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Statistical study of vacancy diffusion in TiC and TaC
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Density functional theory (DFT) simulations, Metropolis Monte Carlo (MMC), and kinetic Monte Carlo
(kMC) simulations were performed to understand the mechanisms of mass diffusion in a group IVB transition
metal carbide, TiC, and a group VB transition metal carbide, TaC. The DFT calculations were used to obtain
the vacancy formation energy and migration energy of a variety of microstates for off-stoichiometric TiC and
TaC. MMC simulations, based on our DFT results, were used to determine the ensemble average of the metal
vacancy formation energy and determine the average size metal-vacancy clusters present in these materials. kMC
simulations were used to determine the ensemble average of the migration energy barrier as well as understand
how the vacancies in these materials, on average, migrate. These collective results show that metal vacancy
migration in TiC and TaC are quite different, where Ti vacancies should be surrounded by four to five carbon
vacancies whereas, on average, tantalum vacancies are surrounded by one or zero carbon vacancies. However,
the carbon vacancies substantially contribute to metal vacancy diffusion in both these materials, as the metal
vacancy statistically will have a carbon vacancy near it before and after migration. From these results, we
find that the activation energy of metal vacancy diffusion is 7.66 eV in Ti0.995C0.97 and 6.41 eV in Ta0.995C0.97,
which agrees reasonably well with experimentally reported activation energies. These results give further insights
into the mechanisms associated with mass diffusion within the transition metal carbide families, an important
insight needed to better elucidate high temperature diffusional creep responses which is often difficult to
assess experimentally.
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I. INTRODUCTION

Transition metal carbides (TMCs) are one class of ultra-
high-temperature ceramics (UHTCs), which are known for
their high melting temperature, high hardness, and moderate
oxidation resistance. In this class of materials, strong metal-
metal bonds form between the transition metals as well as
strong covalent bonds between the metal and carbon atoms
which enhances the materials’ structural and thermal stabil-
ity at high temperatures [1]. The applications of TMCs are
widespread and include wear resistant parts, thermal barrier
coatings, cutting tools, and applications in nuclear energy [2].
However, when these materials experience significant loads at
temperatures roughly above half their melting temperatures,
they undergo classic creep deformation. Under an applied
stress σ , the steady-state creep strain rate can be described
by [3]:

ε̇ = Cσ m exp

(
− Qc

kBT

)
, (1)

where ε̇ is the creep strain rate, C is a material-dependent
constant, m is the stress exponent, and Qc is the activation
energy for creep which is often equal to the activation energy
for self-diffusion. Thus, understanding the activation energy
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and diffusion mechanisms in the transition metal carbides is
paramount in understanding their deformation mechanisms at
extreme temperatures.

While there are a number of studies regarding the high tem-
perature deformation of the TMCs, there are a limited number
regarding the identification of their specific creep mecha-
nisms. Chermant et al. [4] conducted three point bend tests on
TiC in the range of 1673 ∼ 2273 K and found the activation
energy in the lower temperature range to be 5 eV, which was
attributed to carbon (C) diffusion, and an activation energy of
7 eV in the upper temperature range, which was attributed to
vacancy assisted mass (titanium) diffusion. Kim et al. [5] stud-
ied low temperature creep in TaC0.99 between 1573 ∼ 1973 K
and reported the activation energy to be 4.3 eV, which was
attributed to C diffusion too. Steinitz [6] conducted tensile
tests of creep for TaC0.92–0.99 above 2300 K and found an acti-
vation energy much higher, 7.2 ± 1.3 eV, which he attributed
to tantalum (Ta) diffusion. Smith et al. [7] performed bending
creep tests of TaC0.98 between 2500 K to 2900 K and found
an activation energy of 9.81 ± 1.6 eV. In that same report,
using the same methodology, the authors found an activation
energy of 7.1 ± 0.6 eV for the creep of HfC0.98 between
2400 K and 2600 K. From these reports, creep in TMCs ex-
hibit two temperature dependent deformation regimes: A high
temperature regime presumably controlled by metal diffu-
sion and a low temperature regime presumably controlled by
C diffusion.
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As noted above, the deformation mechanisms in the group
IVB and VB carbides are often attributed to either carbon (C)
or metal (Me) atom diffusion, depending on the temperature
range. The activation energies of C diffusion in these two
groups are reported between 2 ∼ 5 eV with a summary found
in Ref. [8]. Here, we will specifically review the findings
for TiC and TaC, the two compounds directly studied in this
paper. For C diffusion in TiC, Sarian [9] used the isotope
tracer method to measure the activation energy of TiC0.97

and TiC0.887 between 1723 ∼ 2553 K and found activation
energies of 4.094 ± 0.030 eV and 4.588 ± 0.026 eV, respec-
tively. Eremeev et al. [10], using the same methods, measured
the activation energy for C diffusion to be 1.152 ± 0.031 eV
for TiC0.4 between 2050 ∼ 2380 K. van Loo et al. [11] ex-
panded these carbon activation studies over a wide range of
stoichiometries in TiC1−y, where y = 0.03 ∼ 0.5, using the
diffusion-couple method. They noted that the diffusion coef-
ficient depended on the vacancy concentration and reported
an activation energy for C diffusion to be 3.115 ± 0.312 eV
for temperatures between 1473 ∼ 2023 K. For titanium (Ti)
diffusion, Sarian [12] again used the isotope tracer method
and reported an activation energy of 7.578 ± 0.155 eV for
TiC0.67–0.97 in the temperature range of 2193 ∼ 2488 K.

The self-diffusion of C in TaC has primarily been studied
by measuring the growth rates of the carbide layers to estimate
the diffusivities of C in TaC and Ta2C [13–15]. The reported
values are therefore an average over TaC’s composition range
with reported activation energies of 3.9 eV [13], 3.7 eV [14],
4.3 eV [13], and 3.7 eV [15]. The authors are not aware of
any measurements of Ta diffusion in TaC but do note that
the activation energy for niobium (Nb) diffusion in NbC is
6.1 ± 0.1 eV [16]. While one should not assume the diffusion
of Nb in NbC is the same as Ta in TaC, it does provide
evidence that the activation energy for Me diffusion in the
group VB carbides is substantially higher than that for C diffu-
sion and similar to other high temperature activation energies
for creep.

There have been more recent efforts made to obtain the
activation energy for Me and C self-diffusion in TMCs from
simulations. In these modeling approaches, the activation en-
ergy for self-diffusion is reported as the sum of the vacancy
formation energy, Ev f , and the vacancy migration energy, Evm,
as determined from ab initio methods. Yu et al. [17] computed
activation energies for C diffusion using density functional
theory (DFT) [18] in all the group IVB and VB TMCs, report-
ing values of 4.1 eV in TiC and 4.3 eV in TaC. Råsander et al.
[19] performed calculations of the C vacancy formation and
migration energy in TiC and reported the activation energy
for C diffusion to be about 4.3 eV. Razumovskiy et al. [20]
computed the activation energy of Me diffusion for a single
Me vacancy in TiC and ZrC and noted the activation energy
for Ti self-diffusion was about 13 eV. The authors further
pointed out that the activation energy for C diffusion agreed
with experiments but that the activation energy for Me diffu-
sion was quite high compared to prior experiment findings.

