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Machine learning for metallurgy II. A neural-network potential for magnesium
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Interatomic potentials are essential for studying fundamental mechanisms of deformation and failure in
metals and alloys because the relevant defects (dislocations, cracks, etc.) are far above the scales accessible to
first-principles studies. Existing potentials for non-fcc metals and nearly all alloys are, however, not sufficiently
quantitative for many crucial phenomena. Here machine learning in the Behler-Parrinello neural-network frame-
work is used to create a broadly applicable potential for pure hcp magnesium (Mg). Lightweight Mg and its alloys
are technologically important while presenting a diverse range of slip systems and crystal surfaces relevant to
both plasticity and fracture that present a significant challenge for any potential. The machine learning potential
is trained on first-principles density-functional theory (DFT) computable metallurgically relevant properties and
is then shown to well predict metallurgically crucial dislocation and crack structures and competing phenomena.
Extensive comparisons to an existing very good modified embedded atom method potential are made. These
results demonstrate that a single machine learning potential can represent the wide scope of phenomena required
for metallurgical studies. The DFT database is openly available for use in any other machine learning method.
The method is naturally extendable to alloys, which are necessary for engineering applications but where
ductility and fracture are controlled by complex atomic-scale mechanisms that are not well predicted by existing
potentials.
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I. INTRODUCTION

Metal alloys are widely useful for many structural appli-
cations due to the presence and behavior of the underlying
fundamental defects in the crystalline lattice. That is, the
atomistic structures of dislocations, interfaces, crack tips,
grain boundaries, precipitates, and vacancies, and their evo-
lution and interactions determine the plastic flow behavior,
creep, fatigue, fracture toughness, radiation resistance, etc.,
that ultimately control the macroscopic material performance.
Understanding those structures, and their dependence on
chemistry, is crucial for optimizing the use of existing al-
loys and for designing new higher-performance alloys. This
necessitates atomic-scale simulations at the scales of the
defects, which are often far too large for the use of first-
principles methods such as density-functional theory (DFT).
The development of semiempirical interatomic potentials that
accurately capture the structures, energies, and motion of the
various defects is thus essential.

The development of interatomic potentials has a long his-
tory, with successes and limitations, that is briefly reviewed
in a companion paper [1]. Existing potentials for metals be-
come increasingly inaccurate with increasing complexity in
both crystal structure and chemistry. Relevant to the present
paper is the case of elemental hexagonally close packed
(hcp) metals, where many potentials struggle to capture the
full range of operative slip systems (basal, prismatic, and
pyramidal I and II) and with limited quantitatively accurate
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extensions to alloys [2–6]. The general issues with tradi-
tional potentials are leading to the application of machine
learning methods to fit the potential energy surface (PES)
of a metal without imposing a highly restricted functional
form [7–12]. The construction of a machine learned potential
consists of (i) choosing a suitable class of geometric represen-
tations (the descriptors) to describe local atomic environments
[13–17], (ii) developing a database of energies and forces of
atomic structures using first-principles methods (the training
dataset), and (iii) applying a regression algorithm (e.g., neural
network, kernel ridge regression) to optimize the parame-
ters in the machine learning framework to best-match the
training data. Since the number of descriptors and/or param-
eters is unlimited, the machine learning approaches provide
a “parameter-rich” space that can capture the training dataset
well. However, since it is pure regression, machine learning
potentials are not suitable for extrapolation to structures that
differ notably from those in the training dataset. It must be
recognized, however, that traditional interatomic potentials
having fixed functional forms with limited parameters (i) are
also intrinsically limited in their ability to accurately fit many
properties, (ii) depend on the target properties and regression
algorithms, and (iii) involve user-imposed decisions regard-
ing which properties are most important because all desired
properties cannot be achieved with sufficient accuracy.

For machine learning, a careful balance must be struck
in selecting an appropriate limited set of descriptors, a
limited set of fitting parameters, and a sufficiently large
and diverse training set, so as to achieve broad accurate
performance without the overfitting that exacerbates extrap-
olation errors. To circumvent the tedious task of curating an
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exhaustive training dataset while maintaining transferability,
several semiautomated protocols have been developed to sam-
ple the phase space of a material. Active learning methods
have used random perturbations of bulk crystalline structures
to sample the phase space of Al, Mg, and an Al-Mg alloy
space [18]. Self-guided learning has explored the phase space
by using randomized unit cells paired with a selection of the
most diverse structures and applied to C, Si, and Ti [19].
On-the-fly learning methods have combined DFT calculations
with machine learning for the calculation of melting points
for Al, Si, Ge, Sn, and MgO [20]. A new hybrid approach
combines an analytical bond order potential (BOP) form with
a neural network that adjusts the BOP parametrization de-
pending on the specific environment [10]. This approach can
improve extrapolations because the analytical form is smooth.

A key, and limiting, aspect of nearly all of the machine
learning (ML) potentials generated to date is that the training
data, and fitness of the potential, are mainly demonstrated on
basic properties of the bulk crystalline material [21]. Very few,
if any, defects are considered. Structures in the training set and
the predicted properties are associated with the equilibrium
geometry, elastic response of the bulk, vibrational properties,
vacancies, surfaces, etc., and, in some cases, liquid-state in-
formation. These features are necessary but far from sufficient
for performing metallurgically useful studies of the behavior
of defects in metals. For instance, the stable stacking fault
energy (SSFE) for both fcc Ni and Cu is very poorly predicted
by all the machine learning methods analyzed in Ref. [21]
because the nature of the training set did not include config-
urations near this structure. The aforementioned self-guided
semiautomatic approaches using random perturbations are
useful to sample very-near bulk configurations but will not
produce, e.g., a stacking fault or a vacancy. Yet, the SSFE
is essential for modeling dislocations, and so none of the
machine learning potentials in Ref. [21] would be suitable
for quantitative plasticity modeling, although that was not the
purpose of Ref. [21]. There are a few efforts extending beyond
basic properties. Kobayashi et al. [9] developed a neural-
network potential (NNP) for the Al-Mg-Si system including
many intermetallics, solute-solute interactions, and interfaces
and showed good predictions for edge and screw dislocation
structures, solute or dislocation interactions, and in situ pre-
cipitates; further development was shown by Imbalzano et al.
[22]. The Gaussian approximation potential (GAP) potentials
for Fe [23] and W [24] included baseline data needed for
describing dislocations, and the GAP Fe potential was used
to study the double-kink nucleation process that controls plas-
tic flow in bcc metals [25]. The hybrid physically informed
neural network (PINN) approach [10] showed application to
a face-centered-cubic (fcc) edge dislocation in Al. A NNP
developed for Ti presented transformation pathways from
body-centered-cubic (bcc) to fcc crystal structure [12]. These
recent works highlight the promise of machine learning meth-
ods, but still remain fairly limited in metallurgical scope.

In this paper we study magnesium (Mg) as both an excel-
lent complex testbed for machine learning and because Mg is
a very desirable structural material [26–28] due to a combi-
nation of low density, high specific strength, and availability
[29]. Complexity arises because the crystal structure is hcp
so that the many different slip systems must be activated to

enable general plasticity according to the von Mises criterion
[30], and various possible crack geometries may be suscep-
tible to cleavage [31]. These issues are intimately tied to the
low ductility and low toughness of pure Mg, which severely
limits its practical application. Recent work shows that alloy-
ing Mg with dilute (<1%) additions of rare-earth elements
(Y, Nd, Ce, Gd), Ca, and Mn improves ductility at room
temperature substantially. This has been attributed to solute-
accelerated cross-slip and double cross-slip of pyramidal 〈c +
a〉 dislocations [32–34], demonstrating the intimate connec-
tion between detailed atomic-scale dislocation processes in
the alloy and the macroscopic behavior. But direct simulations
require scales far above those accessible by DFT. Simulation
of this mechanism and other mechanisms associated with flow
and fracture remain necessary but thus require potentials suit-
able for the simulations of hundreds of thousands of atoms.
Furthermore, the potentials must have an accuracy sufficient
to capture very subtle energy differences between different
dislocations that ultimately govern the mechanical behavior
of Mg. Early embedded atom method (EAM) potentials for
Mg failed dramatically in their descriptions of the pyrami-
dal dislocations [35] but modified embedded atom method
(modified embedded atom method (MEAM)) potentials for
pure Mg exist [4,5] and the most recent versions [5,6] are
overall quite good. However, even the most recent MEAM
for the important Mg-Y [36] is not sufficiently accurate for all
necessary quantities, making it unsuitable for studying critical
mechanisms in Mg alloys.

