PHYSICAL REVIEW MATERIALS 4, 093801 (2020)

Orbital graph convolutional neural network for material property prediction

Mohammadreza Karamad,!>-* Rishikesh Magar,z’* Yuting Shi,? Samira Siahrostami,’
Ian D. Gates,! and Amir Barati Farimani ®2-

' Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW Calgary, Alberta T2N IN4, Canada
2Department of Mechanical Engineering, Chemical Engineering, and Biomedical Engineering, Carnegie Mellon University, Pittsburgh,

Pennsylvania 15213, USA
3Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N IN4, Canada

® (Received 12 February 2020; accepted 11 August 2020; published 8 September 2020)

Material representations that are compatible with machine learning models play a key role in developing
models that exhibit high accuracy for property prediction. Atomic orbital interactions are one of the important
factors that govern the properties of crystalline materials from which the local chemical environments of
atoms is inferred. Therefore, to develop robust machine learning models for material properties prediction,
it is imperative to include features representing such chemical attributes. Here, we propose the orbital graph
convolutional neural network (OGCNN), a crystal graph convolutional neural network framework that includes
atomic orbital interaction features that learns material properties in a robust way. In addition, we embedded an
encoder-decoder network into the OGCNN enabling it to learn important features among basic atomic (elemental
features), orbital-orbital interactions, and topological features. We examined the performance of this model on
a broad range of crystalline materials data to predict different properties. We benchmarked the performance of
the OGCNN model with that of: (1) the crystal graph convolutional neural network, (2) other state-of-the-art
descriptors for material representations including many-body tensor representation and the smooth overlap of
atomic positions, and (3) other conventional regression machine learning algorithms where different crystal
featurization methods have been used. We find that the OGCNN significantly outperforms them. The OGCNN
model with high predictive accuracy can be used to discover new materials among the immense phase and

compound spaces of materials.
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I. INTRODUCTION

Owing to the methodological improvements in ab initio
calculations, such as density functional theory (DFT) as well
as increasing computing power, it has now become possible to
perform high-throughput computational calculations to search
for new materials with specific properties of interest [1-5].
However, ab initio high-throughput computational methods
are hampered by expensive calculations necessitating devel-
opment of alternative methods to predict material properties.
Machine learning (ML) techniques, on the other hand, have
proven to provide a fast and accurate way to predict desired
properties enabling facile discovery of new materials at a
fraction of the computational cost and in a shorter timescale.
ML algorithms build a functional map between the input
data representing the material and the output data being the
properties of interest. These models have been used to predict
a wide range of properties for different classes of mate-
rial [6-16]. One of the important challenges to develop a ML-
based approach for predicting material properties is material
representation, i.e., encoding material information, including
features (also often called the descriptors), geometrical, and
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topological information [17].The features need to be unique
in representing material, they should be computed at low
computational cost or preferably be readily accessible from
available databases. Most importantly, they should reflect the
chemical information related to the targeted properties. This
requires encoding the information about electronic structure,
chemistry as well as the topology of the material. In addition,
feature vector representation needs to be compatible with the
ML model. To this end, developing features that possess the
aforementioned properties has proven to be challenging [6].
Roughly speaking, for a given crystalline material, the
information related to its physical and chemical properties
arise from the position of charges and nuclei, the topology
of the crystal, basic properties of its constituent elements,
and interatomic interactions. Furthermore, key information
about the local chemical environments of atoms forms the
fundamental basis to determine the properties of the crys-
tals. Therefore, the accuracy of a ML model to predict ma-
terial properties is mostly controlled by the ability of its
descriptors to accurately encode the local chemical envi-
ronments of atoms [17]. Different methods to represent the
local chemical environments of atoms have been developed.
Examples include using atom-distribution-based symmetry
functions [18,19], smooth overlap of atomic positions [17],
many-body tensor representation [20], band structures and
density of states descriptors [21], and the Coulomb matrix
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(CM) representation [22]. In many of these methods, struc-
tural or elemental information or both have been used as
features for representation. The elemental features are either
intrinsic quantities, such as the atomic number and ionization
energy or heuristic quantities, such as the electronegativity
and ionic radius [21,23,24]. Structural representations, on
the other hand, encode local chemical environments by cap-
turing the geometry and interaction between atoms [22,25].
Another interesting attempt for crystal representation uses
electronic structure attributes [9,21]. This is important be-
cause the electronic structure is one of the key parameters in
defining material properties. The electron configurations and
orbital-orbital interactions are important electronic structure
attributes which should be included as representations for
ML predictions. Including such information, however, often
requires performing DFT calculations to generate descrip-
tors which, consequently, increases computational costs [21].
Different efforts have been made to represent material by
considering electronic structure attributes without performing
DEFT calculations [23,26]. Ward et al. used an extensive set
of features, including basic atomic and electronic structure
features to develop a ML model for predicting different crys-
talline properties [9,23]. They used the average fraction of
electrons from the s, p, d, and f valence shells of all present
elements to quantitatively represent atomic electronic states as
electronic structure attributes. Clearly, such representations do
not explicitly include orbital interactions among constituent
elements of the crystals. In another work, Pham et al. de-
veloped a novel two-dimensional descriptor called the orbital
field matrix (OFM) that encodes orbital interactions according
to electron configurations of the central atom and neighbor
atoms surrounding the central atom [26]. In the OFM, a
simple description of the interaction of valence electrons of a
central atom with its neighbor atoms represents orbital-orbital
interactions. The OFM model showed promise to predict
different material properties including formation energy and
atomization energy by using conventional ML algorithms,
such as kernel ridge regression, decision tree regression, and
random forest regression. Despite its promise, the OFM model
does not include any elemental atomic features, kernelized
distance features, or graph representation of the crystals. In
addition, the OFM model did not use the state-of-the-art deep
learning techniques.