This disagreement with the experimentally measured ac-
tivation energy for Ti diffusion in TiC has led to a few
investigations into how Me atom diffusion might occur in
these transition metal carbides. Notably, Razumovskiy et al.
[21] have proposed a vacancy clustering mechanism whereby

the Ti atom vacancy is surrounded by a cluster of C va-
cancies that ranges from 1 to 6. They pointed out that the
C vacancy cluster helps to substantially lower the vacancy
formation energy of the Ti atom and, by adding the formation
and migration energy, found that the lowest activation energy
(6.83 eV) is associated with the Ti vacancy surrounded by 6 C
vacancies. They conclude that this clustering mechanism is
likely responsible for Me atom diffusion in TMCs. In contrast,
Sun et al. [22] recently proposed a mechanism by which Ti
interstitials surrounded by two C vacancies can also result
in mass diffusion and has a combined activation energy of
7.28 eV. Because of the closer agreement of the activation
energy with experiments, they concluded that this must be the
mechanism.

While both of these studies propose new and important
mechanisms, they each are limited to a small number of
microstates and the activation energy associated with that
microstate. Actual mass diffusion in TMCs should occur via
random motion and is unlikely to be associated with a single
microstate studied in DFT. It is unclear how important single
microstrates contribute to the experimentally measured acti-
vation energies. Furthermore, all of the studies to date have
focused on TiC and thus are only applicable to the group IVB
carbides, despite the claim that they are general [21]. It is
well known that the group VB and IVB carbides actually have
differences in bonding that results in differences in stacking
faults energies and slip planes [23,24] as well as differences in
the phases that they form [25,26]. Therefore, we do not expect
that the metal atom diffusion processes in the two groups
should be the same.

The purpose of the current work is to gain insight into
vacancy mobility in two bulk transition metal carbides, TiC
and TaC, from statistical studies on nearly stoichiometric
TMCs (Me1−xC1−y). This report consists of two parts: DFT
calculations and Monte Carlo (MC) simulations. In the first
part of this work, we use DFT to compute a large number of
microstates of various Me-nC vacancy clusters to determine
the vacancy formation energy, Ev f , of these clusters. Addi-
tionally, DFT simulations are utilized to compute the energy
barrier for vacancy migration. In the second part of the paper,
we use Monte Carlo simulations with the Metropolis-Hasting
algorithm [27,28] (MMC) to estimate the average vacancy
formation energies and kinetic Monte Carlo [29] (kMC) sim-
ulations to determine the average vacancy migration barriers
for experimentally relevant temperatures between 2000 K to
2800 K. The MMC simulations provide not only the average
vacancy formation energies but also the distribution of the
fraction of each type of vacancy cluster. Similarly, kMC not
only provides average migration energy values but also insight
into exactly how these clusters move in the solid. Collectively,
these results demonstrate that TiC does indeed diffuse by
a cluster mechanism with a Ti vacancy surrounded by four
or five C vacancies, while TaC moves primarily as a bound
divacancy.

II. METHODOLOGY

From the perspective of vacancy assisted atomic diffusion
[30], diffusion requires both sufficient thermal energy such
that a sufficient number of vacancies are present for mass
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diffusion as well as to overcome the energy barrier, �gvm, for
migration. In thermal equilibrium, atoms in a crystal vibrate
and possibly move to their adjacent vacant sites at a frequency
ν0 in an attempt to overcome the diffusion migration energy
barrier. The rate of overcoming the energy barrier and the
probability of having a vacancy next to it both follow the
Boltzmann distribution at constant temperature and thus tra-
ditionally we add the migration energy barrier, �gvm, to the
vacancy formation energy, �gv f . Therefore, the self-diffusion
coefficient via the vacancy mechanism is typically written as:

D = zν0d2

6
exp

(
−�gv f + �gvm

kBT

)
, (2)

where d is the jump distance, which is usually the nearest-
neighbor distance, and z is the number of nearest-neighbor
sites. From thermodynamics, we can write �g = �h − T �s,
which allows the diffusion coefficient to be rewritten as:

D = D0 exp

(
− Qa

kBT

)
, D0 = zν0d2

6
exp

(
�sv f + �svm

kB

)
,

(3)

where Qa = �hv f + �hvm is the activation enthalpy for va-
cancy diffusion and D0 is the diffusion coefficient pre-factor.
Therefore, if we can obtain the ensemble average of the va-
cancy formation energy, 〈Ev f 〉, and the vacancy migration
energy, 〈Evm〉, from atomic-level simulations, we can approx-
imate the value of the activation enthalpy. Here, we develop
several models based on energies and jump frequencies ob-
tained from DFT calculations to carry out our MMC and kMC
simulations, all of which will be described below.

A. DFT calculations of formation energies

In order to calculate the total energies of the defected mi-
crostates, we performed DFT calculations using a plane wave
basis and projected-augmented-wave (PAW) [31,32] pseu-
dopotentials as implemented in the Vienna ab initio simulation
package (VASP). The exchange correlation energies were
computed via the generalized gradient approximation (GGA)
[33] using the formulation of Perdew-Burke-Ernzerhof (PBE)
[34]. The cutoff energy and energy convergence criteria were
chosen to be 450 eV and 10−5 eV, respectively. The k-point
density was chosen to be 12 × 12 × 12 for the eight-atom
conventional unit cell of the B1 structure, the standard struc-
ture of TiC and TaC.

In order to assure our DFT simulation cells were suffi-
ciently large, we studied the defect formation energies, to be
defined below, as a function of the number of atoms in the
supercell. The supercells in our simulation were generated
as the repetition of both a conventional cell and a primitive
cell along three lattice vectors uniformly. An arbitrary Me
atom was removed in each of those supercells resulting in
our supercells containing 15, 31, 53, 63, 127, 215, and 249
atoms, respectively. The convergence test was based on the
energy difference between the single-point-defect structure
and its corresponding pure structure. These results show that
the energy difference converges within 0.1 eV for supercells
with 63 atoms or more. Therefore, for consistency in our
simulations and to allow for a margin of error, we selected
the supercell with 128 atoms generated from the 4 × 4 × 4

repetition of a primitive cell and a k-point integration scheme
of 5 × 5 × 5 to conduct all of our simulations.

The vacancy formation energy, Ev f , is the increase in en-
ergy of the system when an atom is removed from a lattice site
an placed into and equivalent site elsewhere in the crystal. We
can approximate the isolated vacancy formation energy, E iso

v f ,
in DFT, as:

E iso
v f (Me) = E [N − 1, 1, 0] + μ(Me) − E [N, 0, 0], (4)

E iso
v f (C) = E [N − 1, 0, 1] + μ(C) − E [N, 0, 0], (5)

where E represents the total energy of a microstate and μ

stands for the chemical potential. In this work, the nomen-
clature E [N − m − n, m, n] is used where N represents the
number of atoms in the pure structure, m is the number of
Me vacancies and n is the number of C vacancies. It is
noteworthy to mention that the ground-state energy computed
in VASP has an arbitrary zero-energy reference. To ensure
that the values reported in this paper have a physical mean-
ing, we subtract off the energies of the appropriate number
of isolated atoms (Me and C) from the VASP calculations.
Thus, the energies reported here are relative to all of the
atoms separated infinitely far apart and, for a perfect system,
represent the negative of the cohesive energy of the solid.
The chemical potential of metal (Me) and carbon (C) atoms
are defined as the derivative of the total energy for a system
with respect to the molar fraction of the component, which is
difficult to compute exactly in DFT. In this study, the chemical
potentials were computed from the linear regression on the
total energy for stoichiometric MeC, graphite, and the nearest
stable metal-rich carbide found in DFT [17] (i.e., Ti7C6 and
Ta6C5, respectively). The regression was done to ensure the
chemical potentials summed to the cohesive energy of the
stoichiometric MeC compound following what we have done
in previous studies [35,36]. The isolated vacancy formation
energies obtained in our calculations are close to previously
reported values [17,19,20] and are listed in Table V.