As the first essential step in overcoming the current limita-
tions to atomistic studies of Mg and its alloys, here we present
a family of Behler-Parrinello neural network (BPNN) [13]
(or short NNP hereafter) machine learning potentials for pure
Mg using the implementation of the library n2p2 [37]. The
potentials are fitted with extensive first-principles DFT cal-
culations of metallurgically relevant properties. However, we
intentionally restrict the training database to (nearly) the same
set previously used to fit MEAM potentials and then make
side-by-side comparisons of MEAMs and NNP. We control
every step of the fitting process with state-of-the-art methods
from the choice of the representation (symmetry functions),
the choice of the neural-network topology, and the curation of
the training data. Results demonstrate that the family of NNP,
and detailed analysis of one selected NNP denoted as NNP63,
is broadly superior to the best MEAM potentials when eval-
uated across a wide range of metallurgical properties. The
crucial pyramidal II 〈c + a〉 dislocation structure remains im-
perfect, and restrictions on the use of the current potential are
discussed. However, the NNP in general can be continually
improved with an expanded training database, augmented to
avoid some of the extreme extrapolation problems, and, most
importantly, easily extended to Mg alloys.

The remainder of this paper is organized as follows. In
Sec. II the BPNN potential framework is summarized and
the fitting procedure is described. Additional details about the
DFT implementation used to build the training database, and
the range of structures considered is presented. Section III
compares the predictions of both NNP63 and MEAM po-
tentials against the DFT for a range of properties directly
derivable from DFT and relevant for mechanical properties.
In more detail, Sec. III A presents the results from the fitting
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the neural network; Sec. III B presents material properties of
which most underlying structures were part of the training
set; Secs. III C and III D each present results on training set
data (stacking fault energy curves and decohesion, respec-
tively) and the related applications to dislocation and fracture
which demonstrate transferability of the potential. Predictions
using NNP63 are then made for dislocation geometries, basal
dislocation Peierls stress, and fracture (crack-tip phenomena)
for a range of orientations, with comparisons to available
DFT, experiments, and/or theoretical predictions. Section IV
provides further discussion of our results and summarizes the
work including future possibilities for Mg-alloy potentials.

II. METHODS

A. Neural-network architecture and implementation

In this section we briefly outline the structure of a NNP
in the formulation of Behler-Parrinello [13]. All details and
implementation of the neural-network method employed here
are well presented in the recent literature and the reader is
referred to, e.g., Refs. [13,37–40].

Machine learning potentials developed to date first assume
that the total potential energy of a system of N atoms can
be represented as a sum of the energies of each atom n =
1, . . . , N , with the energy of each atom depending on the local
environment around the atom,

Etot =
N∑

n=1

En. (1)

This assumption is also underlying any other empirical po-
tential and enables efficient application of the methods to large
system sizes, as opposed to specific potentials for problems
with a fixed size [41]. The neural-network potential formu-
lation of Behler and Parrinello [13] consists of the choice
of the atomistic structural representation called the symmetry
functions, the number of hidden layers in the neural network,
and the number of hidden nodes per layer in the network.
For a dense two-layer neural network as used here with the
symmetry functions denoted as Gi, the local atomic energy En

is described as

En = f 3
1

{
b3

� +
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w23
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[
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k +
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j +
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w01
i j Gi

)]}
, (2)

where f (·) are the so-called activation functions, Mlayer,i de-
notes the number of nodes in the ith hidden layer, and Msym

is the number of symmetry functions used to represent local
atomic environments. The quantities {wni} and {bi} are the
so-called weights and biases, which are determined by fitting
the total energy modeled according to Eq. (1) to a training
dataset of structures, total energies, and individual atomic
force components. The ith component Fn,i of the force on atom
n is computed as Fn,i = −∂Etot/∂xn,i.

The structural representations of the atomic environment
are dictated by the symmetry functions. The BPNN frame-
work defines radial and angular symmetry functions of the
forms

Grad
i =

∑
i �= j

e−η(ri j−rs )2
fc(ri j ), (3)

Gang
i = 21−ζ

∑
j,k �=i

(1 + λ cos θi jk )ζ e−η(r2
i j+r2

ik+r2
jk )

× fc(ri j ) fc(rik ) fc(r jk ), (4)

where ri j = |r j − ri| is the distance between two atoms i and
j; θi jk the angle between three atoms i, j, k; fc is a smooth
cutoff function; and η, rs, λ, and ζ are predefined hyperpa-
rameters. Here we employ 27 radial and 5 angular symmetry
functions; this is a heuristic design choice based on goals
of avoiding overfitting and having acceptable computational
costs (cf. Appendix A for the specific hyperparameters). The
selection of the specific functions is made as follows. An
initially very large number M of possible symmetry func-
tions is considered. The training dataset of atomic structures
is then specified. Each atom in each structure has a local
atomic environment; across the entire training set there are

a total of N atoms and thus N local environments (some
of which may be identical). By evaluating the M candidate
symmetry functions centered on each atom in the training
dataset a so-called feature matrix is created that consists of
the M symmetry functions (columns) by N atomic environ-
ments (rows). An unsupervised selection algorithm based on a
CUR matrix decomposition [22] then determines the 32 most
valuable symmetry functions (� M columns) of the feature
matrix, i.e., those with the highest information content with
respect to all the N environments in the training structures.
This selection constitutes the input layer of the NNP. The CUR
method could also be used to provide an error measure for
the selection, from which the number of symmetry functions
would then be an outcome. Note that the selection of sym-
metry functions is intimately tied to the training dataset; if
the training dataset is increased or filtered, then the optimal
set of symmetry functions might be different. In practice, the
use of a large number of bulklike atomic environments in
metals leads to fairly small differences in the selected set of
symmetry functions when the training dataset is extended by
including additional structures. The final chosen hyperparam-
eters for the 32 symmetry functions are presented in Appendix
Tables III and IV.

The employed neural network consists of an input layer
with 32 symmetry functions, two hidden layers with 20 nodes
each, and the final layer with one neuron representing the
energetic contribution an atomic environment [Eq. (2)]. The
hyperbolic tangent is used as an activation function. This
chosen topology results in 1101 fitting parameters, which is
the combined number of weights and biases of the network.

After selecting the symmetry functions and fixing the
topology of the neural network, the determination of the
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weights {wni} and biases {bi} is done with supervised learning
to minimize an error function � equal to the sum of the
squares of the differences between the NNP and DFT energies
and forces. Specifically, for Nstruct structures in the training set
[38], the error measure is

� = 1

Nstruct

Nstruct∑
i=1

[(
Ei

NNP − Ei
DFT

)2

+ β

3Ni
atom

3Ni
atom∑

j=1

(
F i

j,NNP − F i
j,DFT

)2

]
, (5)

where E and F represent the energy of, and forces on indi-
vidual atoms in, a structure, respectively. β (in Å2) is a fixed
parameter during training that allows for relative weighting of
forces versus energies; here we use β = 10 Å2. The quality of
the optimization is then measured by separately evaluating of
the root-mean-square errors (RMSE) of the energy and forces,

RMSE(E ) =
√√√√ 1

Nstruct

Nstruct∑
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(
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)2
, (6)
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)2
.

(7)

The fitting (or training) of NNPs is done with a Kalman
filter [42] as implemented in n2p2 [37] for 400 epochs (it-
erations). The number of epochs is based on initial tests.
For the chosen symmetry functions, neural-network topology,
and the dataset the gradient of the error function (Eq. (5)]
with respect to epochs becomes sufficiently small at 400
epochs while overfitting is avoided. Changes in the initial
values of {wni} and {bi} and/or of the subset of structures
used in the fitting lead to different final NNPs with differ-
ent results for material properties. Comparisons among these
NNPs enables assessment of the broader capability of the
NNPs and for determining when the NNPs are being used
in regions of inaccurate extrapolation. If the different NNPs
deviate by some meV/atom on any given structure, then the
differences are well below the typical errors between the
NNPs and the DFT (a few meV/atom). The different NNPs
are also used to compute material properties that involve
energy differences between a defect or deformed and a ref-
erence state. If the errors in the absolute energies of both
reference and defect states differ in sign, then the material
property can deviate more than anticipated from the general
RMSE of the NNP. Assessing these latter issues is essen-
tially validation steps outside the generic machine learning
formulation itself.