Deep learning has been widely used in materials science
research and molecular property prediction [27-31]. In partic-
ular, convolutional neural networks (CNNs) have been used
for material properties prediction because of their special
ability to extract features from the data [32]. In a recent study
by Cao et al., Magpie and OFM descriptors were used in
conjunction with the CNN to predict material properties [33].
The reported prediction accuracy for training formation ener-
gies of a dataset of alloys is significantly higher than using
either of the descriptors. However, Cao et al., did not use
graph representation for crystalline systems, feature represen-
tation, and dimensionality reduction. Recently, Xie and Gross-
man, developed a crystal graph convolutional neural network
(CGCNN) framework to represent periodic crystalline sys-
tems for predicting material properties [34]. In the CGCNN,
a graph representation was used to describe the structure of
the crystals. In addition, the crystal information was encoded

using basic atomic features, such as electron affinity and
group number. To encode the neighboring atoms’ geometrical
effects, the interatomic interactions using their atomic dis-
tances were considered. The CGCNN model has many pow-
erful characteristics, such as inclusion of kernelized distance
features, features encoding via dimensionality reduction, and
convolution of the atom features with its neighbors. Although
the CGCNN model demonstrates the ability to predict a
variety of properties with high accuracy, it does not consider
the attributes that contain orbital-orbital interaction features.
In this contribution, we develop a graph convolutional neural
network that incorporates the atomic orbital interactions. This
new model is referred to as the orbital graph convolutional
neural network (OGCNN). The inclusion of orbital-orbital
interactions to encode the local chemical environments of
atoms along with embedding of an encoder-decoder network
enabled the OGCNN to achieve higher accuracy compared to
the CGCNN. To show the robustness of the OGCNN model,
we benchmarked it against the CGCNN, other state-of-the-art
descriptors for material representations including the many-
body tensor representation (MBTR) and the smooth overlap
of atomic positions (SOAP), and a variety of conventional ML
models with different crystalline material representations.