While the formation energy of a single defect is straight-
forward to calculate and use in the aforementioned diffusion
equations, it is less clear how this should be handled for va-
cancy clusters. Different methods in previous works [19–21]
have been introduced based on different interpretations. In
this work, we consider two different methods to approximate
the formation energy of a Me vacancy within a Me-nC va-
cancy cluster which we will describe below. First, consider
a microstate with m Me vacancies and n C vacancies as il-
lustrated in the middle frame of Fig. 1. The formation energy
of this microstate can be computed relative to a reference state
where vacancies are infinitely far away from each other, which
means the interaction between those vacancies is zero. The
energy of this reference state, which includes m Me and n C
vacancies, denoted as E∞[N − m − n, m, n], is:

E∞[N − m − n, m, n] = mE [N − 1, 1, 0] + nE [N − 1, 0, 1]

− (m + n − 1)E [N, 0, 0]. (6)

Now, if we remove a single Me vacancy, from this newly
bound state as shown in Fig. 1 and compute the total energy
as E [N − m − n − 1, m + 1, n], we can write the formation
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FIG. 1. The microscopic view for the Me vacancy formation
inside the microstate with m Me vacancies and n C vacancies: solid
blue and orange spheres stand for Me and C atoms, respectively,
while transparent blue and orange stand for Me and C vacancies,
respectively. The left frame illustrates the microstate with all isolated
m Me vacancies and n C vacancies. The middle frame represents the
microstate with a specific vacancies arrangement. The right frame
illustrates the formation of a Me vacancy from the microstate in the
middle frame.

energy of this defect in the cluster as:

EI
v f (Me|m, n) = E [N − m − n − 1, m + 1, n] + μ(Me)

− E∞[N − m − n, m, n]. (7)

This is similar to the method introduced in Ref. [21] but in
our case we have a well defined reference state (infinitely
separated vacancies). Thus, we can create a well defined
interpretation of this formation energy—it represents the
probability of finding the Me vacancy surrounded by other Me
and C vacancies relative to the structure with the same number
of noninteracting Me and C vacancies. However, these for-
mation energies are not useful in Monte Carlo simulations. In
each Monte Carlo step, the positions of atoms will be swapped
and we must have formation energies that are directly related
to the current configuration of the vacancies, not relative to
infinitely separated vacancies. Thus, we define a second for-
mation energy that is useful in MMC simulations as:

EII
v f (Me|m, n) = E [N − m − n − 1, m + 1, n] + μ(Me)

− E [N − m − n, m, n]. (8)

This is simply the difference between the atomic configura-
tions with and without a Me vacancy. In a similar way, the
vacancy formation energy of C in a cluster can be defined.

B. Models for the vacancy formation energy

To further investigate the vacancy-cluster formation in TiC
and TaC, the ensemble average of the Me vacancy formation
energy 〈Ev f (Me)〉 needs to be evaluated in MC simulations.
In order to obtain 〈Ev f (Me)〉, we need a model for the Me va-
cancy formation energy that includes the arrangement of other
existing vacancies. Thus, we developed a simple model, which
we named the nearest-neighbor model (NNM), to represent
the formation energies of simple vacancy clusters in hopes
that such a model is sufficient for ensemble averaging. In the
NNM, the Me vacancy formation energy depends on the num-
ber of C vacancies (n) in its nearest neighbor shell. The values
of EII

v f (Me) are computed from Eq. (8) using the definition II
because the NNM is employed in MC simulations. For those
Me-nC vacancy clusters that have more than one configuration

TABLE I. The metal (Me) vacancy formation energy as predicted
by our nearest-neighbor model (NNM) computed using both defini-
tion I and II. When n = 2, 3, 4, we used the the average value of Ev f

over all possible configurations. (All units are in eV.)

nC 0 1 2 3 4 5 6

EI
v f (Ti) 7.44 5.99 5.03 4.16 3.51 3.02 2.76

EII
v f (Ti) 7.44 5.99 4.72 3.74 2.35 1.03 0.05

EI
v f (Ta) 2.58 2.42 2.43 2.48 2.54 2.63 2.71

EII
v f (Ta) 2.58 2.42 2.26 2.00 1.57 0.95 0.20

(n = 2, 3, 4), the value used in the NNM is the average value
of Ev f (Me) over all possible configurations. Table I lists all
the values of EI

v f (Me) and EII
v f (Me) in the NNM for both TiC

and TaC.
The NNM may be very useful in determining the average

formation energy due to its simplicity, however it clearly
neglects interactions that could be important. To determine if
these neglected interactions are important, we also developed
a more complete model of the interaction energies of complex
C and Me vacancies configurations. The model we used is a
simple cluster expansion model (CEM) [37,38]. The CEM is
a common method to approximate the total energy of a crystal
in computational materials science [39,40]. However, instead
of developing the expansion around atoms, we built it upon
the configuration of vacancies. Furthermore, since it is easy
to write the energy of a set of vacancies that are isolated, we
built our cluster expansion around the vacancy binding energy
of a cluster of vacancies.

To this end, we introduce the total vacancy binding energy,
Evb, which is the energy increase associated with bringing all
of the vacancies from infinitely far away and binding them
into the current configuration. Using our notation, we can then
define this total vacancy binding energy as:

Evb = E [N − m − n, m, n] − E∞[N − m − n, m, n]. (9)

A negative Evb indicates that forming the cluster of bound
vacancies is energetically favorable. For example, the binding
energy between a Me and C vacancy can be computed by
setting m = 1 and n = 1, which we find directly from our
DFT calculations to be −1.45 eV in TiC and −0.16 eV in TaC
for the first shell Me-C vacancy pair, noted as Evb[(Me-C)1st].
The negative values of Evb[(Me-C)1st] do suggest a tendency
for vacancy aggregation of Me and C vacancies, however it is
important to note that the vacancy binding energy is indeed
microstate (configuration) dependent and we need a general
model that can account for all possible configurations.

In this work, the CEM is based on ideal vacancy positions
in the B1 structure for off-stoichiometric TiC and TaC. The
total interactions of the vacancies in a microstate described
by the CEM can be expressed as the combination of pairwise
interactions and many-body interactions, where many-body
interactions are corrections to the pairwise interactions. For
simplicity, we neglected most of the higher-order corrections
and only kept pairwise and three-body interactions. Since
the vacancy interaction energies decay relatively quickly, we
utilized a cutoff distance for both pairwise and three-body
interactions of

√
10a/2 to render all interactions finite.
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FIG. 2. In this work we used a cluster expansion to represent
the energy of the different microstates including both pairwise and
three body interactions as illustrated above. We illustrate some of the
pairwise interactions and all of the three body interactions used in our
cluster expansion. The blue and orange spheres represent Me and C
vacancies, respectively.