The choice of the training dataset with the function for
optimization [Eq. (5)] defines the mathematical optimization
problem. This might seem trivial but is important. Choos-
ing many similar structures implicitly steers the optimization
toward favoring a low error on those structures. Also, the
loss function here [Eq. (5)] contains an implicit weighting
of structures with high energies (typically structures with
large numbers of atoms). Any step in the optimization that

reduces the error of a large structure also reduces the total
error by a factor scaling with the number of atoms. Most of the
energy of a solid-state structure is dominated by the cohesive
energy [cf. Figs. 1(a) and 1(b)] and reducing that error for
large structures reduces the overall root-mean-squared error
(RMSE). However, defect formation energies are calculated
as the difference between the defect structure and the refer-
ence structure. The defect structure may involve many (10 s
or 100 s) atoms that are away from the defect and near the
bulk reference configuration. This issue points to the value of
adding atomic forces through nonequilibrium structures into
the overall optimization as a means capturing local behavior.
Many of these points cannot be addressed here and exist
because the standard methods such as the BPNN as imple-
mented in n2p2 [37] were mainly developed for applications
to molecules rather than solids such as bulk metals. Contrary
to a database of bulk metals, a database of molecules is often
very homogeneous with respect to the number of atoms per
structure. As the application of ML methods to solids expands,
future optimization methods and codes may address these
issues.

B. Training dataset and DFT details

A suitable training dataset should span the atomic environ-
ments encountered in a wide range of crystalline defects so
that the potential is best suited to interpolate between those
environments. Here we use a training dataset for the NNP that
is nearly the same as used for prior MEAM-type potentials.
Typical input data for fitting a MEAM potential comprises
values for lattice constants, elastic constants, stacking faults,
generalized stacking fault energy curves, decohesion curves,
and surface energies for various crystallographic planes, of-
ten with a combination of first-principles calculations and
experimental values [5]. Here, for the NNP, we use the
same underlying data but fit only energies and forces, from
which material properties are then derived. Thus, instead
of using a big data approach, we incorporate metallurgical
knowledge by choosing relevant structures for mechanical
properties. A big data approach might include many types of
random structures which would not be used in a traditional
approach, e.g., liquid structures which are snapshots from
a trajectory at a specific temperature. But, as noted earlier,
the inclusion of large structures may drive the NNP toward
capturing those structures, and those structures may not be
sufficient for accurate representation of crystalline defects.
The addition of further structures to the training dataset is
always possible.

The training dataset developed here consists of atomic
structures whose energies are used for calculating the energy-
volume curve, elastic constants (Ci j), cohesive energy, gener-
alized stacking fault energy (GSFE) curves (basal, pyramidal
I, and pyramidal II), stable stacking fault energies (basal, pyra-
midal I, and pyramidal II) that can involve relaxations missing
in the standard GSFE, decohesion curves (basal, pyramidal I,
and II), and fully relaxed surface energies. In addition, beyond
the above data typically used for the MEAM potential, we find
it necessary to include rod and cuboidal structures containing
corners and edges of several high symmetry planes to obtain
physical behavior at atomically sharp crack tips. The complete
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FIG. 1. NNP63 vs. DFT calculated energies of structures (a), energies per atom (b), and forces (c) after training.

DFT dataset consists of 443 structures with a total of N =
12 268 atom environments. As discussed earlier, the number
of atomic environments in the dataset defines the N rows of
the feature matrix. Similar or identical atomic environments,
e.g., from a bulk material, do not need a different set of opti-
mal symmetry functions; they can be described with the same
symmetry functions without loss of information. But given
the current function [Eq. (5)], the number of individual atoms
(and therefore the environments) does change the optimiza-
tion by implicit weighting. The entire dataset is accessible on
MaterialsCloud [43].

All first-principles calculations are performed using DFT
as implemented in the Vienna Ab Initio Simulation Package
(VASP) [44,45] within the generalized gradient approxima-
tion (GGA) and using the Perdew-Burke-Enzerhof (PBE)
exchange correlation functional [46]. Core electrons are
replaced by the projector augmented wave (PAW) pseu-
dopotentials [47] with Mg (3s) as the valence state. The
valence-electron eigenstates are expanded using a spin-
polarized plane-wave basis set with a cutoff energy 400 eV. In
reciprocal space, a �-centered Monkhorst-Pack [48] k-mesh
is used with line density consistent across all geometries. The
interval between the neighboring k-points along each recip-
rocal lattice vector b j is 0.02π Å−1 (in VASP, ai · b j = δi j)
and the k-mesh for the Mg 2-atoms primitive hcp cell is 36 ×
36 × 19. A second-order Methfessel-Paxton method [49] with
a smearing parameter of 0.2 eV is used. The employed DFT
parameters yield lattice constants (a = 3.198 Å, c/a = 1.627)
and elastic constants (see Table I) in very good agreement with
experiments [50].

It is important to use well-converged and consistent DFT
calculations. Any computational inconsistencies across the
DFT are translated directly into the resulting NNP, i.e., the
machine learning potential is trying to learn inconsistencies
yet treating them as real. As usual, approximations in the DFT
carry over into the NNP; the NNP can only be as accurate as
the DFT training set.

III. RESULTS

In the following we mainly compare one fitted NNP63
to the DFT dataset and to various material properties di-
rectly derivable from DFT energies. However, results for all
129 NNP are also shown in a number of cases. The sin-

gle choice of NNP63 for the majority of studies presented
here is based on several assessments. First, the RMSEs of
energies and forces [Eqs. (6) and (7)] are on the order of
meV/atom and meV/Å, respectively. Second, the material
properties (cf. Table I) match reasonably against DFT val-
ues. Additional tests, not shown here, with rod and cuboid
shapes were also performed and no unexpected or anoma-
lous behavior was found. In comparisons below, we start
with basic material properties and then extend to properties
outside of the training set. We then examine stacking fault
energies and predicted dislocation structures, followed by de-
cohesion energies and predicted crack-tip behavior relevant
to fracture.

All the following simulations are performed using LAMMPS
[51] with n2p2 [37], and Ovito [52] is used for the visualiza-
tion of atomic structures.

A. NNP63 versus DFT training set

Figure 1 presents the energies, energies per atom, and
forces for all of the structures in the DFT dataset as com-
puted using our final single choice for the Mg NNP63 versus
the DFT training and testing inputs. The fit is good, espe-
cially given the range of energies [Fig. 1(a)] for the different
structures: RMSEs are 6.68 meV/atom and 12.8 meV/Å for
energy and forces, respectively. Large deviations from the
ideal energy in the center of Fig. 1(b) belong to structures
with two atoms only and are very high in total energy, i.e.,
a large difference does not matter here, since the energies are
on the order of 1 eV above bulk equilibrium (cf. discussion
along Fig. 4). Similar results are obtained for all other NNP
generated. These errors are in expected range with machine
learned potentials for the prediction of atomic energies and
forces for metals based on diverse training sets [9,23–25].
The total energies of each structure are shown, rather than
energy per atom, because it is the total energies that enter the
loss function [Eq. (5)]. Forces are presented as per atom per
direction, again because that is how they enter the loss func-
tion [Eq. (5)]. As mentioned in Sec. II, structures with large
energies bias the optimization toward minimizing the absolute
errors of these structure, not the relative errors. Our training
set includes structures containing from 2 to 216 atoms, with
2-atom structures related to bulk properties and the 216-atom
structures related to structures with corners, i.e., rod shapes
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TABLE I. Pure Mg material properties from experiments, ab initio calculations (evaluated on the same dataset used for training the
neural-network potential), NNP63, the empirical MEAM potential (here denoted MEAM1 [53]), and another MEAM fit (here denoted as
MEAM2 [6]). Stacking fault values are for relaxed (σ3 j = 0) as described in Ref. [54]. All values other than DFT have been calculated with
the same protocol. The additional values in the lower part of the table are not part of the training set.

Mg properties Expt. DFT NNP63 MEAM1 [5] MEAM2 [6]

a (Å) 3.209 (300 K) [55] 3.190 3.186 3.187 3.186
c/a 1.624 (300 K) [55] 1.627 1.613 1.623 1.622
Ec (eV/atom) −1.51 [56] −1.51 −1.51 −1.51 −1.51
C11(GPa) 63.5 [57] 61 72 66 66
C12(GPa) 25.9 [57] 28 31 24 25
C13(GPa) 21.7 [57] 22 27 20 22
C33(GPa) 66.5 [57] 64 68 71 70
C44(GPa) 18.4 [57] 18 19 18 18

Stacking fault energies (mJ/m2)
γsf Basal I1 33 [58] 34 31 23 20
γsf Pyr. I SF2 — 161 157 169 154
γsf Pyr. II SF — 165 155 200 169

Surface energy (mJ/m2)
Basal (0001) — 549 583 568 562
Prism (101̄0) — 624 644 583 569
Pyramidal I (101̄1) — 640 663 616 622
Pyramidal II (112̄1) — 732 746 652 639

Additional values
Tension twin
Interface E (mJ/m2) — 128.1 [59] 118.8 148.0 132.3
Vacancy energies (eV)
Formation 0.79 ± 0.03 [60] 0.796 0.735 0.908 0.667
Migration barrier basal — 0.397 0436 0.616 0.601
Migration barrier pyr — 0.416 0.470 0.641 0.616
Melting point Tm (K) 923 — ∼900 — —

(surfaces in two directions, periodic in one direction) and
cuboids (surfaces in all three directions). The implicit weight-
ing of structures with a higher number of atoms is, however,
partially compensated by the larger number of bulk-related
structures as compared to surfaces and corners in the present
dataset.

