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Scale-free features of temporal localization of deformation in late stages of creep failure
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The last stage of material failure often shows a regime with power-law acceleration as the material lifetime
is approached. We study this experimentally in tensile creep with paper samples using digital image correlation.
The last, tertiary creep stage exhibits scale-free features in the sample response (strain rate) and its fluctuations.
It is accompanied by an increasing localization of strain at the location of final failure. The main features are
reproduced by a material model built on a viscoelastic fiber bundle model.

DOI: 10.1103/PhysRevMaterials.4.093606

I. INTRODUCTION

Material creep under constant loading is accompanied by
history effects from accumulation of damage to the buildup
of plastic deformation. Material disorder is very important
and becomes visible in a heterogeneous deformation field in
locally varying strain rates and in the variability of sample
lifetimes. Statistical physics models of time-dependent defor-
mation include ingredients such as local thresholds for plastic
or elastic deformation bursts, evolving internal stresses and
long-range interactions due to the accumulating deformation.
These often lead to intermittent avalanche activity.

Finally, materials fail due to the localization of deforma-
tion. This happens due to the formation of a shear band or
to the nucleation of the final, dominant crack and its growth.
These processes are most interesting in time-dependent
fracture, where one encounters two main questions: What
is the sample lifetime and is it possible to predict it in
advance [1–4]? Such models also attempt to describe the
typical features of the development of a shear band or the
final localization to the region where the material sample
fails [5,6]. These general effects, including the avalanches
in yielding dynamics and what happens close to the critical
yielding transition, are also a rich playground for mesoscopic
models [6,7]. In recent years, this final regime has attracted
plenty of interest. On one hand, a number of experiments
point out the so-called power-law acceleration of phenomena
when approaching the sample lifetime tc. That is, quantities
such as acoustic emission [5,8–11] or the strain rate [4,12–14]
behave as scale-free power-law functions of tc − t . To explain
by theoretical arguments and to make careful experimental
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observations of such features thus presents a challenge. One
main reason why these findings are of interest is the lifetime
prediction of materials from the laboratory to the appearance
of a landslide, avalanche, or earthquake.

In this paper, we have performed tensile creep experiments
with quasi-2D paper samples with the idea of imaging the
sample deformation at a large enough rate to discern the
features of the final localization phase. The novelty of this is,
among others, in that we look at the local strain rates in this 2D
system and in what follows from these experiments. We show
that before the final rupture, strain localizes to a single spot.
The results on the scaling of strain (-rate) localization indicate
that the failure is not a sudden event but a gradually evolving
process. Also, either the material does not exhibit the kind of
bursty, localized plastic deformation we refer to as a model
prediction for disordered materials’ yielding, or it happens on
such a small scale that it does not leave any clear signatures
when studied as herein.

In paper, the time-dependent creep behavior can be divided
as is usual in three phases [12] into primary, secondary and
tertiary creep. The primary creep regime is described by the
Andrade law [15] where the global strain rate ε̇ decrease with
time t typically follows roughly ε̇ ∝ t−2/3, with variations
in the exponent value depending on the material. In paper,
the secondary creep regime corresponds to logarithmic creep
behavior [16], where ε̇ ∝ t−1 [17]. This regime continues
until the strain rate minimum is reached, which for the copy
paper and geometry we use in our experiments has been
found to happen at t = 0.83 × tc where tc denotes the time
of the failure of the sample [12]. This relation is known in
material science as the Monkman–Grant relationship [18] and
it implies that the creep responses of different samples can
be collapsed to a master curve of the form ε̇ = f (t/tc) min ε̇,
with some shape function f , as the response depends only on
the minimum strain rate and the failure time [19]. After the
minimum, there is the regime that we are interested in, the
tertiary creep regime, where the strain rate increases rapidly
[12,20,21], which implies strain softening. This increase fi-
nally leads to the sample failure at time tc.
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FIG. 1. (a) Picture of the experiment. The 4k videocamera is at
the front of the Instron E1000 tensile testing machine. The lighting
is provided by a led light with paper light diffusor. The sample is a
50 × 100 mm2 paper sheet with grammage of 75 g/m2 printed with
colored random speckle pattern. One dot is approximately 32 pixels
in diameter so 1 mm in nature. (b) Strain map 8% before sample
failure overlaid on top of the reference image of the sample. The
areas of roughly uniform strain which are around 2–3 mm corre-
spond to the paper floc size. (c) Raw data from the tensile testing
machine shows an example of the stress-controlled experiment with
4.75 second initial increasing stress ramp followed by a constant
F = 95 N loading until the sample breaks at t = 42.5 s (blue, right
axis). The measured total displacement d is a typical creep curve
with decreasing strain rate (derivative) until few seconds before the
end (green, right axis).