In the MeC B1 structure, there are three types of vacancy
pairs: Me-Me, C-C, and Me-C, which we denote as Li, Mi,
and Ni, respectively, in our cluster expansion, as shown in
Fig. 2. The subscript i represents the vacancy pair with the
intervacancy distance

√
ia/2, where a is the lattice constant in

a conventional B1 unit cell. However, this means that, due to
the B1 structure, not all the indices are used. For Li and Mi,
i is an even number from 2 to 10. However, for Nj , j must
be odd (i.e., j = 1, 3, 5, 9). For the three-body interactions,
we chose to model vacancy configurations which consist of a
center vacancy and other two vacancies in its 1st shell, which
we denote Ti j . The first index symbolizes the four categories
of three-body interactions, Me-Me-Me, C-C-C, C-Me-C, and
Me-C-Me, while the second subscript represents the possible
spatial configurations. The first index ranges from 1 to 3 while
the second index ranges from 1 to 4 and the configurations are
illustrated in Fig. 2. Using the CEM, the total vacancy binding
energy Evb in a microstate is approximately:

Evb = ε0 +
∑

i

αiLi +
∑

i

βiMi +
∑

j

γ jNj +
3∑

l=1

4∑
k=1

δlkTlk,

(10)

where Greek letters α, β, γ , and δ represent the energy asso-
ciated to their corresponding vacancy configurations and the
parameter ε0 represents the total value of neglected higher-
order corrections.

The parameters in Eq. (10) can then be determined using
a standard fitting procedure to DFT data. We first calculated
the energy of 110 microstates with random vacancy con-
centrations and positions via DFT. Then, in each microstate
simulated in DFT, the vacancy binding energy Evb was com-
puted from Eq. (9). The best fit values of the constants were
then determined using a least-square fitting [41] procedure to
match the CEM predictions and DFT data. From the regres-
sion results, we computed the fitting residuals, the probability
value [42] (p value) of each parameter, the coefficient of
determination [43] (R2), and the adjusted coefficient of de-
termination [44] (R̄2). The probability value indicates the
validity of the prediction from a regression model. From the

FIG. 3. A histogram of the fitting residues (in eV) per vacancy:
(a) based on the energy of the microstates in TiC; (b) based on the
energy of the microstates in TaC. The blue bars represent the fitting
residues per vacancy from the least square fitting on all original 110
microstates and the red bars represent the fitting residues per vacancy
from the least square fitting of selected microstates. In the origi-
nal fittings, R2(TiC) = 0.957, R̄2(TiC) = 0.944, R2(TaC) = 0.951,
and R̄2(TaC) = 0.935. In the selective fittings, R2(TiC) = 0.998,
R̄2(TiC) = 0.997, R2(TaC) = 0.994, and R̄2(TaC) = 0.990.

original fitting on all 110 microstates, a few microstates have
large deviations, on a per-vacancy basis, from the regression
model, which are shown in Fig. 3. For some microstates, the
deviations in Evb per vacancy are larger than the uncertainty
in our DFT calculations (0.1 eV) which suggests a need to
re-evaluate the data used in our regression. After analyzing
our data, we found that the microstates with large deviations
in energy between the regression model and DFT data con-
tained large vacancy clusters consisting of more than three Me
vacancies and several C vacancies. The existence of a large va-
cancy cluster, especially a large number of Me atoms, causes
substantial local deformation so that both vacancies and atoms
move too far out of their perfect lattice sites. These large
displacements violate the CEM, which assumes ideal atomic
positions and explains the large model error. Therefore, we
chose to specifically exclude those microstates from our fitting
procedure. To obtain good statistical values of pairwise and
three-body vacancy interactions, we excluded microstates in
TiC with the deviations per vacancy larger than 0.1 eV from
the original fitting. Similarly, we excluded microstates in TaC
with the deviation per vacancy larger than 0.05 eV from the
original fitting. Then, we re-performed the least square fitting
procedure using Eq. (10) on these down-selected microstates.
The resulting new regression model of the vacancy binding
energy for TiC and TaC show improvements from the original
parametrizations based on the values of R2 and R̄2, which are
over 0.99 in the new parametrization. Fig. 3 shows that the
fitting residuals per vacancy from the new parametrization are
within 0.08 eV in TiC and within 0.04 eV for TaC, which also
indicates improvement.

The value and the corresponding p value of each parameter
in Eq. (10) are listed in Table II. These results indicate that
most of the fitted parameters have a confidence level of more
than 90%. For those parameters with p values larger than 5%,
their values are less than 0.05 eV, which is insignificant in the
calculation of the total vacancy binding energy. We also note
that values of ε0 are close to zero, as anticipated, and confirm
that our fitted microstates are indeed random and our fitting
procedure is robust. The values of γ1 can be interpreted as the
statistical average over all our configurations of the first shell
Me-C pairwise vacancy binding energy, which are close to
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TABLE II. The coefficients, Eq. (10) and Fig. 2, for our CEM
method obtained from the described fitting procedure (all units are
in eV) and the corresponding p values. Powers of 10 are enclosed in
brackets.

Parameter Value (TiC) p-value (TiC) Value (TaC) p-value (TaC)

ε0 −8.61[−2] 2.29[−1] 5.43[−2] 9.74[−2]
α2 2.17[−1] 2.08[−3] 8.89[−1] 1.03[−22]
α4 −4.76[−1] 3.97[−7] −3.14[−2] 2.93[−1]
α6 −1.06[−1] 5.65[−2] 2.35[−1] 8.92[−9]
α8 3.88[−2] 4.97[−2] 1.21[−1] 1.65[−2]
α10 −1.93[−1] 5.03[−3] −6.89[−2] 2.99[−2]
β2 2.03[−1] 7.17[−8] 1.53[−1] 8.82[−8]
β4 5.41[−1] 1.31[−19] 4.50[−1] 7.14[−18]
β6 −4.32[−2] 6.89[−2] −4.37[−2] 3.61[−3]
β8 2.50[−1] 1.01[−5] 1.47[−1] 2.77[−6]
β10 3.58[−2] 2.99[−1] 7.39[−3] 8.07[−1]
γ1 −1.29 4.89[−42] −1.69[−1] 1.17[−10]
γ3 4.37[−2] 9.55[−3] 1.85[−1] 5.14[−16]
γ5 −1.67[−1] 1.41[−5] 1.11[−2] 1.99[−2]
γ9 4.43[−2] 9.57[−2] −3.52[−2] 7.64[−2]
δ11 −5.23[−1] 4.52[−2] 7.98[−2] 1.67[−1]
δ12 −9.58[−1] 7.36[−3] 6.80[−2] 3.63[−2]
δ13 −1.67[−1] 3.31[−2] −1.58[−1] 2.96[−3]
δ14 −1.03 1.80[−6] −3.48[−2] 1.27[−1]
δ21 8.91[−2] 1.29[−3] −1.97[−2] 5.33[−1]
δ22 9.64[−3] 5.18[−1] −6.33[−2] 1.26[−2]
δ23 −2.41[−2] 6.95[−1] 5.97[−2] 9.58[−3]
δ24 −3.63[−1] 8.12[−3] −1.52[−1] 2.32[−3]
δ31 −7.16[−2] 2.21[−3] −1.91[−2] 9.77[−2]
δ32 −4.24[−1] 2.45[−6] −3.22[−1] 2.80[−8]
δ33 5.13[−2] 5.91[−1] −6.11[−3] 6.03[−28]
δ34 3.07[−1] 5.59[−4] 9.39[−3] 2.13[−2]