B. Basic material properties

The accuracy of an interatomic potential is assessed mainly
by its ability to reproduce material properties that are either
known from experiments or are computed or derived from
DFT energies. For machine learning potentials, only DFT is

FIG. 2. Relative errors for various material properties with respect to DFT of NNP63 (red open circles), the mean and standard deviation
of the entire family of NNPs (gray), and two MEAMs (orange diamond and blue triangle).
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FIG. 3. Generalized stacking fault energy curves for the basal
plane from DFT (black), multiple NNPs (red), and two MEAM
potentials (orange and blue).

the reference; deviations of DFT-derived properties must be
resolved independently of any DFT-derived machine learned
potential. For elemental metals, the main material proper-
ties considered by most traditional potentials are the lattice
constants, elastic constants, cohesive energy, vicinal surface
energies, and vacancy formation energy. Occasionally, the
stable and unstable stacking fault energies for important slip
modes are also evaluated or fitted.

Furthermore, the standard error assessment of a NNP after
training (e.g., Fig. 1) is not necessarily meaningful. Standard
material properties are defined in terms of energy differences
between states. So, errors in absolute energy having a different
sign may lead to a poor property prediction. Or, when the
errors in absolute energy are not small compared to the energy
difference, a poor property prediction is obtained. The latter is
especially relevant for elastic constants, which require energy
differences between structures that differ only by very small

FIG. 4. Equation of state for all NNPs, the DFT reference (black
squares), the selected NNP63 (red circles), and the two MEAMs
(orange diamond and blue triangle).

strains—the use of larger strains introduces nonlinearities that
violate linear elasticity. Hence, potentials must be carefully
validated on various material properties. Standard potentials
are often directly fit to the material properties rather than
fitting energies from which properties are then derived, as
done for the NNP.

Table I presents a range of basic material properties of
Mg from experiments, as computed from DFT, our selected
NNP63 potential, and two existing MEAM potentials devel-
oped previously by our group [5,6]. Overall, the properties
of NNP63 agree well with the DFT reference values, which
in turn agree well with experiments. One notable deviation is
a slightly smaller c/a ratio; deviations in c/a from the ideal
value determine the Burgers vector associated with twinning
dislocations and so this deviation in c/a is not as negligible
as it might otherwise appear. Another notable deviation is the
larger value of C11. Since elastic constants determine elastic
energies, this deviation can affect dislocation structures and
other defect properties. On the other hand, the stable stacking
fault energies for the pyramidal I and pyramidal II planes are
much closer to DFT than either of the MEAM potentials,
and these quantities are crucial for establishing the relative
stability of pyramidal I and II dislocations that are believed to
hold the key to ductility in Mg and its alloys. The agreement
for properties in the upper half of the table is expected because
the associated structures are contained in the training dataset.

Table I also shows some additional properties that are not
derived directly from structures and energies in the training
set. Examination of such structures provides some indication
of transferability of a potential to unknown atomic envi-
ronments. Here the tension twin interface, which is a very
low-energy planar structure, is well predicted by NNP63
while the MEAM potentials shows a larger error. Similarly,
the vacancy formation and migration energies—involving co-
ordinations that are not directly contained in the training set
structures—are also well predicted by NNP63. In contrast, the
MEAM values are much worse, with the migration barriers
being very poor and not sufficient for any realistic studies of
diffusion-related phenomena.

Finally, while our primary interest is in solid-state Mg
and the crystalline defects that control mechanical proper-
ties, we have also examined the melting point of NNP63 to
further demonstrate the scope of possible applications. We es-
timate the melting point by performing a periodic dual-phase
crystal-liquid system with 8064 atoms and a nominally flat
crystal-liquid interface with the normal coinciding with the c
axis, i.e., n = [0001]. A constant average interface position
over time is achieved at a estimated melting point of Tm ≈
900 K. No liquid or random configurations of atoms were part
of the training set and therefore these simulations additionally
demonstrate transferability of the potential even beyond the
solid state.

The above results are shown for the selected NNP63. Ex-
ecuting the optimization algorithm using different training
sets (90% of the total set of structures and energies) leads
to different final weights and biases and hence different final
NNPs. Limited studies indicate that variations in the initial
choices of the weights and biases, but using a fixed training
set, result in small variations in the final RMSE. The vari-
ations among NNPs thus arise from the differences in the
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choice of the 90% of structures used for training. Using our
overall set of structures and energies, we have developed 129
different NNPs for Mg that should be nominally identical.
Figure 2 shows the mean and standard deviation of a range
of material properties, including those in Table I, computed
from these 129 NNPs, along with the properties obtained from
the MEAM potentials; here we show the relative deviation
versus DFT-computed properties rather than the properties
themselves. The average of NNPs predictions are, overall,
in better agreement with DFT than the MEAMs across most
material properties. The MEAMs does provide better prop-
erties in a few cases, generally those that were directly fit.
The standard deviation in properties across all 129 NNPs is
typically ±10% or less, and the NNPs deviate from DFT by
no more than ±12% across all material properties. We note
clearly that this standard deviation is not a true statistical
measure—the different NNPs are all trained on very similar
training sets and so results are not representative of statis-
tically independent random variables or samplings. A more
relevant standard deviation quantity can be estimated using
the methodology in Ref. [61]. Here the standard devation is
merely used to indicate the range of property values starting
from different specific training sets. Overall, most of the 129
NNPs perform better than the MEAMs, and the MEAMs can
show substantial deviations from DFT, particularly for some
surface and stacking fault energies.

The MEAM predictions for the stable stacking fault energy
of the basal plane γsf show particularly large relative errors of
≈40%. Such an error has significant consequences for plastic-
ity in Mg and its alloys because basal slip is the dominant slip
system in Mg. The low MEAM stacking fault energy leads
to a wider dissociation of the basal 〈a〉 dislocation. This may
affect the strengthening of basal slip on alloying, which is im-
portant for reducing the plastic anisotropy (ratio of pyramidal
strength to basal strength) that can be important for ductility.
In addition, prismatic 〈a〉 slip, having the same Burgers vector
as the basal 〈a〉 slip, can be important in the plasticity of
textured Mg sheet materials. But it is understood to occur only
via cross-slip of screw dislocations from the basal plane to
the prism plane. This cross-slip requires thermally activated
recombination of the basal partial dislocations, and the energy
barrier scales inversely with the stacking fault energy. We
make these remarks to demonstrate that a deep understanding
of metallurgical mechanisms is critical to the assessment of
any interatomic potential and that a broadly applicable poten-
tial must be sufficiently accurate for many properties.

As another example showing the generally good agreement
of the 129 NNPs versus reference training data is presented in
Fig. 3. This figure shows the generalized stacking fault energy
curve for basal slip as predicted by DFT, the two MEAMs
potentials, and multiple NNPs. All the NNPs perform much
better than the original MEAM1 potential over the entire
range of slip but especially for the unstable stacking fault
energy γusf that is important for fracture (see Sec. III D). Many
of the NNPs provide a better basal stable stacking fault energy
than either of the MEAMs, as noted above. Figure 3 further
shows that it is not only the extremal values presented in Fig. 2
that are in good agreement but rather the entire curves. The
entire GSFE curve enters into the widely used Peierls-Nabarro

model for the dislocation structure (distribution of Burgers
vector along the slip plane) and so is valuable to capture well.

As with traditional potentials, the choice of one particular
NNP over any of the other NNPs is based on heuristics asso-
ciated with preferred applications of the potential. It would be
possible to determine a single best overall NNP by minimizing
the relative error with respect to DFT across all basic material
properties computed, but this also implies a relative weighting
of the importance of structures according to their energies. So
there is no unbiased way to select a preferred NNP.