The behavior of the local fluctuations in the strain rate
(quantified by the standard deviation of the local strain rates in
the vertical direction �ε̇yy) is known to decay as a power-law
�ε̇yy ∝ t−γ [22] in the initial two regimes. The exponent γ is
smaller than what is found for the global strain rate (γ ≈ 0.5).
So as the decay is slower, the fluctuations become more im-
portant as the experiment progresses. We next turn our focus
on the final, tertiary phase and the statistical deformation
signals there.

II. METHODS

The experimental setup is shown in Fig. 1(a). The Instron
E1000 tensile testing machine created a constant loading F to
the dotted sample at the center and recorded the displacement

FIG. 2. An example experiment showing the behavior of the
global strain rate ε̇ of the sample as a function of the normalized
time before failure (tc − t )/tc (bottom), where tc is the failure time
of the sample. The vertical strain rate component ε̇yy (top) obtained
from DIC is shown at a few selected points in time corresponding to
the locations on the strain rate curve shown by the arrows. Strain rate
localization into a single region around y = 50 mm and x = 50 mm
can be seen well before the failure.

d of the piston. The global strain was calculated from the
displacement as ε = d/h, where h is the initial height of the
specimen. The Sony PXW-FS5 4k video camera recorded
images of the samples with high resolution (30 μm/pixel) to
a 25 Hz video stream. The paper sample was a 50 mm ×
100 mm copy paper sample with a grammage of 75 g/m2.
The sample was printed with a randomly colored speckle
pattern where the 1 mm × 1 mm dots are in a square grid.
The tensile testing machine created a constant load that was
varied between experiments from 90 to 100 N with an initial
ramp performed at a rate of 20 N/s. The loading protocol is
depicted in Fig. 1(c). The results presented here consist of
six experiments with lifetimes varying from 45 s to 1380 s;
these are picked out of a larger set of experiments based on
the criterion that they have a sample lifetime much larger than
then ramp-up time to the constant stress level.

The digital image correlation (DIC) is performed using the
NCORR [23] software which calculates the local displacements
u = (u, v) with respect to the first image using a circular
region of interest with a radius of 1.0 mm and placing the
regions of interest every four pixels (corresponding to a spac-
ing of 0.1 mm). One should compare this scale to the typical
structural scale in paper, that of flocs (the clusters of fibers that
form in papermaking and show up as the evident cloudiness
in the paper structure). That scale is typically of the order
of 2 mm [17]. The local strain component in the loading
direction is calculated from these displacements as εyy = ∂v

∂y
[see Fig. 1(b)] and the strain rate component ε̇yy is then ob-
tained via numerical differentiation of successive strain maps.
These local strain rate maps are shown in Fig. 2. The DIC
calculations are performed for images corresponding to ap-
proximately 250 points in time (concentrated to the end of the
experiment) in each experiment, or the last 10 s in time.