Evb[(Me-C)1st] obtained directly from our DFT calculations.
Similarly, the statistical values for the C-C pairwise vacancy
binding energy, β2, β4, and β6, in TiC are close to the reported
values in Razumovskiy’s work [21] demonstrating that our
model should correctly capture C-C vacancy repulsion. These
parameters also highlight the differences in vacancy clustering
between TiC and TaC. Specifically, the β2 term represents the
first shell C-C vacancy interaction, which is positive in both
materials and therefore repulsive, but when compared to the
nearest-neighbor Me-C interaction, γ1, we can see this value
is relatively smaller in TiC than in TaC. This means that, in
TiC, it will be much easier for the Me-C vacancy attraction
to overcome the C-C vacancy repulsion, allowing a stronger
tendency for vacancy agglomeration. These differences in TiC
and TaC are quantitatively studied in our MC simulations as
described in the next section.

C. Configuration-dependent model for vacancy motion

The NNM and CEM models can be used to estimate the
formation energies of different vacancy microstates and a
similar model must be created for vacancy migration. This is
necessary because we must be able to estimate the migration
energy barrier of the vacancies for any configuration that
occurs during a kMC step. However, unlike vacancy forma-
tion energies, the computational setup and cost of vacancy

FIG. 4. The minimum energy path of a Ti vacancy migration in
a 128 lattice-site supercell. The blue circles are the energy values
directly computed from DFT and the maximum is the transition state
(TS) representing the migration energy barrier. The corresponding
initial, final, and transition states (a.k.a. the saddle point) are illus-
trated below the graph with the red arrow highlighting the migration
path. Nine images, in addition to the two ground states (GS), were
used to simulate the trajectory of the atoms.

migration barriers are both complicated and expensive, and
thus conducting a random sample is infeasible. Therefore, to
simplify our analysis, we consider only a limited number of
vacancy jumps for specific configurations which are reason-
ably justified as representative of the system.

Before introducing the more general model, it is first criti-
cal to explain how we computed the migration energy barriers,
Evm, using DFT. In this work, we used the nudged elastic
band (NEB) [45] method to locate the transition state along
the diffusion path on the energy potential surface between two
different microstates with the same number of atoms. Figure 4
shows an example of such a calculation where an isolated
Ti atom is moving to a vacancy in its nearest neighbor shell
along the path labeled with a red arrow. Along this path, we
generated nine microstates in addition to the end points, or
ground states (GS), using a linear interpolation scheme. The
initial path was then relaxed using the NEB method so that
the middle point converges on the transition state (TS) whose
value represents the migration energy barrier.

However, we know from prior work that the migration
barriers will vary with local atomic configuration, i.e., the
energy will vary depending on the microstates used as the
end points. Thus, we consider how this might happen for
the migration of vacancies in a Me-C divacancy pair because
the divacancy diffusion mechanism in TMCs is suggested
in both experimental and computational works [21,46] and
involves local atomic arrangement effects. A divacancy pair
consists of Me and C vacancy bound in their nearest neighbor
shells, which are circled in dashed lines as shown in Fig. 5.
For the Me vacancy migration, there are 12 possible positions
of the final state, which can be categorized into three inde-
pendent cases. With respect to the C vacancy in the divacancy
pair, the ending positions of the migrating Me vacancy are in
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FIG. 5. The migration barriers of the Me vacancy in a divacancy
pair. Vacancies in the divacancy pair are circled in dashed lines in
the atomic configuration shown on the left. There are three possible
ending points for the motion of a Me vacancy in a divacancy pair,
which are labeled 1 through 3. The labeling also corresponds to a the
motion of the coordination shell of the Me vacancy (after motion)
with respect to the C vacancy. Thus the label three means the Me
and C atom are in the third coordination shell after the migration.
The energy along these three different diffusion paths is also shown
with the blue curve for the migration from 1 → 1, red curve for the
migration from 1 → 2, and dashed green curve for the migration
from 1 → 3.

its first, second, and third shells, which are labeled with 1, 2,
and 3, respectively. Therefore, the Me vacancy in a divacancy
pair has three migrating paths, which are denoted as 1 → 1,
1 → 2, and 1 → 3.

We used the NEB method coupled with DFT to obtain the
energy-barrier curves for those three diffusion paths, which
are plotted relative to our reference energy E∞ defined in
Eq. (6). As shown in Fig. 5, the vacancy migration en-
ergy Evm(1 → 2) is close to Evm(1 → 3) but higher than
Evm(1 → 1). Similarly, we investigated the migration of the
C vacancy in a divacancy pair and found that the vacancy
migration energy Evm(C) in the diffusion path 1 → 1 is lower
than those in the paths 1 → 2 and 1 → 3.

Therefore, we developed the so-called divacancy model
(DM) for vacancy diffusion, in which the vacancy migration
energy depends on the existence of other vacancies in its
nearest neighbor shell. In the DM, the initial state and final
state are denoted as Y if vacancies exist in its nearest neighbor
and N if there is not. The migration of a vacancy is then cat-
egorized into four cases: YY, YN, NY, and NN. The vacancy
migration energy for those four cases were then computed
from DFT as:

EYY
vm = Evm(1 → 1), ENN

vm = E iso
vm, (11)

EY N
vm = [Evm(1 → 2) + Evm(1 → 3)]/2, (12)

ENY
vm = [Evm(2 → 1) + Evm(3 → 1)]/2. (13)

Table III lists values of the vacancy migration energy in the
divacancy model for TiC and TaC, which are used in kinetic
Monte Carlo simulations to compute the rate of every possible
vacancy jump in a bulk material.

In the paper by Razumovskiy et al. [21], the authors in-
troduced a coordinated vacancy cluster mechanism that we
have essentially reproduced here in our model. Those authors
illustrated how a 1Ti-6C vacancy cluster might migrate in a
coordinated fashion. Here, for illustrative purpose, we show
in Fig. 6 how a 1Ti-4C cluster might migrate, in a coordinated

TABLE III. The values of the vacancy migration energy in the
divacancy model (DM) (units in eV).

EYY
vm EY N

vm ENY
vm ENN

vm

Ti in TiC 3.95 5.39 3.96 5.40
C in TiC 2.31 3.58 2.15 3.79

Ta in TaC 3.98 5.35 5.19 5.31
C in TaC 3.82 3.73 3.56 4.00

fashion. However, we do not expect (and do not observe) these
mechanisms as they are neatly shown in Fig. 6 or in Razu-
movskiy et al. [21]. This is because in our kMC simulations,
as discussed below, the atoms that move are chosen at random
and not in pre-determined coordinated fashion. Compared to
metal vacancies, the lower migration energy of C vacancy and
the larger number of C vacancies result in most of the atomic
jumps being C atoms, which cause no net motion of the metal
vacancy.