It is inherent in the formulation that NNPs can fail in
extrapolation, with the typical example being failure under
high compression. Figure 4 shows the equation of state, i.e.,
the energy per atom versus volume at fixed c/a ratio, as
predicted by all the NNPs and with the reference or training
DFT values also shown. Indeed, below the minimum relative
volume 0.9 in the DFT training set, the NNPs show wide
variability, and with some cases showing unstable collapse
of the structure below ∼0.85. Such behavior does not oc-
cur for the two MEAMs potentials because these potentials
impose an ad hoc strongly repulsive pair potential precisely
to achieve reasonable behavior in compression. In fact, in
the original EAM formalism, the pair potential was purely
repulsive [62,63]. Three aspects about this behavior merit
discussion. First, in many application cases outside of shock
loading, this unphysical domain will never be encountered—
in the region where NNPs remain accurate, the energies per
atom and forces are too high for configurations to enter into
the unstable domain. For instance, we have executed an ex-
tended molecular dynamics (MD) simulation at a temperature
slightly below melting and examined the global and local
energy fluctuations as predicted by the selected NNP63 and by
the MEAM1 potential. We find no statistical differences at all.
So no atom pairs are ever encountering the close separations
at which NNP63 becomes unstable. Second, it is trivial to
add a strongly repulsive pair potential to the NNPs formal-
ism that operates only in this rarely sample region of phase
space. For instance, a Morse potential [64] of the form V (r) =
De[1 − exp (−(r − r0)/a0)2 − 1] with r0 = 0.9 a, a small a0,
and large De will provide a strong repulsive contribution that
will only be invoked if rare atom pairs attempt to move to
within 0.9 a (again, rare under nearly all situations). Third,
the lowest value of the DFT results presented in Fig. 4 is at 0.9
relative stretch of the unit cell. The reason for this is that lower
values of relative stretches do not converge in DFT. Hence
adding DFT data points below 0.9 is not possible. One way
to add data points below 0.9 would by manually extrapolating
the repulsive part, which is manual intervention based on the
assumption of repulsion without knowing the actual values.
A test training using such a strategy yielded the expected
result: The repulsive part is well predicted. Thus, this common
failure of the NNPs in high compression is easily rectified but
also of very limited importance in realistic applications.

The material properties for the chosen potential NNP63 in
Fig. 2 demonstrate that using the mean and standard deviation
of a family of NNPs can be misleading. These quantities
suggests that one can find a single potential for which all prop-
erties fall within the mean and standard deviation, which is not
the case in general. Selecting a single NNP thus involves some
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(a) (c)

(b) (d)

FIG. 5. Generalized stacking fault energy curves for basal, prism, pyramidal I, and pyramidal II planes; comparison among DFT, NNP63,
and the two MEAM potentials. The prismatic DFT values are not part of the training set. Fully relaxed stable stacking faults are indicated with
an “×” in the respective color.

external decision by the developer. For NNP63, the lattice
parameters (a, c/a) and cohesive energy (Ec) all show a very
low relative error but the elastic constants and stacking fault
energies have large errors well outside the standard deviation
across the entire family of NNPs. It should also be noted,
however, that the relative errors of the MEAM potentials
also show some significant errors across all the properties
studied and require an external decision by the developer. An
overview of the flexibility of classical interatomic potentials in
fitting material parameters can be found in Ref. [65] where the
authors optimize traditional fixed functional forms and assess
the trade-offs between accurate modeling of different material
properties.

C. Plasticity: Stacking faults and dislocations

Plastic deformation in crystalline metals is mediated by
dislocations. Many aspects of dislocation structures depend
on the stable and unstable stacking fault energies and on
the overall generalized stacking fault energies for slip over
entire crystallographic surfaces associated with dislocation
slip planes. Thus, the first step in accurate modeling of actual
dislocations is accurate modeling of the GSFEs and stable
stacking faults. We note that the GSFEs are computed by
relative in-plane sliding of blocks of material, with relaxation
only of the stress normal to the fault plane. This procedure
does not allow atomistic relaxations on either side of the
fault, but such relaxations are crucial for pyramidal slip in hcp
materials [32]. Figure 5 shows the GSFEs for the basal, prism,
pyramidal I, and pyramidal II planes. The NNP63 predictions

are in generally very good agreement with the DFT, whereas
the MEAM1 potential is rather poor in all cases, while the
recent MEAM2 is nearly comparable to the NNP but still
with some notable deviations. As noted earlier for basal slip,
the errors in unstable stacking fault energies for the MEAM1
potential have notable consequences for fracture behavior, as
discussed in the next subsection. The stable stacking fault
energies are also shown in Fig. 5 (indicated by small x’s); the
pyramidal II case in particular shows a difference of a factor
1.5–2 for the out-of-plane relaxations vs. rigid shift value. The
differences versus DFT were discussed earlier.

The GSFE for prismatic slip was not in the training set
and so is a true prediction. The absence of any local min-
imum at the symmetric midpoint has key consequences for
the stability and structure of the prismatic dislocations. The
spurious shallow local minimum predicted for the MEAM1
potential leads to the prediction of a stable 〈a〉 Burgers vector
screw dislocation on the prism plane, while DFT shows such
a dislocation to be unstable relative to the 〈a〉 screw disloca-
tion on the basal plane. In contrast, the NNP63 potential is
in agreement with DFT, predicting that the 〈a〉 prism screw
dislocation is not stable. The prismatic 〈a〉 edge dislocation is
stable for all potentials. We simulate the critical resolved shear
stress, or Peierls stress, to initiate glide for the prismatic edge
dislocation as σP ≈ 4 MPa, in line with expectations from the
literature [66].

We now examine some of the stable dislocation core struc-
tures predicted by NNP63. Dislocations control essentially all
of the plastic flow phenomena in metals and so are responsible
for the remarkable combination of strength and toughness of
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FIG. 6. Dissociated core structure of the basal 〈a〉 edge dislocation with superimposed Nye tensor components of the edge (left column)
and screw (right column) components from DFT (a) and NNP63 (b). DFT results in (a) are from Ref. [72].

metal alloys. The mechanical behavior at the macroscopic
scale is then directly determined by the detailed atomistic
structure of the dislocations in the metal.

All dislocation geometries are constructed using the same
protocol. For a specified Burgers vector b and line direction
ζ , a cuboidal simulation cell is constructed with x along the
glide direction, y along the line direction ζ , and z = b × ζ

normal to the glide plane. The length along y is the minimum
periodic length for the given line direction and Burgers vec-
tor, and periodic boundary conditions are applied in the line
direction. The other two dimensions are Lx = Lz = 300 nm.
Two partial dislocations are introduced at a separation dis-
tance of ∼10 Å [54] and all atoms are displaced according
to the anistropic elastic Volterra fields of the two partial dis-
locations, as implemented in Ref. [67]. The positions of all
atoms within a distance ∼2rc (where rc is the cutoff of the
potential) from the outer boundaries are held fixed at the
anisotropic elastic Volterra solution according to a perfect
dislocation. The remaining interior atoms are then relaxed to
the minimum-energy configuration via the conjugate gradient
method. Only the pyramidal I screw dislocation is obtained
differently, as follows. A relaxed dissociated pyramidal II
screw dislocation core (obtained as described above) is heated
up to 100 K and MD simulation is executed with the outer
atoms held fixed (the elastic field of the pyramidal I and II
screws being identical). Snapshots from the MD trajectory are
saved periodically. Each of those snapshots is then relaxed to
T = 0 K minimum-energy configuration and the structure is
analyzed. This procedure allows for a meaningful comparison
of energy differences between pyramidal I and II dislocation
cores generated with exactly the same boundary conditions.
Since the pyramidal II core has a lower energy, it is the most
common outcome, but pyramidal I cores do occur.

For all dislocations, the resulting structures are analyzed
using the Nye tensor [68] as implemented in Ref. [67], which

compares the dislocation structure to a reference structure
and reveals the flux of Burgers vector passing through any
closed loop normal to the dislocation line. The edge and
screw components of the Nye tensor are computed at each
atomic position. We note that analyses based on the differen-
tial displacement [69], common neighbor analysis [70], or the
dislocation extraction algorithm [71] would also be possible
and yielded similar results in limited tests.

Figure 6 and Figure 7 show the dislocation core structures
with superimposed Nye tensor components of the basal 〈a〉
edge and screw dislocations, respectively, as predicted by
DFT and NNP63. The Nye tensor components for DFT are
recomputed from Ref. [72]. For ease of comparison, we have
aligned the right partials in all figures.

For the basal 〈a〉 edge dislocation in Fig. 6 the Nye tensor
components for NNP63 agree extremely well with DFT for
both edge and screw components. A summation of the edge
component yields the exact Burgers vector, while a summa-
tion over the screw component results in zero, as required.
Compared with DFT, NNP63 predicts a larger partial dislo-
cation separation consistent with a combination of a slightly
lower stable stacking fault energy and slightly higher elastic
constants. The Nye tensor components for the basal 〈a〉 screw
dislocation are shown in Fig. 7. As for the edge dislocation,
the NNP63 core agrees very well with DFT. And as required,
the edge components sum to zero and the screw components
sum to the exact Burgers vector. A small difference is no-
ticeable in the distribution. While there is no indication of
partial dislocation separation for both cores, the Nye tensor
components from NNP63 are slightly less compact than the
reference DFT.

