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The spatial texture of an internal degree of freedom of electrons has profound effects on the properties of
materials. Such texture in real space can manifest as an emergent magnetic field (or Berry curvature), which
is expected to induce interesting valley/spin-related transport phenomena. Moiré pattern, which emerges as a
spatial variation at the interface of two-dimensional atomic crystals, provides a natural platform for investigating
such real space Berry curvature effects. Here we study moiré structures formed in homobilayer transition metal
dichalcogenides (TMDs) due to twisting, various uniform strain profiles, and their combinations, where electrons
can reside in either layer with the layer index serving as an internal degree of freedom. The layer pseudospin
exhibits vortex/antivortex textures in the moiré supercell, leading to a giant geometric magnetic field and a scalar
potential. Within a geometric picture, the moiré magnetic field is found as the cross product of the gradients of the
out-of-plane pseudospin and the in-plane pseudospin orientation, respectively. We discover dual roles of uniform
strain: Besides being a cause of the moire atomic texture in the homobilayer, it also contributes a pseudogauge
potential that modifies the local phase of interlayer coupling. Consequently, strain can be employed to tune the
in-plane pseudospin texture, while interlayer bias tunes the out-of-plane pseudospin, and we show how the moiré
magnetic field’s spatial profile, intensity, and flux per supercell can be engineered. Through the geometric scalar
correction, the landscape of the scalar potential can also be engineered along with the moiré magnetic field,
forming distinct effective lattice structures. These properties render TMD moiré structures promising to build
tunable flux lattices for transport and topological material applications.
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I. INTRODUCTION

van der Waals structures built from combining various
two-dimensional (2D) materials with different electronic and
optical properties have attracted intense research interests in
recent years [1–5]. Among various heterostructure geome-
tries, vertically stacked bilayers, where moiré patterns may
emerge due to the inevitable lattice constant mismatch and/or
interlayer misorientation, have been studied the most. The
spatially modulated interfacial interactions in the moiré pat-
terns endow these composite materials with novel properties
and allow the observation of exciting physical phenomena that
are absent in the monolayers. In homobilayers, small twisting
between the layers, as well as spatially uniform strain applied
differently on the two layers (also referred as the heterostrain),
are usually exploited to engineer long period moiré patterns.
Arguably, the most prominent example is twisted bilayer
graphene at magic angles with flat bands [6–10], where exotic
superconducting and correlated insulating states have been
observed [11–15]. Moiré structures formed by transition metal
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dichalcogenides (TMDs) also receive significant attention, es-
pecially towards their optical signatures (e.g., moiré exciton)
because of their semiconductor nature [16–22].

Compared to their monolayer counterparts, bilayer moiré
structures exhibit two extra characteristics. The first is the
layer pseudospin internal degree of freedom (DoF) since par-
ticles can reside in either layer, and the pseudospin configura-
tion can depend on the stacking order [23,24]. The second is
spatial variation of local stacking configurations in each moiré
unit cell [25]. Their coexistence implies spatially modulated
pseudospin internal DoF. It is well established that nontrivial
spatial texture of the internal DoF has profound effects on
electronic properties, which can be understood in terms of
Berry curvature and Berry phase [26]. In real space, texture of
the internal DoF is manifested as an emergent magnetic field,
which might induce valley/spin Hall effects in 2D materials.
Previously, such real space Berry phase effects have been
mostly modeled by utilizing optical lattice schemes [27–29].
While it is clear from the above discussions that moiré serves
as such a platform naturally without requiring complicated
setups.

In this work we present a systematic study on the emergent
magnetic field arising from the moiré patterns introduced
by twisting and uniform strain in TMD homobilayers. The
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intralayer potential and interlayer coupling in the moiré
together manifest as a spatially varying pseudospin Zee-
man field �V [defined in Eq. (6)] that couples to the layer
pseudospin- 1

2 DoF [24], giving rise to vortex/antivortex tex-
tures of pseudospin orientations. We show that effects of such
nontrivial spatial texture can be reformulated in terms of a
non-Abelian gauge potential, which leads to a giant geometric
magnetic field and a scalar potential in the adiabatic limit
when the particle dynamics is projected onto either branch
of the pseudospin eigenstates. The magnetic field and scalar
potential are geometric in nature because they depend on
the spatial variations of the spherical angles of �V [27], thus
should be distinguished from similar quantities emerging in
other systems, e.g., inhomogeneously strained 2D crystals
without moiré [30–34]. We give a geometric relation where
the emergent magnetic field is expressed as the cross product
of the gradients of the out-of-plane and in-plane pseudospin
textures. While the out-of-plane pseudospin is coupled to
the interlayer bias, we find the spatial profile of in-plane
pseudospin orientation responds to the uniaxial or shear het-
erostrain, as the latter effectively introduces a pseudogauge
potential that modifies the interlayer coupling. One can there-
fore engineer the in-plane and out-of-plane layer pseudospin
texture by employing uniform strain and interlayer bias, re-
spectively. This allows great flexibility in tuning the profile of
the magnetic field. The vortex/antivortex pseudospin texture
also ensures that the magnetic flux per supercell is always
quantized in a general moiré pattern formed with twisting
and various strain profiles. Topological phase transition, i.e..
sign change of the magnetic flux, may occur from the twist
dominated regime to the strain dominated one. Furthermore,
landscape of the scalar potential also changes accordingly by
tuning the twist angle and strain, which acts as a guide to form
distinct effective lattice structures in the tight-binding limit to
characterize various moiré profiles [23,24,35].

II. CONTINUUM VALENCE BAND MODEL OF TWISTED
HOMOBILAYER TMD

In the following we will focus on moiré built from par-
allelly stacked (or R-stacking) homobilayer TMD, and use
parameters of the MoSe2 compound [23]. Consider a homobi-
layer with the top layer rotated counterclockwise by an angle
θ . A moiré pattern will form with local high symmetry stack-
ing configurations: RA

A, RM
X , and RX

M (Fig. 1). RA
A represents

aligned parallel stacking, and Ri
j represents Bernal stacking

with i atoms from top layer sit above j atoms from the bottom
layer. Here M (X ) represents metal (chalcogen) atoms, and R
indicates R-stacking.

The twisting is characterized by the rotation matrix R(θ ).
A vector r0 in the top layer is changed into r = Rr0, and the
corresponding displacement is δ(r) = r − r0 = (1 − R−1)r,
where 1 is the identity matrix. The moiré primitive lattice
vectors Li=1,2 can be defined via δ(Li ) = ai, where ai is the
primitive lattice vector of monolayer TMD that are chosen
as a1 = (1, 0)a and a2 = (1/2,

√
3/2)a, and a is the lat-

tice constant. Here we assign the zigzag (armchair) edge as
the x (y) axis. Also, we assume that a metal atom sits at
the origin. Therefore, the moiré primitive lattice vectors Li

are given by Li = (1 − R−1)−1ai [36]. The corresponding

FIG. 1. Moiré pattern formed via rotating the top layer (red)
counterclockwise by 5◦. The green solid line and blue dashed line
represents L1 and L2, respectively. The parallelogram encloses one
moiré unit cell. High symmetry local stackings are indicated as well.
Larger (smaller) symbols denote M (X ) atoms.

reciprocal lattice vectors of the moiré read Gi = (1 − R)bi,
where b1 = (1, −1/

√
3)2π/a and b2 = (0, 2/

√
3)2π/a are

the reciprocal lattice vectors of the monolayer [36,37]. Note
that one can rewrite Gi as Gi = bi − b̃i, where b̃i = Rbi is
the reciprocal lattice vector of the rotated layer. The K points
of the two monolayers can be chosen respectively as K̃τ =
τ (2b̃1 + b̃2)/3 = RKτ and Kτ = τ (2b1 + b2)/3, where τ =
± is the valley index. It can be shown that the relative
shift of the K points between the two layers is K̃τ − Kτ =
−τ (2G1 + G2)/3. As the two valleys are related by time-
reversal symmetry, we will concentrate on the K valley in the
following, and the valley index will be neglected.

The conduction and valence bands of TMD are separated
by a large energy gap [38,39], thus the interband coupling
between the two layers can be neglected. In the following
we will focus on the valence bands and consider the effects
of intraband coupling between the two layers. As spin-orbit
coupling (SOC) induced splitting is large in the valence bands,
there exists the so-called spin-valley locking in the low energy
regime, with spin up/down tied to valley −K/K [40]. In the
case of moiré formed from R-stacking, interlayer coupling
occurs between Dirac cones with the same spin and valley
indices from the two layers [Fig. 2(a) shows the situation at the
K valley]. The effective Hamiltonian governing the valence
bands at K valley with spin down reads [24]

Hv =
(

− p2

2m∗ − Eg

2

)
1 + Uv, (1)

where m∗ = Eg

2v2
F

is the effective mass with monolayer Fermi
velocity vF and energy gap Eg (parameters are taken from
Ref. [38]). For reference, the Appendixes provide details of
the four-band model taking into account both conduction and
valence bands (Appendix A), and the derivation of the two-
band model (Appendix B). The term in the bracket describes
the quadratic dispersion near the valence band edge with max-

imum located at −Eg/2. The other term Uv = ( V t
v Ũvv

Ũ ∗
vv V b

v
) is the

moiré potential characterizing the coupling in the valence (v)
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FIG. 2. Schematics illustrating the different coupling scenarios
in R-stacking (a) or H-stacking (b) homobilayer MoSe2 with SOC-
induced conduction and valence band splitting. The red and blue
colors denote spin up and down, respectively. The green arrows
represent interlayer coupling. We focus on the spin-valley locked
valence band edges [lower blue curves in (a)] in this work.

bands with t/b labeling the top/bottom layer. The correspond-
ing eigenstate will be denoted as |�v〉 = (�tv, �bv )T . The
two-component form originates from the fact that particles
can reside in either layer with the layer internal DoF.