D. The vacancy jump frequency

The vacancy formation and migration energies are critical
in understanding the self-diffusion problem, however it is
still important to provide a reasonable estimate of the jump
frequency ν0 for our kMC simulations to accurately predict
diffusion coefficients and activation energies. The vacancy
jump frequency can be evaluated most simply using harmonic
transition state theory (HTST) [47], which is based on the fre-
quencies of vibration at the GS and TS of the migration path.
These frequencies can be computed directly from the Hessian
matrices at these two points. At the ground state, eigenvalues
of the Hessian matrix have 3N − 3 real frequencies and three
rigid body modes corresponding to the translational motion of
the supercell. At the transition state, there is at least one nega-
tive eigenvalue of the Hessian matrix because the total energy
of the supercell is at a local maximum along the diffusion path
as shown in Fig. 4. Thus, for our supercells, there are 3N − 3
characteristic frequencies (νGS

i ) in the ground state and at most
3N − 4 characteristic frequencies (νT S

i ) at the transition state.
The vacancy jump frequency is then computed from

ν0 =
3N−3∏
i=1

νGS
i

/ 3N−4∏
i=1

νT S
i . (14)

FIG. 6. A schematic plot of vacancy migration in the 1Ti-4C
clusters. Subplots (a) and (b) represent two different initial con-
figurations of the 1Ti-4C vacancy cluster. The transparent spheres
represent the vacancies in the 1Ti-4C cluster. The numbers labeled
on vacancies indicate the cluster jump sequence.
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TABLE IV. The vacancy jump frequency computed from the
partial Hessian matrix as described in the text (units in THz).

No. of atoms N = 63 N = 127 N = 215

ν0(Ti) in TiC 10.39 11.69 11.52
ν0(C) in TiC 39.26 48.75 47.98
ν0(C)/ν0(Ti) 3.78 4.17 4.16

ν0(Ta) in TaC 4.36 3.63 3.51
ν0(C) in TaC 36.33 39.77 37.77
ν0(C)/ν0(Ta) 8.33 10.96 10.76

The calculation of the full Hessian is very expensive for
large supercells, which prohibits the necessary size conver-
gence studies to ensure accurate values of ν0. However,
Eq. (14) can be extended to evaluate ν0 from any partial Hes-
sian matrix which includes the motion of the migrating atom
and thus large supercells can be treated using the partial Hes-
sian technique [48]. Here, we computed the jump frequency
for single Me and C atoms as a function of supercell size for
N equals 63, 127, and 215 as shown in Table IV. The partial
Hessian used in our calculations only includes the motion of
the atom and thus is a 3 × 3 matrix, which is necessary to
prevent other negative frequencies which are associated with
the atom moving into the local tetrahedral interstice.

For our kMC simulations, we used the values of ν0 as
determined from the simulation cells with N = 215 atoms. It
is also interesting to note that the vibrations of the C atoms are
much higher than the Me atoms, as would be expected since
vibrational frequencies of harmonic oscillators scale inversely
with the square root of the mass: ω ∝ m−1/2. For comparison
with experiments, we estimated the vibrational frequencies of
TiC and TaC from ν0 as:

ν∗
0 (MeC) =

√
mMeν0(Me) + √

mCν0(C)√
mMe + √

mC
, (15)

which results in 23.6 THz and 10.5 THz for TiC and TaC,
respectively. This is consistent with the reported Debye fre-
quency from experiments [49]. This agreement is important
to note since the simplest approximation of ν0 is the Debye
frequency of the solid. However, HTST allows us to specify
the frequency of the Me and C atoms independently, which are
needed in out simulations given the substantial differences in
the masses of the elements and hence differences in their fre-
quencies. These values of ν0, along with the aforementioned
model of the migration energy barriers, allow us to conduct
kMC simulations.

E. Monte Carlo simulations

The methodology above provides all of the necessary
physical parameters to carry out the necessary Monte Carlo
simulations to extract average vacancy formation energies and
migration energies. To compute the average vacancy forma-
tion energies, we conducted Monte Carlo simulations using
the Metropolis-Hastings algorithm (MMC) of Me1−xC1−y

titanium and tantalum carbides. The Metropolis-Hasting al-
gorithm is a Markov chain Monte Carlo method [50], which

is used to obtain random samples from a large multidimen-
sional system. In a bulk material with many vacancies, the
total degrees of freedom is large and hence the implemen-
tation of the Metropolis-Hasting algorithm is appropriate. In
our MMC simulations, the simulated system is a bulk B1-
structured MeC material with a fixed Me and C vacancy
concentrations x and y. Each simulation is carried out at a
pre-determined temperature T that follows a standard MMC
set of steps. First, the initial configuration of the simulated
system is generated with a random vacancy distribution. Then,
all possible vacancy jumps are listed and a random number is
used to select one attempt. The energy change associated with
this attempt, �E , is evaluated using Eq. (9) in the CEM as
�E = Evb−new − Evb−old. Then �E is used to calculate the
acceptance probability of the attempt: ρ = exp(−�E/kBT ).
The attempt configuration is accepted if, after selecting a
random number u ∈ (0, 1), u > ρ and is rejected if u < ρ.
Once an attempt configuration is accepted, it becomes a new
initial configuration and above steps are repeated.

Our kMC model was developed to simulate the time re-
quired to diffuse vacancies in our B1 MeC structure. In this
model, we assume that only one vacancy can hop at a time
which can be represented by a Poisson process and directly
simulated using standard kMC methodologies. Initially, we
generate a bulk configuration of the Me1−xC1−y structure.
From this configuration, all of the possible jump mechanisms
and their energy barriers are enumerated using the aforemen-
tioned migration barrier models, i.e., the divacancy model
(DM) as shown in Table III. The rates of all possible vacancy
jumps are computed as:

ri = ν0 exp(−Evm/kBT ), (16)

where T is the constant simulated temperature and ν0 is the
appropriate vacancy jump frequency. The atomic migration
event is selected randomly from a list of all possible events,
each weighted by the rates at which the event can occur.
Specifically, a random number is generated, u1 ∈ (0, 1), and
multiplied by RN , which is the cumulative total rate of all
possible events. If u1RN falls in the range of (Rk−1, Rk], then
the kth event (jump) is carried out. Here, we are specifically
using the cumulative rate function Ri defined as:

Rj =
j∑
i

ri ( j = 1, 2, · · · N ). (17)

The time of this event is then calculated based on another
random number and the rate of the event as: �t = − ln u2/RN

where u2 ∈ (0, 1). Then, all of the possible jump possibilities
have to be regenerated and the process is repeated.