Predictions of the core structure of the MEAM1 (not shown
here) for the basal 〈a〉 dislocations compare less favorably
to the DFT reference. While the partial dislocation structures
are predicted well, both the edge and screw dislocation cores
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FIG. 7. Dissociated core structure of the basal 〈a〉 screw dislocation with superimposed Nye tensor components of the edge (left column)
and screw (right column) components from DFT (a) and NNP63 (b). DFT results in (a) are from Ref. [72].

exhibit a much larger separation distance, see, e.g., Ref. [5]
for comparison, due to the large error in basal stable stacking
fault energy.

We have also examined the Peierls stress of the basal 〈a〉
edge dislocation. The basal 〈a〉 dislocation is the prevalent
system in pure Mg, with a very low Peierls stress that con-
trols the measured yield strength in all but idealized crystal
orientations. Using standard procedures, NNP63 exhibits a
T = 0 K Peierls stress of σP ≈ 0.05 MPa for the basal edge
dislocation. This is smaller than experiments (∼0.5 MPa);
other potentials show results higher than experiments, but all
values remain quite small so that alloying to increase the basal
strengthening is usually necessary for an engineering material.

Dislocations with 〈c + a〉 Burgers vector on the pyramidal
I and II planes are important in Mg because they provide
the accessible plastic slip in the 〈c〉 axis direction. Figure 8
shows the Nye tensor analysis for the pyramidal II edge core
from DFT and NNP63. The pyramidal II edge core is rel-
evant for investigating solute strengthening effects [73,74].
Dissociation is clearly along a pyramidal II plane. Comparing
the Nye components of the two partial cores yields a very
good match between DFT and NNP63. The edge components
match especially well while the screw components are smaller
and agree slightly less well. The partial dislocation separation
is slightly larger for the NNP63 prediction, again in line with
the slightly smaller stacking fault energy.

Of perhaps most importance for the 〈c + a〉 Burgers vec-
tor dislocations is the the energy difference �EI−II = �EI −
�EII between pyramidal I and II screw dislocations, where
a positive value indicates that pyramidal II is more stable
(lower energy). This energy difference has been identified as
the key material parameter for ductility in Mg due to its role in
controlling a cross-slip process that enables significant 〈c + a〉
slip [34]. However, this energy difference is very small and
so is not well established in DFT itself. Using a quadrupolar
DFT cell [75] reported an energy difference of �EI−II = 7 ±

20 meV/nm (pyramidal II more stable); the small cell size and
periodic boundary conditions can have a nonnegligible effect
on the total energy, however. We have performed DFT using
a very large (up to 2000 atoms) cylindrical geometry with
outer boundaries fixed at the anisotropic elastic displacement
field for a Volterra 〈c + a〉 screw dislocation using the DFT
lattice and elastic constants. We find that the sign of the energy
difference varies with increasing cell radius, with �EI−II =
−30 meV/nm at the largest size (pyramidal I favorable, in
conflict with experiments). So even DFT is uncertain here,
and the NNP is trained only on DFT structures that do not
include actual dislocations. Additional complexity related to
the pyramidal slip systems arise during the stable stacking
fault calculations during which complex shuffling processes
are observed which lead to a lower energy, see Ref. [54], with
the actual stable fault positions and energies marked with ×’s
in Fig. 5 in the pyramidal II GSFE. Actual dislocations are
even more complex in geometry and might include further
shuffling processes during relaxation that are not present in
the training dataset by design and hence are probably not fully
captured by the NNPs or any other potential.

With the above background, Figs. 9(a) and 9(b) show the
screw dislocation core structures for the pyramidal I dis-
location with the edge and screw Nye tensor components
superimposed as obtained from our DFT calculation (noting
that the structure is quite robust with respect to cell size) and
as predicted by NNP63. Both cores are split into two partial
dislocations and the partial cores show a very good agree-
ment: large screw components and small edge components.
A summation of the screw components yields the expected
Burgers vector, and the summation over the edge components
is zero. The screw components show a dissociation along the
pyramidal I plane with a short section along the pyramidal
II plane. The relative positions of the partial dislocations
differ slightly. The segment along the pyramidal II plane is
slightly longer for the DFT geometry, which results in the
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FIG. 8. Dissociated core structures of the pyramidal II 〈c + a〉 edge dislocations with superimposed Nye tensor components of the edge
(left column) and screw (right column) components; (a) DFT from Ref. [73]; (b) NNP63.

right partial dislocation being two pyramidal I planes below
the left partial as opposed to just one for the NNP63 geometry.
Overall, the level of agreement for this complex defect is
good.

Figures 9(c) and 9(d) show the structure and Nye tensor
components for the pyramidal II screw dislocation from DFT
and NNP63, respectively. The DFT results are reanalyzed
from Ref. [76]. The partial separation distance is similar but
there are notable differences in structure. Most importantly,
the DFT core structure shows a dissociation in the pyramidal
II plane while the NNP63 core shows what appears to be some
dissociation on the pyramidal I plane. That is, the left and
right partials in Fig. 9(d) are not similar, with the left partial
of the NNP63 geometry extending further along a pyramidal
I plane. This quasimixed pyramidal II-pyramidal I structure
obtained for the NNP63 pyramidal II core presumably re-
flects the delicate energetic competition between pyramidal
II and pyramidal I cores, which NNP63 is not able to fully
resolve. The pyramidal II core as predicted by the MEAM1
(not shown), on the other hand, shows dissociation only on the
pyramidal II plane (cf. Ref. [6]) and so its structure is in better
agreement with DFT. However, the pyramidal II core as pre-
dicted by the MEAM2 potential bears some similarity to that
predicted by NNP63, i.e., the left partial extends slightly along
the pyramidal I plane, and the right partial is in less-good
agreement with DFT. Thus, the possible error in structure for
NNP63 may not be unique to the type of potential.

The key pyramidal I-pyramidal II energy difference �EI-II

varies with the potential. The MEAM1 potential predicts
an energy difference of �EI-II = 27 meV/nm, while the
MEAM2 potential gives an energy difference of �EI-II = 54
meV/nm (pyramidal II stable for both, consistent with ex-
periments). Another version of the MEAM2 was developed
to make pyramidal I energetically favorable with �EI-II =
−28 meV/nm with negligible changes to other properties [6].
Both the uncertainty in the DFT studies and the fact that the

MEAM can be tweaked to change the absolute stability of
pyramidal I vs. pyramidal II is an indication that the energy
balance is very subtle. The NNP63 potential based solely
on DFT inputs predicts a pyramidal I-pyramidal II energy
difference of 170 meV/nm so that pyramidal II is much more
stable than obtained by other estimates. This is in spite of the
observation that the relaxed pyramidal II structure appears
to be a mix of a pyramidal II-like partial and a pyramidal
I-like partial. Limited tests with other NNPs show similar
dislocation cores and energy differences.

The procedure to obtain the pyramidal I dislocation screw
core by the annealing process described earlier yields many
screw dislocation cores in pyramidal I and II planes as well
as the mixed type in the case of NNP63. Their structures are
generally very similar with undetectable differences but ex-
hibit differences in energy. Those energy differences are
presented in Fig. 10 for NNP63 and both MEAMs. The ref-
erence energy for NNP63 is the energy corresponding to the
mixed-type pyramidal II structure presented in Fig. 9(d). The
references for the two MEAMs are the pyramidal II dislo-
cation cores. Nearly all of the cores created with NNP63
are found to be either identical to, or mostly less than
∼10 meV/nm above, the lowest-energy structure. The ener-
gies cluster into just a few distinct values. One structure had an
energy ≈ 170 meV/nm that is close to the pyramidal I screw
energy, and one structure had an energy ≈ 125 meV/nm.
Overall, however, and unlike assumptions that ML poten-
tials may have many local spurious minima, NNP63 is quite
robust for this defect. In contrast, the energy differences
among the MEAMs are much more widely distributed, with
a range of distinct energies spanning up to ≈ 70 meV/nm
for the MEAM1 and ≈ 50 meV/nm for the MEAM2 but
with some structures with even higher energies extending up
to the maximum found for NNP63. Thus, it is actually the
MEAM potentials that have many metastable structures for
this complex defect.
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FIG. 9. Dissociated core structure of the pyramidal I and II 〈c + a〉 screw dislocation with superimposed Nye tensor components of the
edge (left column) and screw (right column) components; (a) pyramidal I core from DFT; (b) NNP63 pyramidal I core; (c) pyramidal II core
from DFT; and (d) the NNP63 prediction. The missing atoms in subfigure (a) are related to the procedure in DFT; the reader is referred to the
text for an explanation. Results for the pyramidal II in (b) from DFT are replotted from Ref. [73]. DFT geometries for pyramidal I in panel
(a) are our own results.