The moiré potential Uv depends on the interlayer registry.
For aligned bilayers, the registry is described by the constant
displacement δ0 between the two layers, hence the potential
reads Uv (δ0), which is uniform in space [24,41]. In the case
of twisted bilayers, the displacement δ(r) exhibits spatial
variations as shown in Fig. 1. If the moiré period is large,
the local displacement varies smoothly, one can then adapt
the local approximation assuming that each local pattern is
approximated as an aligned configuration obtained by transla-
tion of one layer with respect to the other. One then replaces
δ0 with δ(r) in the moiré coupling, i.e., Uv = Uv (δ) [6,24,41].

Let us now discuss the intralayer moiré potentials V t
v and

V b
v [23,24,41]. They describe the band edge shifts in each

individual layer due to the interlayer coupling, and they are
modeled by

V t
v = V0

3∑
i=1

cos(bi · δ + α) + V1,

V b
v = V0

3∑
i=1

cos(bi · δ − α) + V1, (2)

where V0 ≈ 8.586 meV, V1 ≈ −0.667 meV, α ≈ −0.49π for
MoSe2 obtained by fitting to first-principles results [42], b3 =
−b1 − b2, and δ is the displacement vector from twisting.
These expressions are consistent with those in Ref. [24]
apart from the presence of V1, which is negligible. Some of
their symmetry properties worth mentioning. For a mirror
reflection in the z direction, the two layers are interchanged
with the replacement of δ → −δ. This implies that V t

v (δ) =
V b

v (−δ) and it is indeed satisfied [24]. As will be discussed
in Eq. (6), they can also be decomposed as V t

v = V0 + Vz,
and V b

v = V0 − Vz. Since Vz acts as a staggered potential, it
will exhibit opposite signs in regions where the local stacking
configuration is flipped, e.g., RM

X vs RX
M [23]. This property

is important to achieve (nonzero) flux lattices by employing
homobilayer TMD [29,43,44].

Ũvv describes the valence band coupling between the two
layers [23,24,41]. Here it is modeled as (see Appendix A for

details)

Ũvv = Uvvei θ
2 ei(K−K̃)·r, (3)

where ei θ
2 is caused by rotation of the Pauli matrices, ei(K−K̃)·r

originates from the relative shift of the Dirac points in the two
layers, and

Uvv =
(

3∑
i=1

h0eiKi ·δ + h1e−i2Ki ·δ
)

e−iK1·δ, (4)

with h0 = 7.1 meV and h1 = −1.2 meV for MoSe2 [23]. K1−3

are the three equivalent Dirac points of the monolayer with
K1 selected as K1 = (2b1 + b2)/3 [45]. The term associated
with h1 is higher order correction, which is added to better fit
the DFT results [23]. Eliminating it does not affect any con-
clusion of the work. Actually, Uvv ≈ (

∑3
i=1 h0eiKi ·δ)e−iK1·δ =

h0[1 + e−ib1·δ + e−i(b1+b2 )·δ] is consistent with that in twisted
bilayer graphene [36,37,46,47], if one notices that bi · δ =
Gi · r [36,46,48]. Also note that e−iK1·δ = e−i(2G1+G2 )·r/3 =
ei(K̃−K)·r, hence Ũvv can be rewritten more conveniently as

Ũvv =
(

3∑
i=1

h0eiKi ·δ + h1e−i2Ki ·δ
)

ei θ
2 . (5)

At locations corresponding to RX
M or RM

X stacking, Ũvv van-
ishes due to the threefold rotational symmetry [23,24].

Note that although we only consider the valence band cou-
pling in a moiré formed with parallelly stacked homobilayer
MoSe2 in this work, the formalism can be straightforwardly
generalized to the conduction bands, as well as to other TMD
compounds, including antiparallelly stacked (or H-stacking)
bilayers. The antiparallel alignment in H-stacking indicates
that the coupling should occur between different valleys of the
two layers [Fig. 2(b)] [39,40]. Since the interlayer hopping
conserves spin, the large energy offset between the valence
band edges of the same spin index from the two layers (about
180 meV for MoSe2) suppresses their interlayer coupling.
Nevertheless, at the conduction band edges, interlayer cou-
pling is still allowed due to the relatively small energy offset
(about 20 meV for MoSe2), and the offset can also be compen-
sated by a modest interlayer bias. With these changes taken
into account, one can straightforwardly apply the formalism
in our work to study H-stacking twisted bilayers.

III. EMERGENCE OF NON-ABELIAN GAUGE POTENTIAL

The moiré potential Uv can be rewritten in a more physi-
cally transparent form:

Uv = V t
v + V b

v

2
1 +

(
V t

v −V b
v

2 Ũvv

Ũ ∗
vv −V t

v −V b
v

2

)

= V01 + �σ · �V,

(6)

where we have defined V0 = (V t
v + V b

v )/2, Vx = ReŨ ∗
vv ,

Vy = ImŨ ∗
vv , and Vz = (V t

v − V b
v )/2. Note that here �σ =

(σx, σy, σz ) and �V = (Vx, Vy, Vz ) are three-component vec-
tors. Overhead arrows have been used to differentiate them
from two-component vectors in bold, e.g., σ. Here �σ repre-
sents the layer pseudospin, i.e., particles in a moiré lattice
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can reside in either layer, with the layer index acting as
the internal DoF. �V behaves like an effective Zeeman field
that couples to the layer pseudospin. In the following we
will denote �σ · �V as Ups—the pseudospin coupling potential.
Incidentally, many physical systems exhibit similar coupling
terms [27–29,43,49], for instance, Ups resembles the coupling
between a two-level atom and laser beams, where the elec-
tronic excited and ground states denote the internal degrees of
freedom (vs top and bottom layers in the moiré) coupled by
the laser fields (vs moiré potentials here) [27,28].

As �V exhibits spatial variation, it can be parametrized
using spherical coordinates. To be specific, one can write �V =
V�n = V (sin ζ cos φ∗, sin ζ sin φ∗, cos ζ ). The amplitude V is

defined as V =
√

|Ũvv|2 + V2
z , the polar angle ζ satisfies

cos ζ = Vz/V and sin ζ = |Ũvv|/V , and the azimuthal angle
φ∗ is the phase of Ũ ∗

vv , i.e., Ũ ∗
vv = |Ũvv|eiφ∗

. With these
parametrizations, Ups becomes

Ups = V �σ · �n = V
(

cos ζ e−iφ∗
sin ζ

eiφ∗
sin ζ − cos ζ

)
. (7)

Formally, Ups describes a pseudospin 1/2 particle moving in
an effective inhomogeneous Zeeman field �V [24,29]. Pseu-
dospin can orient parallel or antiparallel to the Zeeman field’s
direction �n, with position-dependent energy separation be-
tween them. In the following we will explore the conse-
quences resulting from the nontrivial spatial variations in the
moiré lattice [23,24,27,28]. As will be shown, when a particle
moves in real space, its pseudospin travels on the Bloch
sphere defined by the spherical angles (ζ , φ∗). Consequently,
the particle will gain a geometric phase of 
/2, where 
 is
the solid angle subtended by the trajectory of the pseudospin
[29,44]. This phase can be interpreted as arising from a real
space geometric gauge potential and the associated magnetic
field [27–29,44].

The pseudospin coupling matrix Ups is responsible for
the dynamics of the layer pseudospin internal DoF. Its local
eigenvectors at point r read [50]

|χ+〉 =
⎛
⎝cos

(
ζ

2

)
e−i φ∗

2

sin
(

ζ

2

)
ei φ∗

2

⎞
⎠, |χ−〉 =

⎛
⎝ sin

(
ζ

2

)
e−i φ∗

2

− cos
(

ζ

2

)
ei φ∗

2

⎞
⎠, (8)

with ε± = ±V the corresponding eigenvalues. Ranges of ζ

and φ∗ depend on the details of the moiré potential. If ζ and
φ∗ span [0, π ] × [0, 2π ], then they define the Bloch sphere
[this is indeed the case for the twisted bilayer in Fig. 3(b)].
The north and south pole corresponds to pseudospin up and
down, respectively. By evaluating the pseudospin distribution
associated with these two characteristic internal states 〈�σ 〉± =
〈χ±|�σ |χ±〉, one obtains 〈�σ 〉± = ±�n. Therefore, the pseu-
dospin 〈�σ 〉± has unit magnitude pointing along ±�n [Fig. 3(b)],
which is expected as Ups ∝ �σ · �n projects the pseudospin
towards �n. Let us stress here that �n not only determines the
orientation of layer pseudospin 〈�σ 〉±, it also maps real space
position r = (x, y) onto the Bloch sphere surface defined by
(ζ , φ∗).

These two internal states are orthonormal and form a com-
plete basis for the Hilbert space associated with the internal
DoF. Therefore, the eigenvector of the moiré |�v〉 can be

expressed in terms of |χ±〉 as |�v〉 = ∑
i=± �̃ i

v (r) |χi(r)〉,
where �̃ i

v (r) is a space-dependent function characterizing the
center-of-mass motion of the ith internal state [27,28].