In order to ensure the current configuration is independent
of the initial configuration, we run a sufficient number of
kMC steps to ensure that, on average, each vacancy hops 60
times. From this new starting point, we computed the diffu-
sion coefficient using the Einstein diffusion equation [51]. For
example, consider a bulk MeC material with m Me vacancies
and n C vacancies where the ith Me vacancy with initial
coordinates (xi0, yi0, zi0) is located at (xi1, yi1, zi1) for time
t = t1. The average displacement and average distance of all
Me vacancies, noted as 〈R(Me)〉 and 〈R2(Me)〉, respectively,
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can then be calculated as:

�xi = xi1 − xi0, �zi = zi1 − zi0, �zi = zi1 − zi0,

〈R(Me)〉 = 1

m

√√√√(
m∑

i=1

�xi

)2

+
(

m∑
i=1

�yi

)2

+
(

m∑
i=1

�zi

)2

,

〈R2(Me)〉 = 1

m

m∑
i=1

(
�x2

i + �y2
i + �z2

i

)
. (18)

The diffusion coefficient of the Me vacancy D(Me) is then
obtained from the Einstein relation:

6D(Me)t1 = 〈R2(Me)〉. (19)

The diffusion coefficient of the C vacancies can then be
evaluated in a similar manner. The average value of D as
evaluated using ∼103 independent configurations generated
in the kMC simulations, which correspond to 10 different
simulations with 100 output steps for each simulation. Thus,
the average D of those configurations is associated with the
ensemble average of the vacancy migration energy, 〈Evm〉, via
the Arrehenius relation.

While the diffusion coefficient is the most important pa-
rameter computed from our kMC simulations, there are
several other parameters that will provide invaluable insight
into the diffusion of the C and Me vacancies. In kMC sim-
ulations of random walks, a scaling law is often used to
characterize the type of random walk [52] that occurs. In a
general random-walk process, the mean square displacement
(displacement dispersion), 〈�R2〉, is related to the number of
steps in the random walk Ns as follows:

〈�R2〉Ns = 〈R2〉Ns − 〈R〉2
Ns

, 〈�R2〉Ns ∝ N2ν
s . (20)

For an isotropic random walk, the exponent ν is about 0.5,
otherwise the random walk is directional. To understand if
our model results in a directional or isotropic random walk,
we computed the mean square displacement and exponent ν

from our kMC results. The other parameter computed during
our MC simulations is the Warren-Cowley short range order
(SRO) [53]. The SRO is a number from −1 to 1 which de-
scribes the local arrangement of atoms over a short distance,
or in this case, vacancies. In this study, there are two types of
vacancies: Me and C in a simulated system and thus we have
different types of SRO. The short range order of the Me-C
vacancies, denoted as SRO(C|Me), indicates the likelihood
of the occurrence of C vacancies in the nearest neighbor of
Me vacancies. In a configuration with a random distribution
of vacancies, short range order is zero. A negative value of
SRO(C|Me) suggests a tendency for C vacancies to migrate
away from Me vacancies, whereas a positive SRO suggests
a tendency to form Me-nC vacancy clusters. The SRO will
provide quantitative assessments of the cluster mechanism
and if or how it migrates through the lattice.

In both the MMC and kMC simulations, we chose to
simulate 20 × 20 × 20 repetitions of the conventional B1
unit cell with a total of 64 000 lattice sites. To understand
compositional affects on our results, we simulated a bulk
nonstoichiometric carbide Me1−xC1−y with the Me vacancy
concentration x varying from 0.002 to 0.006 (0.2% ∼ 0.6%)
and the C vacancy concentration y from 0.01 to 0.06 (1% ∼

TABLE V. The formation energy and migration energy for an
isolated vacancy in TiC and TaC.

Ti in TiC C in TiC Ta in TaC C in TaC

E iso
v f (eV) 7.44 0.15 2.57 0.21

E iso
vm (eV) 5.40 3.79 5.31 4.00

6%). In all of our simulations, we chose the C vacancy
concentration to be much larger than the Me vacancy concen-
tration due to the substantial difference in vacancy formation
energies and the fact that the carbides have a wide stoichiom-
etry range including up to 50% vacancies in TiC. In the MMC
and kMC simulations, each output configuration used for
analysis was generated from a previous output configuration
only after an average of 60 jumps per vacancy. For each bulk
MeC simulation with a fixed vacancy concentration, 10 initial
configurations were generated using different random seeds.
Starting from each initial configuration, Monte Carlo simu-
lations were carried out at a specific simulated temperature
ranging from 2000 K to 2800 K in increments of 50 K. In
each MMC run, a total of 105 output configurations were gen-
erated while a total 102 output configurations were generated
for each kMC run. We ultimately have fewer kMC outputs
due to the time it takes to generate the average 60 hops per
Me vacancy in the kMC algorithm. The choice of these pa-
rameters, including the statistical justifications, can be found
in the Appendix. The computer codes for MMC and kMC
simulations in our study were written in FORTRAN 90 and
run on linux workstations. To visualized and better understand
the random vacancy hops in our kMC simulations, please
refer to the supplemental video [54]. In order to ensure the
viewer can see the vacancy migration clearly, in this video the
simulated system only has 512 atomic sites with 1 Ti vacancy
and 8 C vacancies, which is approximately 102 smaller than
the simulated systems used in the analysis of this paper.

III. RESULTS AND DISCUSSION

Prior to discussing the results of our MMC and kMC sim-
ulations and the resulting ensemble averages of the formation
and migration energies, it is informative to re-examine some
of the results for specific microstates as they provide direct
insight into the differences between TiC and TaC. Specifically,
the values for isolated atom migration, both Me and C, are
listed in Table V as obtained from our DFT simulations. These
results verify that the activation energy of Me self-diffusion
is much higher than that of C self-diffusion and thus Me
self-diffusion is the rate limiting step in mass diffusion unless
some type of cluster mechanism operates. It is worth pointing
out that the activation energy for Ti self-diffusion is 12.84 eV,
which is much higher than experimental data [12] as has been
previously pointed and discussed in other works [20,21]. It is
also worth noting that using this methodology, the activation
energy for the self-diffusion of Ta atom is 7.88 eV, which is
not particularly high when compared to experimental results
of creep in TaC and much lower than that of TiC, suggesting
that perhaps our hypothesis of differences between the group
IVB and VB carbides is indeed correct.
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FIG. 7. The vacancy formation energy of Me atom as a function
of the number n of nearest neighbor C vacancies. The Me vacancy is
the transparent blue sphere that is enclosed in a dashed line and the
potential C vacancies in its nearest neighbor are labeled 1 ∼ 6. The
values of EI

v f , definition I, are computed from Eq. (7) and plotted in
blue squares while those with definition II are plotted in red circles.
Note that for the number of C vacancies being 2, 3, and 4, the data
points are the average of all possible microstates.

Razumovskiy et al. [21] suggested that the activation en-
ergy for Ti self-diffusion can be lowered when Ti vacancies
are surrounded by C vacancies, forming vacancy clusters.
To verify that our models are consistent with Razumovskiy
et al. and to provide a better understanding of the vacancy
clustering mechanism, we computed the formation energy of
a Me atom for both compounds, TiC and TaC, using both
of our definitions given above for EI

v f and EII
v f in a cluster

setting. The results of our calculations, plotted as a function
of C vacancies surrounding the Me vacancy, are shown in
Fig. 7 where each data point is an average of all possible
microstates. If we consider our definition I, which is consistent
with Razumovskiy et al. [21], we see that the formation energy
of the Ti vacancy with six C vacancies in its nearest neighbor
is 2.76 eV. However, the vacancy formation energy of Ta is
nearly independent of the number of C vacancies in its nearest
neighbor. This suggests that the vacancy-cluster mechanism in
TaC is not particularly energetically favorable, supporting our
hypothesis of differences in the two compounds. Our results
for definition II, which is used in our MMC simulations, are
shown alongside this data to demonstrate the differences in
the two definitions.