Overall, there is currently no resolution of the pyramidal
I-pyramidal II screw competition based on any computational
method (DFT, NNP, MEAM). This problem thus requires con-
siderably more study at the first-principles level. The apparent
mixed structure of the pyramidal II screw core as predicted by
NNP63 makes it of questionable use for studies involving this
dislocation. Limited studies with other NNPs in our family of
129 potentials also do not exhibit a clear pyramidal II core
dissociation with the described procedure. This remains an
issue for further study and resolution.

In summary, even though dislocation geometries were not
part of the training dataset, the NNP63 generally reproduces
well the various dislocation geometries and Burgers vector
distributions found in DFT studies. The Peierls stresses for
basal and prism 〈a〉 are also in reasonable agreement with

experiments. Only the pyramidal II screw dislocation shows
a different behavior that may be related to the inability of
NNP63 to capture the (uncertain, even in DFT) energy dif-
ferences between the pyramidal I and II partial dislocations.
While we are able to compare to available DFT studies, such
studies are very computationally intensive, and are not at all
feasible for properties beyond the basic structure of a straight
periodic dislocation line with high-symmetry character (e.g.,
edge or screw). The success here of the NNP opens the study
of many other plasticity phenomena at metallurgically rele-
vant length and timescales.

D. Fracture: Decohesion and intrinsic ductility

Fracture is a complex process involving very high mul-
tiaxial stresses around the crack tip with atomistic regions
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FIG. 10. Energy differences to pyramidal II cores for various relaxed screw dislocation geometries in on pyramidal planes from the two
MEAMs and NNP63.

spanning from fully decohered to moderately deformed per-
fect crystals. Capturing proper fracture behavior, and even
simply avoiding totally unphysical behavior at the crack tip,
represents a high challenge for any interatomic potential. Var-
ious physically motivated potentials (EAM [63], MEAM [77],
Stillinger-Weber [78], etc.) and the machine learning GAP Fe
potential [23] all give unphysical crack-tip behavior in spite of
making good predictions for many other material properties
and defects. Fracture is thus a very demanding test for any
interatomic potential.

Moreover, the precise behavior at a crack tip determines
whether a material is intrinsically brittle or intrinsically duc-
tile. An intrinsically brittle material will cleave and create new
surfaces. An intrinsically ductile material will emit disloca-
tions, blunting the crack and preventing the brittle cleavage
failure. It is computationally prohibitive to study cracks accu-
rately with DFT because large sizes are needed, the geometry
is nonperiodic, and many load levels are needed to find the
cleavage or emission load. Limited studies to date have thus
relied on multiscale methods [79–83]. This makes the frame-
work of anisotropic linear elastic fracture mechanics (LEFM)
valuable for predicting both cleavage and dislocation emis-
sion. For Mg in particular, the cleavage and emission phenom-
ena are predicted to occur at nearly the same load levels for a
number of crack orientations, making it a particularly sensi-
tive case. Modeling fracture behavior in Mg and Mg alloys
thus again requires highly accurate interatomic potentials.

Fracture in mode I (tensile) loading is controlled by
the stress intensity factor KI, which is the strength of the
square-root singularity in the crack-tip stress field. The ther-
modynamic critical stress intensity factor for cleavage in
mode I for an atomically sharp crack is given by [84]:

KIc =
√

2γs

�22
, (8)

where γs is the surface energy and � is an elasticity parameter
[85]. A critical stress intensity for dislocation emission in

mode I cannot be determined exactly but has been accurately
estimated as [86,87]

KIe =
√

Gfirst
Ie (θ, ϕfirst )o(θ, ϕ)/|F12(θ )|, with (9)

Gfirst
Ie =

{
0.145 γ e

s + 0.5 γ e
usf , γ

e
s > 3.45 γ e

usf

γ e
usf , otherwise,

(10)

where γ e
s and γ e

usf are the surface energy and unstable stack-
ing fault energy of the emission plane, respectively; o is an
anisotropic elastic coefficient; θ and ϕ are the inclinations
of the slip plane and Burgers vectors; Fi j is the resolved
applied K field to an effective shear along the dislocation
slip plane; and indices 1 and 2 refer to the crack growth
direction and normal to the crack plane, respectively [88].
The LEFM analysis thus shows that the critical material pa-
rameters for assessing cleavage and emission are the surface
energies, the unstable stacking fault energies, and the elastic
constants (which enter both phenomena, so differences mainly
depend on the anisotropy, not the absolute values). With this
background, we note that we have already examined the pre-
dictions of NNP63 for the elastic constants, surface energies,
and unstable stacking fault energies. NNP63 provides much
better accuracy for the surface energies as compared to both
MEAM1 and MEAM2 and is better than MEAM1 for the
unstable stacking fault energies. Since the intrinsic ductility
depends on both quantities, we can expect NNP63 to be more
realistic for assessing the fracture behavior of Mg.

Before examining atomistic crack tips, we first study the
atomistic decohesion energy, i.e., the energy versus separa-
tion distance for rigid separation of two blocks of material
across specified surface. This decohesion curve is the “cohe-
sive zone” that determines the crack-tip shape during loading
[89]. Figure 11 shows the decohesion energy versus normal
separation distance as computed via DFT, NNP63, and the
two MEAMs for the basal, prismatic, pyramidal I, and pyra-
midal II planes. The DFT data were contained in the training
set but here, for clarity, not all data points are shown. The
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(a) (b)

(c) (d)

FIG. 11. Decohesion curves for basal, prism, pyramidal I, and pyramidal II planes; comparison among DFT, NNP63, and the two MEAM
potentials. All DFT data points are part of the training set.

energy at maximum separation is twice the unrelaxed surface
energy and shows deviations for the MEAM potentials that are
comparable to the deviations found for the fully relaxed sur-
faces (Table I). In contrast, results for NNP63 generally agree
better with DFT except for basal decohesion. The maximum
cohesive stress corresponds to the maximum slope in the de-
cohesion curve and is well captured by all potentials except for
the MEAM potentials under basal separation. NNP63 shows
a small maximum in the energy prior to full separation. This
is unphysical; beyond this maximum, the surfaces are being
pushed apart rather than pulled together. However, the effect
is small and does not have broader significance.

We now examine the phenomena occurring at the tip of
a sharp crack via simulation. In this study, we assess the
whether the NNP gives physical behavior and, if so, whether
the intrinsic ductility of Mg for relevant fracture orienta-
tions is consistent with theoretical predictions. We use the
semi-infinite crack “K-test” for high accuracy [88] with an
atomistic domain size of Lx = 500 nm, Ly = 500 nm, and
Lz = 10 nm with x the crack growth direction, y the normal to
the crack plane, and z the crack line direction with periodicity
imposed in this direction. The theoretical critical values of KIc

and KIe are computed, and all atoms are displaced according
to the anisotropic K-field solution at a value of KI just below
the lower of the two critical values. Atoms within ∼2rc of
the outer x-y boundaries are held fixed and the energy is then
minimized by relaxing all interior atoms. Increments in KI are
then imposed until some simulated critical value is reached
at which the system undergoes either a cleavage or emission
event. As a first result, no anomalous or unphysical behavior
is observed for any crack geometry when using NNP63; this
is already a very positive result.

Table II shows the predicted and observed results obtained
using NNP63. In all cases, the observed or simulated be-
havior coincides with the predicted behavior using the DFT
material properties, cf. Table V. The simulated and predicted
critical values differ slightly, but this is typical due to the
well-known existence of lattice trapping for cleavage fracture
and the nonexact (although generally quite accurate) theory
for emission. The only notable quantitative deviation between
simulation and theory is for the pyramidal II orientation case
where the simulated emission occurs at 0.82 K th

Ie , i.e., much
lower than the theoretical value. NNP63 thus provides very
good predictions for all fracture orientations studied.

Table II also shows the events obtained from MEAM1
simulations as reported previously [90]. While simulations
using MEAM1 agree with theoretical predictions using the
material properties of MEAM1 [90] (not shown here), the
operative MEAM1 event differs from the NNP63 event for
some orientations while the NNP63 event agrees with the
event predicted using DFT material properties. Specifically,
the MEAM1 predicts three orientations (prismatic I, prismatic
II, and pyramidal II) to be brittle (cleavage), whereas NNP63
predicts them all to be ductile (emission).

Figure 12 shows the geometries and structures after these
events, highlighting the fundamentally different physically
behavior. These differences are important because they indi-
cate that Mg is not as brittle as suggested by studies based
on the MEAM1 potential. The difference in phenomenon is
directly traceable to the differences in underlying material
properties. The MEAM1 potential provides poorer predic-
tions of the surface and/or unstable stacking fault energies as
compared to the NNP63 potential, and this leads to different
behavior in simulations. Furthermore, while both potentials
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TABLE II. Stress intensity factors KI for cleavage and emission for various crack orientations as computed and simulated using NNP63 and
its material properties. The observed events using the MEAM1 potential are also shown [90]. Critical K values in bold indicate the predicted
event. Cases where the MEAM1 event differs from the NNP63-observed and DFT-predicted event are indicated in italics.