In the following we will switch to a space-modulated
spinor basis such that the z axis is always along �n and
show that the effect of the moiré potential can be under-
stood in terms of a non-Abelian gauge potential. This is
achieved by applying a space-dependent unitary transforma-
tion Q = (χ+ χ−), whose columns are |χ±〉. It is obvious
that Q†UpsQ = diag(ε+, ε−) = Vσz. Q also connects |χ±〉
with the layer pseudospin basis |+〉 = (1, 0)T and |−〉 =
(0, 1)T , i.e., |χ+〉 = Q |+〉 and |χ−〉 = Q |−〉. Apply Q† to
Hv |�v〉 = E |�v〉, we arrive at H eff

v |�̃v〉 = E |�̃v〉, where the
new Hamiltonian reads

H eff
v = Q†HvQ = − (p + A)2

2m∗ +
(

−Eg

2
+ V0 + Vσz

)
, (9)

and |�̃v〉 = Q† |�v〉 = ∑
n=± �̃n

v (r) |n〉. In the above, identity
matrix 1 has been eliminated for simplicity, and

A = −ih̄Q†∇Q =
∑

m,n=±
|m〉 Amn 〈n| ,

Amn = −ih̄ 〈χm|∇χn〉 , (10)

where |∇χn〉 = ∇ |χn〉. The orthonormality of the internal
states guarantee that i 〈χm|∇χm〉 is real, and 〈∇χm|χn �=m〉 =
− 〈χm|∇χn �=m〉 [27].

One can easily identify that Amn has the same form as the
Berry connection that arises because of the spatial dependence
of the internal states |χ±〉 [26–28]. Physically, H eff

v describes a
particle interacting with a non-Abelian gauge potential A (i.e.,
[Ax, Ay] �= 0) and a scalar potential −Eg

2 + V0 + Vσz. Using
the expressions in Eq. (8), one can show explicitly that

A = − h̄

2
(∇φ∗)

(
cos ζ sin ζ

sin ζ − cos ζ

)
+ h̄

2
(∇ζ )σy. (11)

It should be noted that A is gauge dependent [26–29,43,49].
For instance, when |χ±〉 → |χ±〉 eiα± , the gauge po-
tential transforms as A±± → A±± + h̄∇α± and A±∓ →
A±∓e−i(α±−α∓ ). However, physical quantities discussed below
are gauge invariant.

One can also define a magnetic field (or Berry curvature)
associated with the non-Abelian gauge potential. Within our
definition, the canonical momentum reads p + A, thus the co-
variant derivative is D = ∇ + i

h̄ A and the non-Abelian Berry
curvature is F = 1

e D × A = 1
e ∇ × A + i

eh̄ [Ax, Ay] [26–28].
Apart from the usual term that involves the curl of A, an extra
commutator term arises due to the non-Abelian nature of A.
Since A is built with a complete basis in the 2 × 2 space,
the non-Abelian Berry curvature vanishes [26–28]. One can
verify F ≡ 0 straightforwardly with Eq. (11). However, if
the two internal states are well separated in energy (i.e., the
separation in ε± is much larger than their coupling and kinetic
energy of the particles), one can decouple them and consider
that the system follows either of them adiabatically. In this
adiabatic scenario, an Abelian Berry curvature (pseudomag-
netic field) can be defined with the diagonal elements of the
Berry connection in Eq. (11) in the familiar way B± = 1

e ∇ ×
A±± [27,28]. This term can be nonzero. The pseudomagnetic
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field discussed in the following refers to B± specifically, one
should not confuse it with the non-Abelain Berry curvature F
or its diagonal elements.

IV. GEOMETRIC MAGNETIC FIELD AND SCALAR
POTENTIAL IN THE ADIABATIC LIMIT

Due to the non-Abelian nature of A, H eff
v has a matrix form,

and the off-diagonal terms represent the coupling between
the two internal states. As will be shown later, ε± are well
separated in a large moiré structure (Fig. 4). Therefore, when
particles move in a large moiré structure with small kinetic
energies (see more discussions in Sec. IV C), one can make
an adiabatic approximation by projecting the system onto one
of the two internal states using the operator P̂± = |±〉 〈±|
[27,28]. Here this projection is equivalent to set �̃∓

v = 0,
respectively [27]. After doing this, we obtain two separate
Schrödinger equations:[

− 1

2m∗ (p + A±±)2 + G + E±

]
�̃±

v = Ẽ�̃±
v , (12)

where G = − 1
2m∗ A+− · A−+ = − 1

2m∗ |A+−|2, E± = V0 ± V ,
and Ẽ = E + Eg/2. One can also add negative signs on both
sides of the equations to proceed using the language of holes
instead of valence band electrons [23].

Each equation determines the center-of-mass motion of the
system when following one of the internal states adiabatically.
The first term describes the kinetic energy of an electron
(with charge −e) in the presence of a geometric magnetic
field B± = 1

e ∇ × A±±. The second term G is the so-called
geometric scalar potential, representing the (negative) kinetic
energy associated with the micromotion due to the force
originates from the particle’s virtual transition between the
two internal states [27,28,51]. They are geometric because
they depend on the spatial variations of the spherical angles
(ζ , φ∗) as will be shown explicitly in Eqs. (13) and (15). As
A±± and B± are vectors, and G is a scalar, they are Abelian in
nature. It should be pointed out that nonzero B± and G arise
because of the adiabatic elimination of the other internal state
[28]. In the following we will look at how the moiré magnetic
field and scalar potentials behave explicitly.

A. Magnetic field with nonzero quantized flux

In this section we will look at the moiré magnetic field.
With the gauge choice in Eq. (8), one obtains A++ = −A−−
from Eq. (11). Thus it is obvious that B+ = −B− and we will
only consider B+ = B+ẑ. Straightforward calculations yield
[27,49]

B+ = − 1

4π
0∇(cos ζ ) × ∇φ∗

= − 1

4π
0∇ 〈σz〉+ × ∇[arg 〈σ〉+], (13)

where 0 = h/e is the magnetic flux quantum. It is clear that
the pseudospin distribution is crucial for the emergence of
the magnetic field: Nonzero magnetic field will emerge only
if the pseudospin varies in space as well as the out-of-plane
pseudospin and the in-plane pseudospin orientation exhibit
noncollinear gradients.

Before proceeding further, one may notice that A++ =
− h̄

2 (∇φ∗) cos ζ , which is used to derive the magnetic field,
exhibits singularities [29,43,44]. For instance, around the
north and south poles on the Bloch sphere, A++ → ∓ h̄

2 (∇φ∗),
which are ill defined because ∇φ∗ yields different values from
distinct directions. This is because φ∗ in |χ+〉 of Eq. (8) is
not well defined for ζ = 0 and π . The line going through
ζ = 0 and π is the so-called Dirac string, which acts as
the solenoid in the Aharonov-Bohm effect [29,43,44]. The
location of the Dirac string is gauge dependent and not

observable. For instance, when |χ+〉 → |χ+〉 ei φ∗
2 , the gauge

potential becomes A++ = − h̄
2 (∇φ∗)(cos ζ − 1), which is ill

defined only at the south pole, rendering a Dirac string on the
semi-infinite negative z axis. Nonetheless, the existence of the
Dirac string is gauge invariant, and it is a necessary condition
to have nonzero quantized magnetic flux as will be shown in
the following [29,43,44].

Despite A++ exhibit singularities, the magnetic field is
smooth. One can also express B+ in terms of �n, which is
smooth and well defined everywhere on the Bloch sphere:
B+ = 1

4π
0�n · (∂x�n × ∂y�n)ẑ or B+ = 1

4π
0(∇nx × ∇ny)/nz

[29,43]. Using Eq. (13), one can find that the magnetic flux
reads

 = 1

4π
0

∫
real

(sin ζ∇ζ × ∇φ∗) · ẑ dxdy

= 1

4π
0

∫
Bloch

sin ζ dζdφ∗

= 1

4π
0
, (14)

where 
 = ∫
sin ζ dζdφ∗ is the solid angle covered by the

pseudospin trajectory on the Bloch sphere. The first integral is
carried out over an area in real space, while the second integral
is over the corresponding region on the Bloch sphere. To
arrive at the second line, we used the fact that (∇ζ × ∇φ∗) · ẑ
is the Jacobian determinant relating Cartesian to spherical
coordinates. Therefore, the magnetic flux characterizes how
the pseudospin rotates on the Bloch sphere when a particle
moves in the real space. Especially, it will be quantized as
 = N0 if the pseudospin winds integer N times on the
Bloch sphere. It shows that the geometric phase gained by
the pseudospin (
/2) can be interpreted as arising from the
geometric magnetic field.