II. MODEL ARCHITECTURE

To include atomic orbital interactions, we employed the
representation of crystal systems named OFMs where the
atomic orbital interactions are counted based on the distribu-
tion of valence shell electrons [26,35]. In the OFM model,
the electron configuration of each atom is converted into a
one-dimensional (1D) binary vector, and the local structure
surrounding an atom is encoded into a matrix that is the sum
of the weighted vector representation of all neighboring atoms
[Eq. (D).

To better explain the OFM, let us take an example, a FeTi
alloy with body-centered-cubic crystal structure as shown in
Fig. 1. The center Fe atom, denoted as c, is surrounded by 14
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FIG. 1. The OFM representation for the FeTi alloy. Blue and
red atoms are Fe and Ti, respectively. The inset shows the Voronoi
polyhedron for the center Fe atom forming a truncated octahedron.
The 1D binary vectors for the Fe and Ti atoms are shown as well.
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FIG. 2. The structure of the OGCNN framework. It can be divided into four modules, the input, encoder-decoder, graph convolution, and

output modules.

neighbor atoms, denoted as n. The 14 neighbor atoms include
eight nearest Ti atoms and six next-nearest Fe atoms. Figure 1
shows the formation of a Voronoi polyhydron between the
center Fe atom and its 14 neighbor atoms which has the
shape of a truncated octahedron. The OFM consists of two
parts: (1) a weight function w,, associated with the center Fe
atom and any of these 14 neighbor atoms (center-neighbor
pair). w,, is calculated by multiplying 6.,, the solid angle
subtended at the center atom by the face of the Voronoi
cell corresponding to the neighbor atom, i.e., the solid angle
between center-neighbor pairs in the Voronoi cell, with ¢ (r,,)
which is a function of the distance between them [w,,(r:,) =
Ocn X & (ren)l. ¢ (rey) incorporates the information on the size
of valence orbitals of the center-neighbor pairs as well as their
interactions. (2) A 1D binary vector representation of each
atom. The electron configuration of valence orbitals for each
atom is encoded into a 1D binary 32 x 1 vector (Fig. 1). To
construct the OFM for the center Fe atom, we sum the matrix
product for each center-neighbor pair and multiply it with
the corresponding weight function. This results in a 32 x 32
matrix. Finally, to incorporate the information of the center
Fe atom, we concatenate its 1D binary vector to the 32 x 32
matrix, resulting in a 32 x 33 OFM for the center Fe atom,

M
—> -
X =0T 4+ 070 0t (ren). (1
n=1

Equation (1) describes the mathematical formulation of
the OFM. X¢ is the OFM for the center Fe atom, M is the
number of neighbor atoms surrounding the center Fe atom,

— — .
O°¢ and O" are the 1D binary vectors for the center Fe and
its 14 neighbor atoms, respectively, and O°7 is the transpose

of 5% The incorporation of geometry as weight enables to en-
code the local chemical environments through orbital-orbital
interactions. To investigate the efficiency of our network,
we examined different ¢ (r.,) functions including rll, r%, r%
and }6 — r% Subsequently, the ¢ (r.,) function that resulted
in best performance was selected. We note that, in Voronoi
polyhedra, large solid angles correspond to a shorter distance
between two adjacent atoms and vice versa. In addition, such
Voronoi polyhedra between the center and the neighbor atoms

capture the geometry of the local environments of atoms. If

only the distances between the center and the neighbor atoms
are considered, the geometry will not be captured correctly.

Once we convert the orbital-orbital interactions between
each atom and its neighbors into the OFM representation, we
use the GCNN and couple it with the OFM. We call this new
model the OGCNN. The OGCNN network can be considered
as a combination of four modules (Fig. 2). The first module,
input module, takes the basic atomic and OFM features. In
this module, the embeddings for all crystals in a batch are
generated. The basic atomic features include properties, such
as the group number, the period number, and electronegativity.
The list of 92 basic atomic features are provided in the
Supplemental Material [36]. To include the OFM features in
the input module, the 32 x 33 OFM features corresponding
to each atom are flattened into a 1056 x 1 vector. The atom
features are constructed by combining the 92 x 1 basic atomic
features and 1056 OFM features forming a 1148 x 1 vector
for each atom in the crystal generating a unique representation
for all crystals [Eq. (2)],

v; = [ve] + [vail, (2)

where v,; and v, are the OFM and basic atomic features,
respectively. The second module, the encoder-decoder module
learns important features among atom features by employing
a multilayer perceptron (MLP) with two fully connected
layers. The MLP acts as an encoder-decoder network which
comprises 1148 neurons at the encoder input, 768 neurons
in the hidden layer, and 1536 neurons at the decoder output.
Using such an architecture enables the network to select the
most significant features among the pool of basic atomic and
OFM features (Fig. 2).