Predicted critical K and event Observed NNP63 NNP63 vs. Pred MEAM1
Crack plane K th

Ic K th
Ie Event K Event KNNP/Kpred Event [90]

Basal I 0.265 0.284 Cleavage 0.280 Cleavage 1.06 Cleavage
Basal II 0.265 0.291 Cleavage 0.263 Cleavage 0.99 Cleavage
Prismatic I 0.297 0.253 Emission 0.236 Emission 0.93 Cleavage
Prismatic II 0.307 0.282 Emission 0.283 Emission 1.00 Cleavage
Pyramidal I 0.284 0.237 Emission 0.250 Emission 1.05 Emission
Pyramidal II 0.302 0.286 Emission 0.220 Emission 0.82 Cleavage

predict the basal orientation to be brittle, NNP63 predicts a
much closer competition, with K th

Ie /K th
Ic ≈ 0.93 for NNP63

as compared to ≈ 0.73 for MEAM1 [90]. This suggests the
possibility that dilute alloying could have a more important
effect in changing the brittle basal behavior than obtained by
recent studies on a model Mg-Y alloy using an alloy MEAM
potential [90].

IV. DISCUSSION

We have presented a neural-network interatomic potential
for magnesium using the Behler-Parrinello symmetry func-
tions for the description of the atomic environments within the
n2p2 [37] framework. Magnesium has been studied due to (i)
its important technological value, (ii) the complexities asso-
ciated with dislocations and slip in the hcp crystal structure,
(iii) the close competition between intrinsic brittleness and
intrinsic ductility, and (iv) the need to understand the atomistic
mechanisms that enhance the performance of dilute Mg alloys
relative to pure Mg, which will require interatomic potentials
for complex alloy systems. Compared to existing very good
MEAM potentials, NNP63 generally performs better for many
material properties and crystalline defects that are critical to
mechanical performance. These improvements were accom-
plished with a rather small DFT training dataset, extended

only beyond a relatively standard set of structures to enable
accurate fracture modeling. The addition of further selected
data to improve on specific defect properties (as was done here
for fracture) is easily accomplished within the parameter-rich
NNP framework. Because the NNP formalism is regression,
extrapolations could be highly inaccurate, and so the present
potential was carefully assessed in many scenarios relevant for
plasticity and fracture.

The current potential remains less than ideal for the pyra-
midal II screw dislocation structure. The important pyramidal
I-II screw energy difference will likely require improve-
ments as well. However, accurate DFT reference data are
not yet available and may remain challenging due to the
very small energy difference. The Mg potential NNP63 was
also not tested for grain boundary structures or interstitial
atoms and so is not yet a fully general potential for Mg.
Nonetheless, the delicate tension twin boundary energy (and
structure) is well predicted although not in the training set.
Both the vacancy formation and migration energies are also
in good agreement with DFT while, along with the disloca-
tion and crack structures, not being in the training dataset.
The melting point of NNP63 is also in good agreement
with experiments. These results are encouraging not only for
Mg but also for the broader prospects for machine learning
potentials.

FIG. 12. Cross-sectional view of crack tips post fracture for prismatic I, prismatic II, and pyramidal II crack planes, as observed in
simulations for the MEAM1 and NNP63. The corresponding K values at each event are shown relative to KIc for the MEAM and KIe for
NNP63 in the respective crack plane. Visualization used the common neighbor analysis [70] (blue = hcp, green = fcc, gray = other) and the
black “×” denotes the initial crack position for cleavage events.
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TABLE III. Hyperparameters for the radial symmetry functions.

Type η r2 rc

2 2.630 × 10−2 0.0 8.0
2 1.560 × 10−2 0.0 8.0
2 2.630 × 10−2 0.0 8.0
2 6.900 × 10−3 0.0 1.200×101

2 4.420 × 10−2 0.0 8.0
2 1.560 × 10−2 0.0 8.0
2 7.430 × 10−2 0.0 8.0
2 7.430 × 10−2 0.0 8.0
2 4.420 × 10−2 0.0 8.0
2 1.560 × 10−2 0.0 8.0
2 1.117 × 10−1 1.301 × 101 1.600 × 101

2 1.821 × 10−1 5.657 8.0
2 4.420 × 10−2 0.0 8.0
2 1.170 × 10−2 0.0 1.200 × 101

2 1.081 × 10−1 1.322 × 101 2.0 × 101

2 7.150 × 10−2 1.626 × 101 2.0 × 101

2 9.110 × 10−2 8.0 1.600 × 101

2 4.550 × 10−2 1.131 × 101 1.600 × 101

2 1.166 × 10−1 7.071 2.0 × 101

2 5.830 × 10−2 1.0 × 101 2.0 × 101

2 2.910 × 10−2 1.414 × 101 2.0 × 101

2 3.900 × 10−3 0.0 1.600 × 101

2 2.500 × 10−3 0.0 2.0 × 101

2 5.560 × 10−2 0.0 1.200 × 101

2 8.700 × 10−3 0.0 2.0 × 101

2 1.350 × 10−2 0.0 1.600 × 101

2 1.960 × 10−2 0.0 1.200 × 101

The present well-converged and consistent DFT training
set developed here is openly available [43]. This enables
its application to other machine learning methods and/or
other optimization functions that might better handle the
structurally inhomogeneous datasets typical for metallurgical
applications. In particular, it would be valuable to develop
a loss function that is formulated in terms of energy dif-
ferences between structures rather than absolute energies of
individual structures. In any case, the quality of a potential
for metallurgical applications must not only be measured by
the RMSE. Substantial tests outside of the training dataset
and/or to challenging but realistic structures (e.g., disloca-
tions, crack tips) must be included. The performance comes
at a cost. Compared to the MEAM formalism as implemented
in LAMMPS, the n2p2 implementation [37] for BPNNs is 10×
more expensive computationally. Adding more elements to
create interatomic potentials for alloys increases the cost sig-
nificantly [1]. However, if the aim of atomistic studies is to be
quantitatively correct for specific alloy compositions, then it
is likely that only machine learning methods will provide an
accuracy approaching that of DFT while at a tiny fraction of
the computational cost, even if this cost significantly exceeds
that of traditional potentials.

Finally, although the potential presented here is not a
general-purpose Mg potential, this work is among the first
to demonstrate the broad application of a machine learned
potential to a cross section of metallurgically relevant prop-
erties, structures, and behaviors. NNP63 clearly improves on

TABLE IV. Hyperparameters for the angular symmetry functions.

Type η λ ζ rc

3 6.900 × 10−3 1 1.0 1.200 × 101

3 6.900 × 10−3 1 4.0 1.200 × 101

3 6.900 × 10−3 −1 1.0 1.200 × 101

3 1.170 × 10−2 1 1.0 1.200 × 101

3 1.560 × 10−2 1 1.0 8.0

existing traditional potentials that have been highly optimized
and that are quantitatively among the best potentials among
all those developed to date for pure metals. This work sets the
baseline for extensions to Mg alloys, which are very challeng-
ing for interatomic potentials having fixed functional forms
and limited flexibility and yet are essential for the technolog-
ical application of lightweight Mg alloys in energy-efficient
structural components. The present potential can be used to
study other defect-related problems in Mg which includes,
e.g., the prismatic-basal cross-slip mechanism. This is beyond
the scope of the current paper and will be presented in future
work.
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APPENDIX A: SYMMETRY FUNCTION
HYPERPARAMETERS

Symmetry function choice optimized with CUR decompo-
sition as described in Sec. II.

APPENDIX B: FRACTURE BEHAVIOR
PREDICTION FOR DFT

The discussion of the predictions and observations in Ta-
ble II include a reference to the event prediction based on

TABLE V. Stress intensity factors KI for cleavage (c) and emis-
sion (e) with material properties from the DFT for the event
prediction in Table II. DFT values are taken as presented in Table I;
surface energy for the prismatic II plane is taken from Ref. [91].

Plane KIc KIe Event prediction

Basal I 0.242 0.255 Cleavage
Basal II 0.242 0.264 Cleavage
Prismatic I 0.255 0.229 Emission
Prismatic II 0.273 0.253 Emission
Pyramidal I 0.259 0.214 Emission
Pyramidal II 0.277 0.241 Emission
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DFT values for unstable stacking fault energies and surface
energies. The values behind these predictions are given here
in Table V.

The event prediction is based on the minimum between the
stress intensity factor for cleavage and emission min (KIe, KIc )
and is highlighted in the table in bold numbers.
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