Let us now look at the pseudospin distribution 〈�σ 〉+ before
discussing features of the magnetic field. Figure 3(a) shows
〈�σ 〉+ for a 2◦ twisted bilayer MoSe2 within four moiré unit
cells (the solid and dashed lines represent the edges of one
unit cell) [52]. The top right panel of Fig. 3(b) presents
the distribution of the pseudospin in spherical coordinates,
which shows that the pseudospin forms a closed surface
if all the points in the moiré unit cell were visited. From
Fig. 3(a) one can see that 〈σz〉+ (represented by the back-
ground color) is maximum but exhibits opposite signs around
RX

M and RM
X local stackings, which is related to the symmetry

properties of Vz. Meanwhile, in-plane pseudospin (denoted
by the arrows) exhibits vortex and antivortex structures [24].
Therefore, the pseudospin forms a skyrmion lattice [53]. The
vortex/antivortex texture is the origin of the presence of
singularities in A++.
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FIG. 3. Pseudospin distribution and magnetic field for a 2◦

twisted bilayer. (a) The arrows and background color represent
in-place and out-of-plane pseudospin, respectively. The solid and
dashed lines denote the moiré primitive vectors L1 and L2. The
circles are two real space trajectories for a moving particle. (b) The
top left panel shows schematics of the pseudospin 〈�σ 〉+ (brown
arrow) and its polar and azimuthal angles. The top right panel shows
the surface defined by the end points of all the pseudospin vectors
〈�σ 〉+ in the moiré unit cell, which form a Bloch sphere. The solid
and dashed curves correspond to the solid and dashed lines in (a),
and the black dot corresponds to the origin. The bottom left/right
panel shows the trajectory of the pseudospin on the Bloch sphere
when the particle moves in the blue/red circle in real space in (a).
The resultant solid angle is 
 and −(4π − 
), respectively. (c) The
arrows and background color represent in-place pseudospin and its
orientation φ∗, respectively. (d) Spatial distribution of B+.

The above observations imply that the magnetic flux is
nonzero and quantized [29,43,44]. Consider the two coun-
terclockwise loops in the moiré unit cell in Fig. 3(a), which
represent two real space trajectories for a moving particle.
Their corresponding routes on the Bloch sphere are shown
schematically in the lower panels of Fig. 3(b). As the vorticity
of the in-plane pseudospin are opposite in the two loops,
the pseudospin rotates counterclockwise (blue) and clockwise
(red), respectively. If the solid angle covered by the red area
enclosed by the blue loop is 
, the red loop will correspond
to a −(4π − 
) solid angle because the surface normal is
opposite. In terms of the geometric phase acquired by the
pseudospin, the two loops will contribute equally because a
phase of −2π + 
/2 is equivalent to 
/2 [44]. Overall, the
magnetic flux through one moiré unit cell should equal to
one flux quantum due to the 4π solid angle of the Bloch
sphere. In fact, when the pseudospin exhibits skyrmion type
structures, each half of the unit cell contributes exactly ±1/2

flux quantum, the sign should be determined by the product
of the signs of 〈σz〉+ and vorticity of 〈σ〉+ (+ in the current
situation) [29]. Lattices with such nonzero quantized flux per
unit cell was proposed previously based on elaborate optical
schemes [29,43,44]. Here one can see that twisted bilayer
TMD is a natural platform to realize such flux lattices.

Figure 3(c) shows the in-plane pseudospin distribution
and its direction arg 〈σ〉+ = φ∗ as the background color. The
longer black line inside the unit cell connects the RX

M and RM
X

local stackings, where one may notice that 〈σz〉+ varies the
greatest along this direction [see Fig. 3(a)]. In the perpendic-
ular direction, as specified by the shorter black line, φ∗ has
the largest variation. As shown in Eq. (13), the magnetic field
is proportional to the cross product of the gradients of 〈σz〉+
and φ∗. Therefore, the intersection of these two directions is
expected to determine the location of the maximum magnetic
field. Figure 3(d) shows the distribution of B+. As expected,
the magnetic field exhibits sixfold rotational symmetry with
hot spots in the junction between RM

X and RX
M stackings

[around the intersection of the two lines in Fig. 3(c)]. The
field is non-negative everywhere, so the magnetic flux must be
nonzero. We have confirmed numerically that each moiré unit
cell encloses exactly one flux quantum, consistent with the
analysis based on solid angle coverage on the Bloch sphere.

As varying the twist angle leaves the profile of the pseu-
dospin texture (thus the Bloch sphere) unaffected, the mag-
netic flux will remain quantized independent of the size of the
moiré tuned by θ . Such a constant magnetic flux obviously
can be employed to adjust the magnitude of the magnetic
field by tuning the size of the moiré. For a moiré pattern
with period around 10 nm, the magnetic field can reach the
order of 100 T [Fig. 3(d)]. The area of the moiré unit cell is
Smoiré(θ ) = |L1 × L2| ≈

√
3a2

2θ2 . Therefore, changing the twist
angle from, e.g., 2◦ to 0.5◦, increases Smoiré by more than a
factor of 10, the average magnetic field will decrease by one
order of magnitude accordingly.

To close the discussions in this section, we will comment
on the results of 1

e

∮
A++ · dl, which is often employed to

evaluate the magnetic flux using Stokes’ theorem. If the
integral is performed on the boundaries of a moiré unit cell,
the result will vanish due to the periodicity of the system.
This clearly means that Stokes’ theorem is invalid here, as
the moiré unit cell is not simply connected because of the
singularities in A++. However, one can show that the results
obtained by performing the integral on infinitesimal loops
around the singularities will yield the correct magnetic flux
(this is equivalent to apply Stokes’ theorem after excluding
the Dirac string) [43]. To facilitate discussions, let us choose
the gauge such that A++ = − h̄

2 (∇φ∗)(cos ζ − 1), which has
singularity only at the south pole. If we choose an infinites-
imally small loop around the south pole, which corresponds
to a small loop around the center of the blue region in real
space in Fig. 3(a), then 1

e

∮
r→0 A++ · dl → h̄

e

∮ ∇φ∗ · dl = h
e ,

i.e., one flux quantum. The infinitesimal loop splits the Bloch
sphere into two domains: the northern domain D↑ covering
almost the entire sphere (with A++ being well defined), and
the southern domain D↓ with vanishing area (A++ is singular
at the south pole). With B+ being a smooth function, the
magnetic flux from the southern domain vanishes

∫
D↓

B+ ·
dS → 0, hence the flux from the northern sphere is one
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FIG. 4. Spatial distribution of scalar potentials. (a) E+, (b) G, and
(d) G + E+ for a 2◦ twisted bilayer. (c) G + E+ for a 0.5◦ twisted
bilayer. Black solid (dashed) line in (a) denotes L1 (L2). Triangles
and hexagon in (c) and (d) sketch the lattice structures formed by the
dark red spots.

flux quantum
∫

D↑
B+ · dS → ∫

D↑+D↓
B+ · dS = h

e . Therefore,
1
e

∮
r→0 A++ · dr = ∫

B+ · dS inside the moiré unit cell if the
Dirac string at the south pole is excluded. The magnetic
flux will be zero if A++ does not have any singularity (as
Stokes’ theorem will be valid in the entire moiré unit cell
and the integral of A++ vanishes along the moiré boundaries),
showing the importance role of the vortex/antivortex texture
of the pseudospin.

B. Scalar potentials and twist dependent effective
tight-binding lattices

In this section we will discuss the properties of the scalar
potentials E± and G in a moiré lattice. We first consider E± =
V0 ± V , whose magnitudes are independent of the moiré size
as explained in the following. Recall that E± are eigenvalues
of Uv in Eq. (6), which is a function of Gi · r. This makes
E± functions of Gi · r as well, i.e., E± = E±(G1 · r, G2 · r).
Different twist angles will yield moiré patterns with distinct
Gi(θ ) and Li(θ ). If we parametrize r in a moiré unit cell
as rn1n2 (θ ) = n1L1(θ ) + n2L2(θ ), where n1, n2 ∈ [0, 1] are
continuous variables, one can obtain Gi(θ ) · rn1n2 (θ ) = 2πni,
which is independent of θ . Therefore, equivalent crystalline
locations (i.e., shared n1 and n2) in moiré structures with
distinct θ exhibit identical E±[rn1n2 (θ )] ≡ E±(2πn1, 2πn2).

Figure 4(a) shows the spatial dependence of E+ in four
moiré unit cells for a 2◦ twisted MoSe2 bilayer. E− exhibits
almost the same profile as E+ in the negative E axis with

slight asymmetry in magnitude caused by V0, which shifts
the midgap position. Clearly E+ is strong around RX

M and
RM

X stackings, while it is the weakest in regions where the
magnetic field is large [compare with Fig. 3(d)].

Now let us look at the more interesting geometric scalar
potential G. Straightforward calculations yield [27]

G = − h̄2

8m∗ [(∇ζ )2 + sin2 ζ (∇φ∗)2]. (15)

Consequently, G depends on gradients of the spherical angles
of pseudospin, as well as magnitude of the in-plane pseu-
dospin (sin ζ ). G can also be written as G = − 1

2m∗ (p2
ζ + p2

φ∗ ),

where pζ = h̄
2 ∇ζ and pφ∗ = h̄

2 sin ζ (∇φ∗) can be understood
as the micromotion momentum along ζ and φ∗ direction,
respectively. Written in this way, it is clearer that G repre-
sents the micromotion kinetic energy due to forces applied
upon the particles when virtual transition between internal
states occur [27,28,51]. Figure 4(b) shows the typical results
of G. One may notice that G and the magnetic field share
significant similarities: (i) The profile of G resembles that of
the magnetic field in Fig. 3(d). (ii) The “flux” of G through
the moiré unit cell is independent of θ as well. The latter
implies that G decreases with the increase of moiré size and
becomes negligible compared to E+ at small twist angles
[23]. Figures 4(c) and 4(d) show results of E+ + G in the
case of θ = 0.5◦ and 2◦, respectively. One can clearly see
that Fig. 4(c) resembles Fig. 4(a) (their spatial scales are very
different though) because G � E+ and can be neglected when
θ = 0.5◦.