In this paper, we consider the crystal structure as a
graph [34]. A crystal graph is an undirected graph in which the
atoms are considered as nodes and the bonds as the edges, and
each node has a combination of basic atomic and OFM fea-
tures [Eq. (2)]. This atom features vector is then transformed
as explained in the encoder-decoder module to generate V;
that includes the most important and relevant features. An
important aspect of the crystal graph is that different atoms
can be connected with more than one bond indicating multiple
edges among the nodes of the graph. To incorporate the
influence of neighbor atoms, the kernelized distance features
between the ith and the jth atoms are captured by the vector
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FIG. 3. The test set performance of the OGCNN in different
properties predictions across classes of material. (a) Comparison
between MAE values of the OGCNN and the CGCNN on test sets
for five different datasets. (b) Percentage reduction of the MAE
values in (a) when the OGCNN method is used for training over the
CGCNN method. A similar train-validation-test ratio was chosen for
the OGCNN and CGCNN networks. (¢) The MAE values for the
prediction of formation energies of the lanthanides dataset using dif-
ferent crystal representations. (d) Comparison of predicted formation
energies of 741 test entries of lanthanides using the OGCNN against
the DFT-calculated values.

ug, j, where k indicates the kth bond between them. The
convolution operation is then performed as in Ref. [34],

VIV =VO4Y o (i W +7) © (e, WO+,
3)
where z;,) =Vi®V; ®uqj),, o is a sigmoid activation
function and g is the softplus function [37]. W and b indicate
the weights and bias in the network, respectively.

The convolution operation is performed three times in the
OGCNN network. Subsequently, a summation operation is
performed over all the neighbors to aggregate the contribution
of neighbor atoms which is then sent to the output module. Fi-

nally, in the output module, a pooling operation is performed
on the output from the graph convolution module to map the
properties to a crystal level. The output of the pooling layer
is, subsequently, used to predict the target property via a fully
connected network with two layers. More details about the
architecture of the OGCNN model and different hyperparam-
eters optimized for training the network are available in the
Supplemental Material [36].

III. TRAINING AND RESULTS

To train the OGCNN model, we used five different DFT-
calculated datasets that include a diverse set of inorganic
crystals ranging from metals to complex minerals and ox-
ides [4,38] . The details about these datasets are provided in
the Supplemental Material [36]. To examine the generality
of the model for predicting a wide variety of properties,
we trained the OGCNN model for different properties in-
cluding formation energy, band gap, and Fermi energy. For
training the OGCNN model, we used mean-square loss as
a loss function and stochastic gradient descent as an opti-
mizer. Additionally, for all cases, the entire datasets were
split into 80,10, and 10% for training, testing, and validation,
respectively. Moreover, to avoid any bias during the train-
ing process, a five fold cross validation is used to split the
datasets, and only their average values are reported [39]. It
must be noted that the OGCNN model was trained for 100
epochs and the weights of the model where lowest validation
error was observed were used to predict the properties of
crystals in the test set. The results for the OGCNN and
other models on the test sets are summarized in Fig. 3 and
Table 1. Figure 3(a) shows that, for all properties and datasets,
the MAE values when using the OGCNN are significantly
lower compared to that of the CGCNN. Figure 3(b) shows
the percentage improvement for prediction accuracy using
the OGCNN over the CGCNN. The highest improvement in
performance was achieved for the lanthanides dataset: the
OGCNN yields a MAE value of 0.061 eV /atom, whereas
the CGCNN yields a MAE value of 0.133 eV/atom. This
corresponds to 54% improvement in the accuracy prediction
for the OGCNN over the CGCNN. On the other hand, the
lowest performance over the CGCNN was achieved for the
prediction of the Fermi energies of crystals from the Materials
Project (MP)-Fermi energy that is 0.38 eV corresponding to
an improvement of 11% over the CGCNN. Similarly, for other
properties and datasets including formation energies of per-
ovskites, formation energies of crystals from MP-formation

