand, in a mechanically constraint system (represent-
ing for instance a grain inside a polycrystalline system) the
plasticity assists the nucleation by reducing the misfit strain
energy, on the other hand it also facilitates the arrests of the
transformation, thereby leading to the stability of the retained
austenite.

IV. SIMULATIONS OF STRESS-INDUCED
TRANSFORMATIONS

Martensitic phase transformation in steel may also be in-
duced by an external deformation. This property is utilized
in the so-called TRIP steels where a martensitic transforma-
tion occurs due to an external load at temperatures above
Ms, where the driving force is not large enough to form

martensite without external deformation. There are two mech-
anisms of deformation-induced transformations [37]. If the
transformation is stress induced, the applied stress provides
an extra driving force for martensite formation. For plastic
strain-induced transformations, plastic deformation leads to
generation of additional nuclei that promote the martensitic
transformation. In the present work, only stress-induced trans-
formations are considered. To understand the mechanism of
stress-induced transformations, an external stress is applied at
temperatures where no martensitic transformation takes place
without a stress, even if an embryo of the martensite exists
in the initial austenite phase. The external stress is applied
by defining a strain tensor εi j = 1

2 (∂ui/∂x j + ∂u j/∂xi ) + εa
i j ,

where the strains εa
i j are chosen so that the average stress can

be fixed as 〈σi j〉 = σ a
i j . In the present work, a uniaxial defor-

mation along the y direction is considered such that 〈σxx〉 =
〈σxy〉 = 〈σzz〉 = 〈σyz〉 = 〈σxz〉 = 0 and 〈σyy〉 = σ a

yy, where σ a
yy

is the applied stress. Note that unlike the simulations in
Sec. III, there is no mechanical constraint here, and an overall
shape change in response to the applied stress is expected.

Similar to the case of temperature-induced transformation,
a spherical embryo of the KS variant KS1 is placed in the
austenite phase (see Fig. 1) at temperatures above the marten-
site start temperature of the model. The applied stress σ a

yy is
increased linearly with time. For comparison, identical simu-
lations are run for the cases with and without plasticity. The
maximum applied stress is σ max

yy = 350 MPa, and the stress
is linearly increased for t = 500000t∗. Figure 7 shows the
stress-strain curves for the two studied cases (with plasticity
and without plasticity) at T = 418 K (the initial embryo is
stable at this temperature for both cases, but no transformation
is observed in the absence of applied stress).

After an initial linear elastic deformation, both cases trans-
form to martensite at a critical stress. The externally applied
stress decreases the austenite-martensite barrier and in-
creases the driving force. This promotes the transformation to
elastically favored variants. Thereafter, a linear elastic
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FIG. 7. Simulated stress strain curves for the plastic and nonplas-
tic cases at T = 418 K.

deformation of martensite is observed. An important obser-
vation from Fig. 7 is that the uniaxial deformation at the
end of the loading is significantly larger for the plastic case.
To understand the role played by plasticity, it is instructive
to examine the transformation strains and the plastic strains
individually. The time evolution of the average strains dur-
ing the loading process of Fig. 7 is shown in Fig. 8 for the
case with plasticity as well as for the case without plastic-
ity. Here, the average transformation and plastic strains are
calculated as εtrans

i j = 〈∑24
m=1 h(ηm)εKS,s

i j 〉 and ε
pl
i j = 〈εp

i j〉, re-
spectively. It is clear by comparing Figs. 8(a) and 8(b) that
transformation-induced plasticity significantly contributes to
the total deformation. It should be remarked that the critical
stress in Fig. 7 is much lower than the yield stress of the
austenite at that temperature. Therefore, the plasticity is trig-
gered by the phase transformation. This plastic strain arises

due to the deformation of the austenite caused by the growth
of the martensite domain (similar to the Greenwood-Johnson
mechanism). The stress generated in the austenite can be
large enough to cause localized yielding. For the mechanically
constrained case in Sec. III, this effect was responsible for
arresting the transformation. For the case of uniaxial loading
studied in this section, this effect leads to additional defor-
mation since there is no mechanical constraint. The case
without plasticity, on the other hand, is similar to the so-
called Magee effect where stress-induced growth of favored
variants is observed. Figures 7 and 8 also show that most
of the stress-induced deformation is attributed to the phase
transformation. However, the plastic strain generated due to
the phase transformation is also significant and should not
be neglected in an analysis of the mechanical behavior of
steel.

Figure 9 shows the martensite domain patterns at the end
of the loading process for the cases shown in Fig. 7.

The variant KS1 was chosen as the initial embryo. From
Table I, it is noted that this variant has its tetragonal axis along
the y direction and is one of the favored variants when uniaxial
stress σyy is applied. However, it is found that in addition to
KS1, the variant KS10 is also formed for both cases. The two
variants are formed to self-accommodate the shear stresses
when a uniaxial stress is imposed. This should be contrasted
with the case when only three variants corresponding to the
pure Bain strains are considered. In that case, a single domain
of the favored variant is expected to form. Figure 9 also
demonstrates the influence of the plastic strain on the resulting
pattern. For the case without plasticity, a fine twinned pattern
of KS1 and KS10 is formed. For the plastic case, although
KS1–KS10 twins are observed, the KS1 variant has a larger
fraction. This is due to the fact that plastic deformation also
contributes to accommodate the transformation in addition to
the twin formation.