It is also interesting to notice that the dark red spots
in Fig. 4(c), which act as trapping sites for holes, form a
honeycomb lattice structure as indicated by the hexagon.
These trapping sites serve as the lattice sites for the effective
tight-binding description of the moiré lattice, which has been
proposed recently in Ref. [24]. In contrast, the effective tight-
binding lattice becomes “decorated triangular” [35,54] if θ

becomes larger as shown in Fig. 4(d), where both the center
and corners of the hexagon become trapping sites. This is
because G now contributes a larger negative weight, so the
magnitude of the potential at the hexagonal corners decreases
and becomes comparable to that in the center. A three-orbital
effective tight-binding model based on such lattice structure
was proposed in Ref. [23] to describe twisted homobilayer
TMD. If the twist angle is increased further, the trapping site
at the center of the hexagon dominates and the corners can be
neglected, the scalar potential then forms a simple triangular
lattice [35]. Such lattice structure transitions, when combined
with the magnetic field background, may cause changes in the
electronic and topological properties of moiré lattices.

Figure 5 shows the moiré minibands obtained from Eq. (1)
at two different twist angles, as examples to illustrate the
effects of the moiré pseudomagnetic field and geometric
scalar potential. Chern numbers for the three topmost bands
are presented as well. First, one may notice that the bands
are shifted downward in energy when the twist angle θ is
increased (note the different vertical scales of the two panels).
Such an energy shift can be attributed to the variation of
scalar potential with θ [cf. Figs. 4(c) and 4(d))]. Second,
one can find that the topmost bands exhibit nontrivial Chern
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FIG. 5. Comparison of moiré minibands and Chern numbers of
twisted bilayer MoSe2 with different twist angles. Results shown are
obtained from the K valley (with spin down) of the monolayers,
while the ones from the −K valley (with spin up) are their time
reversal. (a) θ = 1◦. There is a tiny gap between the two topmost
bands, which is unobservable in the current scale. (b) θ = 2.5◦. Inset
in (a) shows the monolayer Brillouin zone (black and red hexagons)
and moiré mini Brillouin zone (blue hexagon).

numbers [23,24]. This is consistent with the presence of a
moiré pseudomagnetic field, which realizes fluxed lattices
underlying the quantum spin Hall effect [55]. Furthermore,
it is observed that the bandwidth increases with θ , some
bands eventually cross [e.g., the second and third in Fig. 5(b)]
and their Chern numbers are modified. We believe that such
changes are caused by the complex interplay of the scalar
potential and the underlying pseudomagnetic field. Changes
in the landscape of the scalar potential as well as moiré period
while tuning θ affects the effective tight-binding description
of the moiré lattice (i.e., lattice geometry, hence magnitude
and phase of the hopping) [23,56].

C. Validity of the adiabatic approximation

For the adiabatic approximation to be valid, it is desir-
able to tune the kinetic energy of particles below the en-
ergy spacing of the internal states [29]. The off-diagonal
terms of (p + A)2 will cause mixing between the two inter-
nal states. Therefore, energy associated with its off-diagonal
terms, which read p · A±∓ + A±∓ · p with the gauge choice
in Eq. (8), also needs to be small compared to the energy gap
between the two internal states. As is discussed previously,
spatial dependence of the moiré potential is expressed in terms
of Gi · r. Therefore, the coupling energy can be estimated

as h̄2G2
i

2m∗ ≈ 8π2 h̄2

3m∗L2 = 16π2

3Eg
( h̄vF

L )
2
, where L is the moiré period

(Table I). For a MoSe2 moiré with L = 10 nm, this cor-
responds to an energy about 35 meV, which is close to
the gap size of the two internal states. Therefore, adiabatic
approximation works well in the low energy and large moiré
limit.

V. TUNABILITY OF THE PROPERTIES OF MOIRÉ

We have seen that twist angle can be used to tune certain
properties of the moiré lattice. In this section we will explore
utilizing external means, i.e., interlayer bias and uniform
strain, to tailor the properties of moiré.

A. Interlayer bias tuning

As 〈σz〉± ∝ Vz, interlayer bias can be employed to tune
the out-of-plane pseudospin, thus the properties of moiré. An
interlayer bias places the two layers at an additional potential
±VE , respectively, where VE = 1

2 eEd with E the perpendicular
electric field, and d the interlayer separation. Therefore, Vz

should be replaced by Vz,E = Vz + VE . The most prominent
change occurs when VE is tuned to a critical value (say Vc)
such that Vz,E and Ũvv simultaneously vanish at (L1 + L2)/3
or 2(L1 + L2)/3 (center of RX

M or RM
X local stackings). In such

a situation, ε± (as well as E±) become degenerate with the
energy gap between them closes at the said locations. It is
found that the magnetic flux is one flux quantum if VE < |Vc|,
while it vanishes when VE > |Vc| (see Fig. 6) [23].

Such behavior can be understood as the following: The in-
terlayer bias acts like another staggered potential in Ups, where
Vz and VE compete. When VE > |Vc|, the two bands E± (or
equivalently ε±) are far apart and stay gapped throughout the
moiré lattice. The out-of-plane pseudospin distribution 〈σz〉±
for each internal state has a fixed sign independent of location
in Fig. 6(a), while 〈σ〉± is unaffected by the bias [same as
that in Fig. 3(a)]. This means that the pseudospin does not
enclose a closed surface, e.g., 〈�σ 〉+ always stays on the north-
ern semisphere. Meanwhile, in-plane pseudospin texture indi-
cates that 〈�σ 〉+ rotates clockwise then counterclockwise with
a vanishing net solid angle. As mentioned before, one can
also arrive at the same conclusion by checking the sign of
〈σz〉+ and the vorticity of 〈σ〉+. For instance, sgn 〈σz〉+ ≡ +
in Fig. 6(a), while the vorticity of 〈σ〉+ exhibits opposite
signs on the two equilateral halves of the unit cell [Fig. 3(a)].
Therefore, the magnetic flux from each half unit cell is ±1/2
flux quantum, respectively, and they cancel each other. When
VE decreases, E+ and E− approach each other, eventually they
touch at (L1 + L2)/3 or 2(L1 + L2)/3 and become gapless
when VE = |Vc|. The gap reopens with the occurrence of
band inversion, i.e., 〈σz〉± flips sign near the gap, when VE
is decreased further to VE < |Vc| in Fig. 6(d). 〈σz〉± changing
sign within the moiré unit cell yields a closed Bloch surface.
Such a topological transition in the layer pseudospin texture
results in the quantized jump of magnetic flux from zero to
one flux quantum [23].

Figure 6 shows the results of E±, B+, G, and E+ + G
for VE > |Vc| (first row) and VE < |Vc| (second row), respec-
tively. The color coding in E± represents the out-of-plane
pseudospin 〈σz〉± distribution, where one can clearly identify
the occurrence of topological band inversion when VE < |Vc|.
Clearly both the intensity and profile of B+ and G change
dramatically with interlayer bias. The profiles in Fig. 6(e) can
be understood as originating from Figs. 3(d) and 4(b) with
the hot spots pushed towards the center of the lower half cell.
It is clear that the hot spots are more concentrated and they
can be confined to a very localized region with dramatically
magnified intensity (e.g., several orders of magnitude) by
increasing the bias further. This makes TMD moiré applicable
for studying the Aharonov-Bohm effect, e.g., by mapping
the interference pattern in the local density of states with
scanning tunneling microscopy [57,58]. By increasing the bias
beyond the critical value, the magnetic flux becomes zero,
indicating that the field exhibits both positive and negative
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FIG. 6. E±, B+, G, and E+ + G vs interlayer bias for a 2◦ twisted bilayer. (a)–(c) VE = 30 meV > |Vc|, (d)–(f) VE = 10 meV < |Vc|. Color
coding in (a) and (d) represents the out-of-plane pseudospin 〈σz〉±. Insets show the lines cuts along the diagonal of the moiré unit cell. Note
that (c) and (f) show results in four moiré unit cells, while the rest show results in one unit cell. White triangles in (c) sketch the triangular
lattice formed by the dark red spots. Here |Vc| = 22.3 meV for twisted bilayer MoSe2.

signs in the moiré unit cell [Fig. 6(b)]. In this regime, the
intensity of B+ and G will drop with the increase of bias.
Therefore, bias slightly above |Vc| is preferable if fields with
high intensities are desirable. Figures 6(c) and 6(f) present the
results of E+ + G, where one can clearly see that the trapping
sites for holes (dark red spots) form a triangular lattice [e.g.,
white triangles in Fig. 6(c)]. Furthermore, the magnetic flux
piercing through adjacent triangles are very different as the
field is more localized around locations that overlap with
the blue spots. Consequently, interlayer bias can potentially
be employed to form effective lattice structures with distinct
hopping phases in the tight-binding limit as compared to
results in Figs. 4(c) and 4(d).

B. Strain engineering

In this section we discuss the effects of strain and show
how strain can be incorporated to manipulate the properties
of moiré. Here strain will play two roles: (i) It will change
the local atomic registries in the moiré. (ii) It introduces a
pseudogauge potential that modifies the phase of interlayer
coupling potential Ũvv .