TABLE I. The mean absolute error values for test sets of five different datasets with the OGCNN and the CGCNN have been compared
with the ones using the SOAP and the MBTR material representations.

Material representations

Dataset OGCNN CGCNN SOAP MBTR Unit
Lanthanides-formation energy 0.06 0.13 0.09 0.28 eV /atom
Perovskites-formation energy 0.05 0.09 0.11 0.09 eV /atom
MP-formation energy 0.03 0.05 0.05 20 eV /atom
MP-band gap 0.32 0.43 0.33 0.69 eV
MP-Fermi energy 0.38 0.43 0.38 0.82 eV
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energy, and band gaps of crystals from MP-band gap, a
reduction of 50%, 45%, and 25%, respectively, in the MAE
values were obtained using the OGCNN over that of the
CGCNN. To further benchmark the OGCNN, we compared
the performance of the OGCNN in training the lanthanides
dataset with some other material representations. For the
lanthanides dataset, using the OFM and the Coulomb matrix
representations and by using kernel ridge regression, the MAE
values of 0.11 and 0.30 eV /atom have been reported [22,26].
The CM representation has the lowest performance with
a MAE of 0.39 eV/atom followed by the CGCNN, the
OFM, and the OGCNN with MAE values of 0.13, 0.11, and
0.06 eV /atom, respectively [Fig. 3(c)]. The predicted forma-
tion energies of 741 test entries in lanthanides dataset using
the OGCNN against the DFT-calculated values is also shown
in Fig. 3(d). We also benchmarked our results against two
previously developed state-of-the-art descriptors for encoding
atomic structures including the MBTR and SOAP [17,20,40].
Further details about the MBTR and SOAP hyperparameters
optimization can be found in the Supplemental Material [36].
In Table I, the performance of the OGCNN with the CGCNN,
SOAP, and MBTR descriptors when used to predict different
properties corresponding to five datasets were compared. We
found that OGCNN exhibits highest performance among all.
The only exception is the Fermi energy property where both
the OGCNN and the SOAP performed equally well. We would
like to emphasize that the MAE values for some properties in
this paper are within a narrow range from the DFT-calculated
values (Table S4 in the Supplemental Material [36]). For
instance, the formation energy predictions using the OGCNN

model for different datasets are within a range of 0.03—
0.06 eV/atom from the DFT-calculated values. The MAE
value for the DFT calculations for formation energy with
respect to experimental measurements is within the range
of 0.081-0.136 eV/atom. Moreover, the desired chemical
accuracy for the formation energy is on the order of 0.04
eV/atom [38,41]. Similarly, for the band-gap property, a MAE
value of the 0.6 eV for the DFT calculations has been reported,
and using OGCNN, we obtained a MAE value of 0.32 eV [42].
Therefore, given the relatively low error in the predicted
properties using the OGCNN, it can be reliably used to predict
properties of new materials.

IV. CONCLUSION

In this paper, we proposed the OGCNN, which embeds
atomic orbital-orbital interactions features and basic atomic
features. The OGCNN, then, was applied to different datasets
to predict a wide range of material properties of versatile
structures. The prediction accuracy of the OGCNN model is
significantly higher than that of previously reported models.
The inclusion of orbital-orbital interactions to encode the
local chemical environments, and using the encoder-decoder
network were the fundamental reasons behind superior perfor-
mance of the OGCNN. We expect this model to be applicable
to a broader range of material discovery applications.

The Github Repository for the OGCNN can be found at
Ref. [43].
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