The competition between twinning and plasticity is further
demonstrated by examining the stress-induced transforma-
tions at different temperatures. Figure 10 shows the final
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FIG. 8. Time evolution of the average strains during the loading process shown in Fig. 7 for (a) the plastic and (b) nonplastic cases.
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FIG. 9. Simulated martensite domain pattern at the maximum applied stress for the stress-strain curves in Fig. 7 at T = 418 K. The box
shows the shape of the initial untransformed austenite (with dimensions 64 × 64 × 64 nm3).

patterns after stress-induced transformation at three temper-
atures. It is clear that the pattern for T = 422 K has a much
higher fraction of KS1 compared to those at T = 418 K and
T = 420 K. This manifests in a macroscopic shear that is
visible for the T = 422 K case. In comparison, T = 418 K
and T = 420 K appear macroscopically tetragonal.

Figure 11(a) shows the stress strain curves for the cases
shown in Fig. 10.

The stress required to initiate the transformation increases
with temperature. This is understood in terms of the de-
creasing driving force as temperature is increased. The
macroscopic strain is also found to increase with tempera-
ture. In order to understand this, it is instructive to examine
the development of the strains during the transformation.
Figure 11(b) shows the time dependence of the transfor-
mations for three temperatures, and Fig. 11(c) shows the
corresponding plastic strains. It is observed that the maxi-
mum transformation strain does not vary significantly with
temperature. However, the induced plastic strains increase
with temperature. This is due to the temperature-dependent
plasticity model used in the present work. The increase in
transformation-induced plastic strains at higher temperatures

explains the change in morphology observed in Fig. 10
for T = 422 K. The accommodation of the deformation by
transformation plasticity leads to an increased tendency for
formation of single variants.

V. SUMMARY AND DISCUSSION

A phase field study of the role of martensitic-
transformation-induced plasticity in steels was presented.
A phase field model incorporating elastic and plastic effects
taking into account all 24 variants of the Kurdjumov-Sachs
orientational relationship was used. The model was
parameterized for a typical high-carbon steel (AISI 52100).
Both temperature-induced and stress-induced martensitic
transformations were studied. In order to understand the role
of plastic effects, phase field simulations were run both with
and without plastic effects.

For temperature-induced transformation in a mechanically
constrained system, it is found that plasticity plays a dual
role during the phase transformations. Localized plastic de-
formation relaxes the misfit strains associated with martensite
embryos, helps to stabilize the embryos, and assists in the
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FIG. 10. Simulated martensite domain pattern at the maximum applied stress at three studied temperatures. The box shows the shape of
the initial untransformed austenite (with dimensions 64 × 64 × 64 nm3).
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FIG. 11. (a) The corresponding stress-strain curves of the cases in Fig. 10. The effect of temperature on (b) average transformation strain
εtrans

i j and (c) average plastic strain ε
pl
i j . While the average transformation strain does not change much, the average plastic strain is significantly

temperature dependent.

nucleation of the martensite. However, once the martensite
starts to grow, the shape change associated with the martensite
leads to plastic deformation of the surrounding austenite. For
a mechanically constrained system, this plastic deformation
competes with the tendency for nucleation and growth of
multiple martensite variants for strain energy relief, therefore
preventing further growth of martensite and stabilizing the
retained austenite. On the other hand, when no plasticity is
included, the entire system transforms to martensite for all
temperatures below the martensite start temperature.

The martensitic transformation can also be induced by an
external stress and can lead to formation of a favored marten-
site variant, depending on the loading direction. This leads
to a macroscopic deformation caused by the shape change
associated with the phase transformations. When plasticity
is considered, the phase transformation is accompanied by
a plastic deformation. Although the applied (macroscopic)
stress is lower than the yield stress, plasticity is induced

due to the transformation. This is due to the fact that local
shape change associated with the transformation can lead to
stresses in the surrounding austenite that are large enough
to trigger plastic deformation. The transformation-induced
plasticity significantly enhances the overall stress-induced de-
formation. These observations are consistent with the classical
mechanisms of transformation-induced plasticity [7,8]. Phase
field simulations can be used to study the relative contri-
butions of the two mechanisms. The simulations show that
although most of the stress-induced deformation is attributed
to the phase transformation, additional strain produced due to
transformation plasticity is also significant and influences the
martensite microstructure, particularly at high temperatures.

Some limitations of the model must be pointed out.
The use of small-strain theory in the elasticity calculations
is a source of inaccuracy, particularly for cases where large
macroscopic strains are observed. Finite strains have also been
shown to influence the martensite morphology [13,38,39].
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FIG. 12. Deformation of a unit cube for the 24 KS variants. The shear components of the strain tensor are 5× magnified for better
visualization. The blue dashed box represents the initial undeformed austenite configuration.

Finally, the use of the isotropic (homogenized) plasticity
model could also influence the simulated morphologies.
A finite-strain crystal plasticity approach that takes into
account all martensite variants can overcome some of
these shortcomings and is clearly a direction for further
research. Although the simulations here are for idealized
conditions, they provide physical insights that may be
overlooked in macroscopic models. Traditionally, the
problem of transformation-induced plasticity is studied
using empirical constitutive models [7,9]. While these models
have been successful in explaining many of the phenomena,
they do not fully take into account the microstructural
complexity associated with multivariant martensitic
transformations. On the other hand, the analysis presented
here naturally takes into account the thermodynamics of
the phase transformation and can describe the complex
microstructural evolution associated with transformation-

induced plasticity in steel, without any empirical
assumptions.
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APPENDIX: DEFORMATION OF A UNIT CUBE FOR THE
24 KS VARIANTS

The deformed shape of a unit cube for all 24 KS variants
listed in Table I is shown in Fig. 12. The shape change is plot-
ted with reference to [0,0,0] of the shown coordinate system.
Each row represents a KS variant with respect to its Bain strain
variant B1, B2, or B3.
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