Imagine the top layer is strained after twisting (if there is
any). The strain operation is described by the matrix S = 1 +
ε, where ε is the strain tensor. The displacement vector, moiré
primitive vectors, and reciprocal lattice vectors are then given
by δ(r) = (1 − R−1S−1)r, Li = (1 − R−1S−1)−1ai, and Gi =
(1 − S−1R)bi, respectively [36]. By setting R = 1, one can
study the pure effects of strain without rotation. Again, one
can write Gi = bi − b̃i, where b̃i = S−1Rbi is the reciprocal

lattice vector of the top manipulated layer. The K points of
the top layer now reads K̃τ = τ (2b̃1 + b̃2)/3 = S−1RKτ .

In contrast to twisting, strain can also modify the intralayer
hopping energy due to variations in the atomic distance in the
strained layer [30,31,34]. This effect can be described by a
pseudogauge potential and incorporated as an extra shift of
the Dirac points K̃τ → K̃τ + Aτ

strain/h̄, where

Aτ
strain = τ

√
3h̄β

2a
(εxx − εyy,−2εxy) (16)

exhibits opposite signs in the two valleys to respect time-
reversal symmetry, and β ≈ 2–3 [30,31,34,48]. This effect
has been neglected in the previous studies [23], here we will
show that it can dramatically modify the in-plane pseudospin
texture and the resultant geometric magnetic field and scalar
potentials. Gap size and band edge energy of the strained layer
are also modulated by strain [59]. We neglect such changes
in the following and focus on effects caused by Aτ

strain. We
elaborate on how such extra modulations can be accounted
for in our approach in Appendix C.

We will consider simple strain profiles such that compo-
nents of ε are constant (Table I). Also, we choose the τ = +
valley and neglect the valley index in the following. As Astrain

causes an effective shift in K̃, the interlayer coupling in Eq. (5)
gains a strain-dependent phase, i.e., Ũvv → Ũvve−iAstrain·r/h̄. As
we have discussed previously, the phase of Ũvv determines the
in-plane pseudospin orientation, this explains the mechanism
of using strain to engineer the geometric magnetic field and
scalar potentials. Also note that Astrain is a pure intralayer
effect and independent of interlayer registry, information of
the latter is contained in the rest of the terms in Uv .
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TABLE I. Geometric properties of various moiré patterns formed by small rotation or strain. Note that Poisson’s ratio is set to unity
in the case of uniaxial strain. Employing a realistic value will compress the lattice along one of the directions as shown in Appendix C.
Monolayer primitive vectors are chosen as a1 = (1, 0)a and a2 = (1/2,

√
3/2)a. The corresponding monolayer reciprocal lattice vectors are

b1 = (1, −1/
√

3)2π/a and b2 = (0, 2/
√

3)2π/a.

Twisting Biaxial Uniaxial Shear

R or S R =
(

cos θ − sin θ

sin θ cos θ

)
S =

(
1 + η 0

0 1 + η

)
S =

(
1 + η 0

0 1 − η

)
S =

(
1 η

η 1

)

Moiré reciprocal lattice vector Gi Gi ≈ (θbi,y, −θbi,x ) Gi ≈ (ηbi,x, ηbi,y ) Gi ≈ (ηbi,x, −ηbi,y ) Gi ≈ (ηbi,y, ηbi,x )

Moiré primitive vector length L a/θ a/η a/η a/η

Moiré primitive vector Li

L1 ≈ (0, −1)L

L2 ≈ (
√

3/2, −1/2)L

L1 ≈ (1, 0)L

L2 ≈ (1/2,
√

3/2)L

L1 ≈ (1, 0)L

L2 ≈ (1/2, −
√

3/2)L

L1 ≈ (0, 1)L

L2 ≈ (
√

3/2, 1/2)L

Schematics of Li

(εxx − εyy, −2εxy ) 0 0 (2η, 0) (0, −2η)

The first (second) column of Fig. 7 shows the pseudospin
〈�σ 〉+ distribution in the absence (presence) of Astrain caused
by a uniaxial strain (no twisting is applied). By comparing
the two columns, one can clearly see that strain dramatically
changes the distribution of in-plane pseudospin, leaving 〈σz〉+
unaffected [also same as that from twisting in Fig. 3(a)].
Most prominently, orientation of 〈σ〉+ exhibits disconnected
parallel arrays of circular regions [Fig. 7(d) green/blue re-
gions], in contrast to connected hexagonal patches [Fig. 7(c)].
Furthermore, one may notice that the vorticity of 〈σ〉+ flips
sign as compared to the case of twisting in Fig. 3(a). This
implies an inverse of the magnetic field direction as well as
the magnetic flux.

To visualize the effects of strain on the geometric magnetic
field and scalar potentials, we will consider three types of
strain in the following, i.e., biaxial tensile, zero-average uni-

FIG. 7. Pseudospin distribution for a uniaxially strained bilayer
(η = 0.035, θ = 0). The first (second) column shows results without
(with) the phase correction due to Astrain. (a) and (b) The arrows and
background color represent in-place and out-of-plane pseudospin,
respectively. (c) and (d) The arrows and background color represent
in-place pseudospin and its orientation, respectively. The solid and
dashed lines represent L1 and L2 (also see schematics in Table I).
β = 2.5 is used here and throughout the rest of the paper unless
stated otherwise.

axial, and shear strain. Table I lists some of their properties in
the small strain limit, the case of twisting is also provided for
comparison. First we notice that the triangular Bravais lattices
(denoted by � in the following) defined by Li=1,2 in these
configurations are related by different symmetries (see the
schematics in Table I): �twist and �biaxial are related by C4z,
�biaxial and �uniaxial are related by C2x, and �twist and �shear

are related by C2x. A direct consequence of these symmetry
relations is, if we neglect the effect of Astrain for now and
choose θ = η,

Btwist(r) = Bbiaxial(r) = −Buniaxial(r) = −Bshear(r) (17)

in the moiré unit cells. The sign reversal in the last two
cases is caused by the twofold rotation around the x axis. In
practice, one can tell the direction of B+ simply by looking
at the direction defined by L1 × L2, with Li defined using
the convention Li = (1 − R−1S−1)−1ai. It should be pointed
out that Eq. (17) is only approximately correct in the small
twist and strain limit, where Li and Gi exhibit the simple
expressions in Table I. In general, different moiré patterns will
exhibit distinct orientations and periods, thus magnetic fields
in different configurations have slightly distinct intensities.

Figures 8(a) and 8(b) present the numerical results of
B+ and G in the case of uniaxial strain without Astrain. As
discussed above, the sign of the magnetic field is reversed
[compare Figs. 8(a) and 3(d)]. One can check that the profile
of Fig. 8(a) indeed can be obtained from Fig. 3(d) via C4z

followed by C2x. The results for biaxial strain is a trivial
rotation of Fig. 3(d) around the z axis (not shown). Figure 8(g)
shows the results of B+ in the presence of shear strain, which
can be obtained from Fig. 3(d) by C2x. The arguments of
obtaining the magnetic flux based on the solid angle enclosed
by the pseudospin on the Bloch sphere remains valid. There-
fore, magnetic flux is always quantized at one flux quantum
independent of the origin of the moiré (twisting, strain, or even
combination of both).

Now let us look at how the inclusion of Astrain affects
B+ and G. First, we notice that Abiaxial

strain = 0. Since �twist and
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FIG. 8. Spatial dependence of magnetic field and scalar potentials in moiré structures formed by uniaxial (green box) and shear (purple
box) strain (η = 0.035). (a) and (b) B+ and G without the effect of Astrain in one moiré unit cell formed by uniaxial strain. The solid and dashed
lines represent L1 and L2, respectively. (c) and (d) Net effects �B+ and �G caused by Astrain. (e) and (f) B+ and E+ + G with the effect of
Astrain in four moiré unit cells. (g)–(j) Similar results in the case of shear strain.

�biaxial are related by a trivial rotation, we conclude that
biaxial strain can be employed to replace twisting, which
could be experimentally challenging to tune at small angles,
to achieve moiré structures with similar physical properties.
In contrast, uniaxial and shear strain induce nonzero Astrain,
which satisfy Auniaxial

strain ∝ (2η, 0) and Ashear
strain ∝ (0, −2η), re-

spectively. Recall that B+ and G are given by Eqs. (13) and
(15), and the azimuthal angle is modified according to φ∗ →
φ∗ + Astrain · r/h̄. One can obtain the change of B+ and G as