As the accuracy of the DIC calculations is roughly 10% of
the pixel size, the noise floor for strain calculations would be
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around 0.03. The strain-rate resolution varies according to the
time interval between the images considered but ranges from
10−3 s−1 (when the deformation is the slowest) to 0.75 s−1

(right before failure). We note that DIC strain maps should
also reflect localized deformation activity, since measuring
over several avalanches happening in windows of time does
not hide immediately any power-law-like distributions possi-
bly present on the microscopic scale [24].

Another way to characterize the strain rate localization
is to define a threshold (for example one standard deviation
above the mean ε̇thres = 〈ε̇yy〉 + �ε̇yy) and to look at the spatial
distribution of points above this threshold. One can then define
the localization coefficient [6]

ηy = 1 −
(

�y

�0y

)2

, (1)

where �y is the standard deviation of the y coordinates of the
locations where ε̇yy > ε̇thres and �0y = Ly/

√
12 the standard

deviation of randomly placed locations.

Serial fiber bundle model

To model this behavior, we resort to a serial viscoelas-
tic fiber bundle model (SFBM) [12,25–27], used earlier to
analyze the Monkman-Grant relation [12] which consists of
Ns serial layers of fiber bundles with Np fibers each. The
viscoelastic fibers are modeled as Kelvin–Voigt elements σ =
βε̇ + Eε, where σ is the constant load, β the damping con-
stant, and E the Young modulus. Here we set β = E = 1 for
simplicity. The fibers have a failure strain which is drawn
from a distribution p(εc), which we have here chosen to be
uniform between 0 and 1. If a fiber fails, then the load is
equally distributed among the remaining intact fibers within
the same bundle (global load sharing). Hence, the time evo-
lution of each of the Ns bundles in series is described by
σ0/[1 − P(ε)] = βε̇ + Eε, where P is the cumulative distri-
bution of failure thresholds of the given bundle.

The simulations are performed by setting the external load
σ0 to be slightly above the critical value above which one of
the bundles will eventually fail. This, together with the small
random fluctuations from bundle to bundle in the bundle-
specific failure strain distributions results in a distribution
of failure times for the Ns different bundles in series. The
simulation considers the simulated sample to fail when the
first of the serial layers fails, which happens when all fibers
in this layer have failed. Here we have chosen Nb = 12 800
and Ns = 40; the latter choice is motivated by the observation
that in our experiments on paper samples the sample height
corresponds to roughly 40 times the floc size of paper.

III. RESULTS

Looking at the strain maps [Fig. 1(b)] produced by DIC,
one can observe areas of roughly uniform strain that are
around 2–3 mm in size. This size is larger than the size of the
dots printed to the sample and larger than the region of interest
in the DIC calculations. The main features of paper structure
are the flocs—the aggregates of fibers produced in the paper-
making process—and the size of these areas of uniform strain
correspond to the floc size of the paper [17].

FIG. 3. (a) The average behavior of the global strain rate ε̇ (ob-
tained from the tensile testing machine data) as a function of the
normalized time before failure (tc − t )/tc. The black line represents
a power-law fit (tc − t )−0.91. (b) The standard deviation of the vertical
component of the strain rate obtained from the DIC. The black
line represents a power-law fit (tc − t )−0.93. (c) The strain rate as a
function of the normalized time before failure from the SFBM. The
different lines correspond to different realizations of the simulation.
The black line represents a power-law (tc − t )−1/2. (d) The standard
deviation of the strain rates of the different bundles in the SFBM. The
different lines correspond to different realizations of the simulation.
The black line represents a power-law (tc − t )−1/2.

We reproduce the earlier results in that the experiments
reach a strain rate minimum on average at t = 0.83 × tc (the
Monkman–Grant relationship) and after that the strain rate
increases (see bottom part of Fig. 2). Looking at the strain rate
maps at corresponding times (see top part of Fig. 2), one can
observe localization of the strain rate into a single location
in this tertiary creep regime. This location matches with the
eventual one for failure.