�B+ = − 0

4π h̄
∇(cos ζ ) × Astrain,

�G = − sin2 ζ

8m∗
(
A2

strain + 2h̄Astrain · ∇φ∗), (18)

where φ∗ in the second line represents the phase of Ũ ∗
vv with-

out the contribution of Astrain. Figures 8(c) and 8(d) show �B+
and �G due to Auniaxial

strain . One can clearly identify the intense
minima (blue spots) on the top and bottom edges, as well as
more extended maxima (red area) with weaker intensity oc-
curring in the middle. Figures 8(e) and 8(f) present the results
of B+ and E+ + G in the presence of Auniaxial

strain (profile of G is
similar to that of B+, so not shown). Note that four moiré unit
cells are included to illustrate the breaking of the threefold
rotational symmetry that is present in the case of twisting.
The minima occurring on the top and bottom edges of the
unit cell boundaries are enhanced. More prominently, features
along the central horizontal direction are weakened because
φ∗ varies more slowly there [also refer to the background
color of Fig. 7(d)]. Figures 8(h)–8(j) present the effects of
shear strain (results of G not shown due to similarity to B+).
By comparing Figs. 8(h) and 8(c), one can see that the sign
of �B+ is reversed apart from a rotation around the z axis.
This makes the fields exhibit zigzag stripes in the y direction
[blue spots in Figs. 8(i) and 8(j)]. By inspecting the profiles
of the scalar potentials in Figs. 8(f) and 8(j), one can see
that the hopping energy distribution between trapping sites
for holes in the tight-binding limit is more complicated in the

presence of strain [e.g., schematically represented by white
lines with different widths in Fig. 8(f)] as the blue barriers
in different directions have distinct magnitudes. One may
refer to Ref. [48] (e.g., Figs. 9 and 10 therein) for electronic
properties of moiré formed by strain. As both the magnitude
and phase of the hopping are modulated by the strain-induced
rearrangement of the magnetic field and scalar potential, one
might expect topological phase transitions as the strength or
direction of strain is manipulated. For instance, Fig. 10(c)
of Ref. [48] shows that moiré formed by uniaxial/shear
strain (corresponds to ϕ = 0◦/90◦ therein) is topologically
trivial/nontrivial. Furthermore, the topological properties of
the system can be switched from trivial to nontrivial period-
ically by continuously tuning the direction of the strain [48].
The strain-dependent landscapes of magnetic field and scalar
potential in our work shed light on the physical origin of these
numerical findings.

The above observations suggest that strain can be utilized
to tune both the magnitude and profile of the fields via in-plane
pseudospin engineering. Further tuning can be achieved by
varying the size and direction of the strain, or by making
combinations of different strain types. For example, Astrain ∝
(2η, −2η) can be achieved by combining uniaxial and shear
strain. From the robustness of skyrmion type structure of the
pseudospin distribution [e.g. Fig. 7(b)], one expects that �B+
does not affect the magnetic flux. This can also be confirmed
mathematically by noticing that �B+ ∝ ∇(cos ζ ) × Astrain =
∇ × (Astrain cos ζ ). With Astrain cos ζ being well defined inside
the moiré unit cell, one can easily see that its integral along
the moiré boundaries vanishes. So it has no contribution to
the magnetic flux according to Stokes’ theorem. On the other
hand, strain will affect the flux of the geometric scalar poten-
tial G. We find that the surface integral of G is only conserved
against variation in strain intensity when |L1| = |L2| (e.g., in
the case of biaxial strain) even when Astrain is excluded.

As another example, we consider the coexistence of twist-
ing and strain to illustrate how they compete. Figure 9 presents

094002-11



DAWEI ZHAI AND WANG YAO PHYSICAL REVIEW MATERIALS 4, 094002 (2020)

FIG. 9. Spatial dependence of B+ in the presence of both twisting
and uniaxial strain. (a) θ = 1◦, η = 0.035. (b) θ = 3◦, η = 0.035.
Note that 2◦ is equivalent to 0.035 in magnitude.

B+ in the presence of uniaxial strain with fixed strength,
while twisting is applied with different angles. In Fig. 9(a),
strain intensity is stronger than the twisting, thus the profile
is a distorted version of Fig. 8(e). The maximum intensity
is weaker because of the partial cancellation from the effect
of twisting, which contributes magnetic field in the opposite
direction [see Eq. (17)]. In contrast, the effect of twisting is
stronger in Fig. 9(b), which results in positive field hot spots
in the middle of every unit cell. Weaker magnetic field spots
(cyan regions) also exist on the boundaries of the unit cells.
Overall, the profile resembles that in Fig. 3(d), although it
becomes more irregular.

Finally, we want to stress that Astrain due to simple con-
stant ε (e.g., those in Table I) does not induce any mag-
netic field in the case of monolayers because ∇ × Astrain ≡ 0
[30,31,33,34]. This clearly demonstrates the important role of
layer pseudospin internal DoF and its nontrivial spatial texture
in the emergence of the moiré magnetic field discussed above.
Another difference between the nonuniform strain-induced
pseudomagnetic field in 2D materials (without moiré) and
the emergent geometric magnetic field in moiré is that the
flux in the former case is vanishing [33], while it could be
nonzero and quantized in the latter as discussed in this work.
It is also interesting to compare with the situation of twisted
bilayer graphene. Due to the gapless nature of graphene, one
cannot eliminate the conduction band and only focus on the
valence band as for TMD. However, one can still define a
gauge potential within the four-band model in twisted bilayer
graphene [47,60]. Only at the AA stacking locals can the
gauge structure in twisted bilayer graphene be simplified
to a form equivalent to that of a uniform pseudomagnetic
field ∝ L−1, where L is the moiré period [47]. In contrast,
the pseudomagnetic field in our case is inhomogeneous with
the L−2 scaling, and the pseudomagnetic field description is
applicable in the entire moiré lattice.

One may also wonder about the possibility of observing
Landau levels (LLs) in the moiré lattice. For well-defined
LLs to exist, the magnetic field should be uniform at the
scale of magnetic length. Therefore, it is required that l � lB,
where l denotes the length scale over which the magnetic field
B roughly stays constant, and lB = √

h̄/eB is the magnetic
length [61,62]. Equivalently, the condition can be written as
Bl2/0 � 1. It is clear from Fig. 3(d) that the magnetic
field is highly nonuniform, and the flux through a unit cell
is 0. If we treat a red spot in Fig. 3(d) as a region where
the field is roughly uniform, one can see that Bl2/0 < 0.5,

hence well-defined LLs are not expected to emerge. While LL
physics is not relevant here, this pseudomagnetic field profile
realizes fluxed superlattices, for example, the Haldane model
for quantum anomalous/spin Hall effect [23,24].

Finally, we want to comment on the effects of spontaneous
lattice relaxation in the moiré. Due to the presence of various
local stacking configurations, among which some are energet-
ically unfavorable, lattice relaxation becomes prominent when
the twist angle is small. Relaxation will expand the area of
RX

M and RM
X stacking locals, while RA

A stacking regions will
shrink, and narrow solitons will form at domain boundaries
[25,63–65]. As to the pseudomagnetic field B+, its profile can
be changed by the spontaneous relaxation strain, but the mag-
netic flux per unit cell corresponds to the solid angle covered
by layer pseudospin, whose quantized value is unmodified.
On the other hand, compared to rigidly twisted bilayers, the
moiré-modulated interlayer coupling changes more rapidly
near the solitons, where stronger coupling between the two
energy branches E± and a larger geometric scalar potential
correction can be expected. These can affect the validity
of the adiabatic approximation near the solitons. However,
we expect that spontaneous lattice relaxation is quenched in
moiré formed by external strain, and one can also reduce the
effects of lattice relaxation in twisted bilayers with clamped
edges.

VI. SUMMARY

To summarize, we have shown that moiré patterns spatially
modulate the layer pseudospin in a homobilayer TMD. When
particles undergo an adiabatic evolution, their dynamics are
governed by a geometric magnetic field and a scalar potential.
The profile and intensity of the magnetic field are controllable
by varying the twist angle, interlayer bias, and strain. The
magnetic flux per moiré unit cell is quantized and tunable
with interlayer bias. The landscape of the scalar potential is
also sensitive to the above tuning knobs, which forms various
effective tight-binding lattice structures. We expect that such
tunable flux lattices built from moiré patterns are promising
for exploring valley/spintronics and topological properties.

VII. OUTLOOK

Geometric fields and potentials originated from spatial
textures have profound effects on various aspects of materials
[26–28]. This work studies the real space manifestation of
such effects in homobilayer TMD moiré lattices as a pseudo-
magnetic field and a geometric scalar potential. A systematic
exploration of the tunability of their landscape via twist angle,
interlayer bias, and uniform strain is presented. Our results
serve as guides for experimental studies as well as shed
light on the physical origin of variations in the electronic
and topological properties of moiré patterns under different
conditions [24,48]. For future studies, one can incorporate
spatially nonuniform strain (e.g., via substrate engineering or
intrinsic strain caused by spontaneous lattice relaxation) into
moiré patterns, which may add further spatial tunability to the
existing results. Possible valley/spin polarized phenomena in
transport can also be investigated by combining moiré pseu-
domagnetic field (with valley contrasted sign) and external

094002-12



THEORY OF TUNABLE FLUX LATTICES IN THE … PHYSICAL REVIEW MATERIALS 4, 094002 (2020)

magnetic field (valley independent). It is also interesting to
explore situations where nonadiabatic effects emerge. To do
so, one can, for example, explore the higher energy regime
(compared to moiré interlayer coupling intensity), or add
proper interlayer bias to bring the two energy branches in
close proximity (Sec. V A). In such scenarios, one should
focus on the non-Abelian Berry connection, which is flat
without curvature as discussed in the last paragraph of Sec. III.
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APPENDIX A: FOUR-BAND CONTINUUM MODEL OF
TWISTED BILAYER TMD

For pedagogical purposes, here we present details of the
four-band model that takes into account both conduction and

valence bands for twisted bilayer TMD. Within the two-band
model that covers the lowest conduction band and high-
est valence band, the two monolayers can be described by
[24,36,37,46,48]

Ht
0 = h̄vF [R−1(k − K̃τ )] · σ̃ + Eg

2
σ̃z,

Hb
0 = h̄vF (k − Kτ ) · σ̃ + Eg

2
σ̃z, (A1)

where t and b label the top and bottom layer, respec-
tively, Eg characterizes the band gap, and σ̃ = (σ̃x, σ̃y) and
σ̃z are Pauli matrices defined in the metal d orbitals basis
(dz2 , dx2−y2 + τ idxy). One should not confuse σ̃ with σ in
the main text, the latter is used to denote layer pseudospin.
Also, here k should be understood as the operator −i∇ that
measures the wave vector from the � point.

In the presence of a large moiré, the two valleys are
decoupled due to vanishing intervalley scattering and related
by time-reversal symmetry. We will focus on the τ = +
valley in the following and neglect the valley index when no
confusion arises. The Hamiltonian for the coupled bilayer is
then modeled by

H =
(

Ht
0 + V t U

U † Hb
0 + V b

)

=
(

h̄vF [R−1(k − K̃)] · σ̃ + Eg

2 σ̃z + V t U

U † h̄vF (k − K) · σ̃ + Eg

2 σ̃z + V b

)
, (A2)

where V t,b are diagonal matrices characterizing the band edge
changes in each layer due to perturbation from higher energy
bands, and U describes interlayer coupling [23,24,41,48].
The interlayer coupling can be estimated from the two-center
approximation keeping the leading contributions by taking
advantage of the fact that the hopping energy decays fast with
momentum. Its explicit form, and obviously the unperturbed
Hamiltonian as well, depends on the choice out of the three

equivalent K points in the Brillouin zone [37,41]. However,
such a dependence can be eliminated by performing a unitary
transformation as will be shown in the following.

One may notice that [R−1(k − K̃)] · σ̃ =
ei θ

2 σ̃z [(k − K̃) · σ̃]e−i θ
2 σ̃z . This suggests that we can apply

a unitary transformation Tθ = diag(e−i θ
2 σ̃z , 1) to remove the

rotation matrix in the top block:

H → H ′ = TθHT †
θ =

(
h̄vF

(
k − K̃

) · σ̃ + Eg

2 σ̃z + V t e−i θ
2 σ̃zU

U †ei θ
2 σ̃z h̄vF (k − K) · σ̃ + Eg

2 σ̃z + V b

)
, (A3)

at the expense of modifying the interlayer coupling (e−i θ
2 σ̃z adds a phase factor of e∓i θ

2 to the first and second row of
U , respectively). For a specific moiré pattern, K and K̃ are constant vectors, thus another unitary transformation TK =
diag(e−iK̃·r, e−iK·r ) (here each term is understood as multiplied by the identity matrix 1) can be employed to remove them
in the diagonal blocks, i.e.,

H ′ → H = TKH ′T †
K =

(
vF σ̃ · p + Eg

2 σ̃z + V t Ũ

Ũ † vF σ̃ · p + Eg

2 σ̃z + V b

)
, (A4)

where we have defined the transformed interlayer coupling
Ũ = e−i θ

2 σ̃zUei(K−K̃)·r and p = h̄k. The phase ei(K−K̃)·r lifts
the K dependence in U , making it depend on the nearest-
neighbor vectors of the moiré reciprocal lattice, where the

threefold rotation symmetry becomes clear. The other phase
e−i θ

2 σ̃z , which has no spatial dependence, does not affect the
geometric magnetic field and scalar potential discussed in this
work.
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In the presence of strain, the K points of the top layer and
the corresponding monolayer Hamiltonian read [36]

K̃τ = τ (2b̃1 + b̃2)/3 = S−1RKτ ,

Ht
0 = h̄vF [R−1S(k − K̃τ )] · σ̃ + Eg

2
σ̃z. (A5)

In experiments, even the ultrahigh strain achievable is merely
a few percent, thus one can employ the approximation S ≈ 1

and Eq. (A4) is still valid with the replacement of K̃ given in
Eq. (A5).

APPENDIX B: TWO-BAND CONTINUUM HAMILTONIAN
FOR THE VALENCE BANDS

Denote the eigenvector of H as � = (�tc, �tv, �bc, �bv )T ,
the Schrödinger equation can be written in the form of four
coupled equations

(
V t

c + Eg

2

)
�tc + vF (px − ipy)�tv + Ũcc�bc + Ũcv�bv = E�tc,

vF
(
px + ipy

)
�tc +

(
V t

v − Eg

2

)
�tv + Ũvc�bc + Ũvv�bv = E�tv,

Ũ ∗
cc�tc + Ũ ∗

vc�tv +
(

V b
c + Eg

2

)
�bc + vF (px − ipy)�bv = E�bc,

Ũ ∗
cv�tc + Ũ ∗

vv�tv + vF (px + ipy)�bc +
(

V b
v − Eg

2

)
�bv = E�bv. (B1)

Since the energy gap is large, it is a good approximation to
decouple the conduction and valence bands. In the following
we will focus on the states near the valence band edge,
i.e., E ≈ −Eg/2. The goal is to derive an effective equation
describing the valence band states. Compared to the energy
gap Eg, the various interlayer coupling energies and E + Eg/2
are small quantities, thus can be eliminated. To rewrite the
conduction band contributions in terms of their valance band
counterparts, we will employ the first and third equations,
which yield

�tc ≈ −vF

Eg
(px − ipy)�tv,

�bc ≈ −vF

Eg
(px − ipy)�bv, (B2)

respectively. With these two approximations, the second and
fourth equations become

− p2

2m∗ �tv +
(

V t
v − Eg

2

)
�tv + Ũvv�bv = E�tv,

− p2

2m∗ �bv +
(

V b
v − Eg

2

)
�bv + Ũ ∗

vv�tv = E�bv, (B3)

where m∗ = Eg

2v2
F

is the effective mass, and terms associated

with Ũcv and Ũvc have been discarded due to weak interband
coupling in the presence of a large gap. One can then easily
identify the effective Hamiltonian for the valence bands Hv

from the left-hand side.

FIG. 10. Results for uniaxially strained (η = 0.035) bilayer MoSe2 with Poissons ratio ν = 0.23. (a) Layer pseudospin distribution, (b) in-
plane layer pseudospin component and its phase angle φ∗, (c) moiré magnetic field B+, and (d) scalar potential E+ + G.
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APPENDIX C: EFFECTS OF REALISTIC POISSON’S
RATIO AND STRAIN INDUCED GAP MODULATION

In the main text we have set the Poissons ratio ν = 1
and neglected the band gap modulation by strain, which
allows us to focus on the effects caused by strain-induced
pseudovector potential. The use of more realistic Poisson’s
ratio and accounting for the band gap modulation by strain
can lead to quantitative changes which we explain below.

Employing a Poissons ratio ν ≈ 0.23 for MoSe2 [66],
typical results for the case of uniaxial strain are given by those
shown in Fig. 10. The main change is the lattice geometry, i.e.,
the lattice becomes compressed along one of the directions.
The profile of the magnetic field and scalar potential also
have quantitative changes. These are because strain tensor
components are now given by ε = diag(η, −νη), different
compared to the case of ν = 1, leading to distinct moiré sizes,
interlayer lattice registries, and strain-induced pseudovector
potentials.

Strain also causes gap size and midgap position modula-
tions [59]. Below we elaborate on how such an effect can be
accounted for in our approach. The gap size modification in
the strained layer can be described by δEg = 2�1(εxx + εyy),
where �1 ≈ −2.28 eV for MoSe2 [59]. In the case of uniaxial
strain, it yields δEg ≈ −3.5η (eV). Additionally, the midgap
position is also shifted by δE0 = �2(εxx + εyy) ≈ −3.85η

(eV), where �2 ≈ −5 eV for MoSe2 [59]. With both factors
considered, the net shift of the valence band edge reads
|δE0| − |δEg|/2 ≈ 2.1η (eV) (see Fig. 11). For strain up to
a few percent that can be practically achieved, this shift can
be up to a few tens of meV, leading to the valence band edge
offset between the two layers. In the paper we have discussed
the effects of such valence band edge offset introduced by an

FIG. 11. Schematics showing the band gap size and midgap
position modulated by strain. (a) Bands of unstrained MoSe2. (b) De-
crease of band gap by |δEg|, hence upward shift of the valence
band edge by |δEg|/2 (blue dashed lines). (c) Downward shift of the
midgap position (thus the valence band edge) by |δE0| (red dashed
lines). The net offset of the valence band edge caused by strain
is |δE0| − |δEg|/2 (green dotted lines). Note that energy shifts are
exaggerated for clarity.

interlayer bias (Sec. V A). The effects found, i.e., quantitative
change in the magnetic field profile, and quantized jump of
the magnetic flux at critical value of the band offset, are also
applicable when the offset is introduced by strain. On the other
hand, one can apply a modest interlayer bias to compensate
the band offset caused by strain. The band offset is the control
parameter in our discussions that determines the magnetic
field profile and flux. This parameter can be contributed by
both the strain and interlayer bias, and tunable through the
bias at given strain.

In the case of biaxial strain with ε = diag(η, η), one
has δEg ≈ −9η (eV) and δE0 ≈ −10η (eV), hence the va-
lence band offset reads |δE0| − |δEg|/2 ≈ 5.5η (eV). In this
case, as the strain induced pseudovector potential vanishes,
one expects the same phenomena as those discussed in
Sec. V A.
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