When looking at the average behavior of the global strain
rate ε̇, we first normalize it with its minimum value min ε̇ for
each experiment. After that, we see a power-law divergence
〈ε̇/ min ε̇〉 ∝ (tc − t )−b with b = 0.91 ± 0.04 [see Fig. 3(a)]
as failure is approached. This power-law spans around three
decades in time (starting around 1% before the sample failure)
and is observed right up to the limit of the time resolution of
our experimental setup.

As also the local strain rates ε̇yy are measured over the
whole sample, one can quantify the deformation behavior
using their statistics. Looking at the standard deviation of
the local strain rate over the whole sample �ε̇yy shows that
this quantity also increases while approaching failure, indi-
cating growing fluctuations. In fact, after normalizing it with
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the minimum value min �ε̇yy for each experiment (similarly
to the global strain rate), we observe a power-law diver-
gence 〈�ε̇yy/ min �ε̇yy〉 ∝ (tc − t )−c with c = 0.93 ± 0.06
[see Fig. 3(b)]. Again, this power-law spans around three
decades, starting slightly earlier than the power law of global
strain rate, around the global strain rate minimum. The slight
dip in the curve with the smallest values of (tc − t )/tc is
probably due to DIC algorithm’s inability to follow such large
strain rates localized in such small area (these correspond only
to the last or second-to-last images before failure).

The time-dependent strain rate obtained from the SFBM
shows a similar strain rate minimum at t = 0.83 × tc [see
Fig. 3(c)] as the experiments; this has been demonstrated to
be a geometry-controlled effect such that the time of the strain
rate minimum can be tuned by changing Ns [12]. After that,
the strain rate increases and, similar to the experiments, a
power-law divergence ε̇/ min ε̇ ∝ (tc − t )−bSFBM is seen. Here
the exponent bSFBM is smaller than that in our paper ex-
periments. For the SFBM, we find a value close to 1/2, as
found before for individual viscoelastic fiber bundles [26].
The power-law regime starts around 1% before failure, again
similar to the experiments.

Also the standard deviation (which here means the standard
deviation between the serial layers) of the strain rate, �ε̇(t ),
increases as the failure is approached [see Fig. 3(d)]. Again
close to failure a power-law divergence with an exponent
around the same value as for the mean rate (i.e., 1/2) is found.
A possible interpretation of the standard deviation exponent
equaling that describing the mean rate is due to deformation
localization close to final failure, which in the SFBM is a
purely statistical effect (one of the bundles happens to fail
before the others): In a typical case, the final divergence of the
strain rate is dominated by the local strain rate at the location
of the eventual failure.

As the final failure is brought up by a crack running
roughly horizontally through the sample, the strain-rate maps
can be reduced to one dimension to better grasp the informa-
tion about the localization. This is done by averaging the maps
along the x direction, yielding 〈ε̇yy〉x, which is a function of
only the vertical coordinate y. Plotting this as a function of the
normalized time before failure (tc − t )/tc [see Fig. 4(a)], one
can clearly observe the localization into a single spot. Even
by eye this is can be seen around 5% before failure, so slightly
later than the start of the observed power-law divergence of the
standard deviation of the local strain rate. Using thresholding
to define and measure localization would result in the same
conclusion. The width of this spot again corresponds to the
structural scale, floc size, being around 2–3 mm.

The same can naturally be done to the strain εyy yielding
〈εyy〉x which behaves in a similar way [see Fig. 4(b)]. In this
case, again plotting against (tc − t )/tc, the localization is less
clear, but observable by eye around 0.2% before failure. No-
tably, in this example, one can also observe some localization
of strain outside the final failure site at y = 50 mm (namely,
at y = 38 mm). Similar features also come out of the fiber
bundle model, see Figs. 4(c) and 4(d). The agreement is of
course only qualitative. We have computed various correlation
functions of the strains and strain rates as a function of time
and for two-point quantities as a function of spatial distance.
They agree with Fig. 4: The correlations that build up are

FIG. 4. (a) An example experiment showing the behavior of the
strain rate ε̇yy averaged over the width of the sample 〈ε̇yy〉x as a
function of the normalized time before failure. The localization into a
single eventual failure site at around y = 50 mm is clearly visible 5%
before failure which is slightly later than the onset of the power-law
increase of �ε̇yy seen in Fig. 3. (b) The same plot as (a) but for the
strain εyy. The localization is still obvious but the starting point is
less clear. In addition to the final failure site at around y = 50 mm,
one can see some minor strain localization at y = 38 mm. (c) A
realization of the SFBM simulation showing the behavior of the
strain rates ε̇ at different bundles yb as a function of the normalized
time before failure. (d) The same plot as c but for the strain ε.

due to localization in the y direction. At short ranges, up
to one millimeter, some features can be seen that originate
from the disordered structure of paper but they do not evolve
much in tertiary creep. In earlier work [28], it was found
that in contrast to the primary creep phase where the relative
importance of fluctuations grows, such correlations might be
interesting.

These results are also reproduced by the localization mea-
sure. What we see at first glance (see the inset of Fig. 5) seems
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FIG. 5. The average behavior of the localization coefficient ηy as
a function of the normalized time before failure. The inset shows the
same behavior as a function of normalized strain.

to be a behavior rather independent of tc − t until almost
the very end of the experiment, even though the main figure
gives the impression that there is a logarithmic, slow increase
until the same final abrupt localization. This measure seems
to indicate that both the integrated strain and the strain-rate
maps—the latter produce, formally speaking, the former upon
integration in time—do not show any signatures of the bursty
avalanche activity one might expect. Also looking at the dis-
tributions of the local strain rates, following their development
over time by histograms does not reveal any signatures of
the fat-tailed distributions one would expect from avalanche
activity. In plain terms, if the sample response would arise
from avalanches these would become visible locally in the
strain rates (strain over the DIC time window).

IV. CONCLUSIONS

We have studied the localization of deformation close to
failure in tensile creep of a disordered quasi-2D material using
DIC. The main result is that the localization becomes visible
after the strain-rate minimum of the global strain-rate curve
in tertiary creep. This localization can be seen first in the
standard deviation of the local strain rate (right after the strain
rate minimum, so 17% before failure), later by eye in the local
strain rate averaged over the horizontal direction (5% before
failure), and finally by eye in the local strain averaged over
the horizontal direction (0.2% before failure). In other words,

a band of roughly constant width becomes visible in the strain
analysis.

The associated quantities, such as the global strain rate ε̇

and the standard deviation of the local strain rate in the vertical
direction �ε̇yy, show scale-free behavior. This is seen in the
form of a power-law divergence as the failure is approached.
In both cases, the exponent is close to unity so the divergence
is close to (tc − t )−1. This is in contrast to what happens to
these quantities in primary and secondary creeps, where their
values are such that the fluctuations are more prominent as
they decay more slowly than the creep rate itself [28].

This behavior can be reproduced qualitatively by a SFBM
where the bundles can be thought to correspond to represen-
tative volume elements of the size of individual flocs in paper.
The similar power-law exponents for the divergences of the
strain rate and the local deviations in the strain rate might
imply that the material response of a single bundle (or in
experiments failure location) dominates the divergence. As
the experiments can be modeled using this type of model,
where the local damage developments are not correlated, this
would imply that the deformation localization in paper is also
not correlated in the way it would be if it would the result of
avalanching dynamics of local deformation bursts. This is in
line with the fact that the localization measure shows no signs
of correlated localized avalanche activity. The final failure is
due to the appearance of a local spot of fast deformation at
the tc or close. Due to the general nature of the model used
to compare with experiments, we would expect that there are
other materials which belong to the same universality class.

Future work, in addition to testing other materials, could
include a more detailed version of the SFBM with crack
nucleation built in to quantitatively reproduce the divergence
laws and to explore the final failure. It would also be of interest
to look at geometry effects: long and narrow versus short and
broad samples.
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