The formation of a single metal vacancy in TiC, which
presumably has a stronger overlap of the metal and carbon
electron clouds, requires more energy to redistribute these
bonds when the metal atom is removed. This leads to a higher
metal vacancy formation energy for a single Ti vacancy, as
shown in Table V. Similarly, the formation of isolated metal
and carbon vacancies requires more energy to redistribute the
overlapped electron clouds as compared to the formation of a
bound metal-carbon vacancy pair. This is because in the bound
vacancy pair, some of those bonds no longer exist and thus do
no not require energy to rearrange. Since this redistribution
is costlier in TiC, the binding energy of a metal and carbon
vacancy is larger in magnitude in TiC than it is in TaC. This
provides further evidence that the bonds in TiC are more
directional in nature than in TaC, which is consistent with
findings in our previous work [17,23,55] comparing these two
systems in other contexts.

A. Ensemble average of the Me vacancy formation energy

In order to evaluate the ensemble average of the vacancy
formation energy, 〈Ev f 〉, MMC simulations were carried out

FIG. 8. The ensemble average of the Me vacancy formation en-
ergy from the MMC simulations at different temperatures: The blue
markers denote 〈Ev f (Me)〉 values evaluated using the nearest neigh-
bor model while the red markers denote 〈Ev f (Me)〉 evaluated using
the cluster expansion method. (a) 〈Ev f (Ti)〉 in TiC0.97; (b) 〈Ev f (Ta)〉
in TaC0.97.

in the canonical ensemble, NVT, at different constant temper-
atures T without any Me vacancies to sample all potential Me
vacancy sites in the presence of C vacancies. As the formation
energy has the potential, due to clustering, to depend on the C
concentration, we examined different C concentrations, i.e.,
MeC1−y as a function of y up to 0.06 (6%). The Me vacancy
formation energy can be computed as an ensemble average:

〈Ev f (Me)〉 =
∑nout

i=1

∑N/2
j=1 Ev f (Me)e−Ev f (Me)/kBT∑nout

i=1

∑N/2
j=1 e−Ev f (Me)/kBT

, (21)

where N is the total number of lattice sites and nout is the total
number of output configurations from the MMC simulations.
The denominator in Eq. (21) represents the total probabil-
ity of forming the Me vacancy at all Me atom positions,
which is the partition function. We evaluated Ev f at each
Me atom position using two different models: the nearest-
neighbor model (NNM) and the cluster expansion method
(CEM). Using the NNM, the value of Ev f (Me) at the specific
position was chosen from Table II by only taking the number
of C vacancies in its nearest neighbor shell into consideration.
Using the CEM, Ev f (Me) was computed from Eq. (8), in
which the energy of microstates E [N − m − n − 1, m + 1, n]
and E [N − m − n, m, n] was evaluated by summing over local
vacancy configurations as shown in Fig. 2.

The temperature dependence of 〈Ev f (Me)〉 as computed by
both our models is shown in Fig. 8 for both TiC and TaC.
In TaC, we can see that both models are in close agreement
and do not depend on temperature. The slight differences
observed here are due to the different energetics produced by
both models and are very close to the formation energy of an
isolated Ta vacancy, but that is not a particularly meaningful
statement due to the flat nature of the formation energy curve
with respect to the number of bound C vacancies.

The case of Ti is much more interesting. First, we note
there is a larger difference between the magnitude of the
formation energies predicted by the NNM and CEM models.
Second, we note that the CEM model exhibits temperature
dependent vacancy formation energies such that the forma-
tion energy decreases with increasing temperatures, while the
NNM has no temperature dependence. This difference origi-
nates in how the models handle C-C vacancy-pair repulsion.
The CEM model demonstrates, as does the C-C vacancy bind-
ing energies computed previously [21], that the C vacancies
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FIG. 9. The ensemble average of the Me vacancy formation en-
ergy from the MMC simulations in MeC with different C-vacancy
concentrations: The blue makers denote 〈Ev f (Me)〉 evaluated using
the nearest neighbor model while the red markers denote 〈Ev f (Me)〉
evaluated using the cluster expansion method. The values in all
cases are then averaged over the whole investigated temperature
range (2000 ∼ 2800 K). (a) 〈Ev f (Ti)〉 in TiC1−y and (b) 〈Ev f (Ta)〉
in TaC1−y.

are generally repulsive in the absence of Ti vacancies. Thus,
at higher temperatures, entropy allows for a higher probability
of forming C vacancy clusters in which a Ti vacancy can form.
This, in turn, lowers the vacancy formation energy giving rise
to the temperature dependence observed in Fig. 8. When com-
puting 〈Ev f 〉 at every Me atom position, these C-C interactions
are included in the CEM model and absent in the NNM model,
and thus the CEM has a temperature dependence whereas the
NNM does not.

Figure 9 shows the values of 〈Ev f (Me)〉 averaged over
temperatures from 2000 K to 2800 K as a function of C con-
centration for both TiC and TaC. The Me vacancy formation
energy decreases steeply in the TiC between 0.5% and 2%
(y = 0.005 ∼ 0.02) and then decreases at a nearly constant
rate of 0.6 eV between 2% and 6% (y = 0.02 ∼ 0.06). The Me
vacancy formation energy in TaC shows a more constant and
shallower decrease in formation energy over all of the simu-
lated composition range. This can be attributed to the lower
binding energy of vacancies in TaC as previously discussed.
While our simulations do not extend beyond y = 0.06, we
suspect that 〈Ev f (Me)〉 will gradually decrease towards the
minimum value in Table II, definition I, which is 2.76 eV
in TiC and 2.42 eV in TaC near the lower limit of their ex-
perimental composition ranges. The composition effect arises
from the larger number of C vacancies present in the system,
which increase the probability of the C atoms clustering and
thus lower the Me vacancy formation energy. To facilitate
direct comparisons with experimental data, we extracted the
Me vacancy formation energy at the MeC0.97 composition,
which are: 〈Ev f (Ti)〉 = 3.87 eV and 〈Ev f (Ta)〉 = 2.56 eV,
which again are an average between 2000 K and 2800 K.

B. Formation of Me-nC vacancy clusters

The ensemble average of the vacancy formation energy
described above was computed in the absence of Me vacancies
because we expect that, due to their high formation energies,
statistically they should be absent. However, this approach
does not provide insights into the average cluster size that
should be present during migration. To provide further insight
into this phenomena, we conducted MMC simulations for

FIG. 10. The fraction of Me-nC vacancy clusters that form in the
MMC simulations at 2800 K using the cluster expansion method,
illustrating the effect of the percentage of Me vacancies on the types
of cluster that form. The blue bars represent the fraction of the
vacancy clusters that form in Me1−xC0.97 with a random distribution
of vacancies. The red bars represent the fraction of the vacancy
clusters that form in Me0.998C0.97 from our MMC simulations. The
green bars represent the fraction of the vacancy clusters that form in
Me0.995C0.97 from our MMC simulations. This is shown for (a) Ti-nC
and (b) Ta-nC vacancy-cluster formation.

Me1−xC1−y compositions in which we have a finite number
of Me and C vacancies.

For a random distribution of vacancies, which is the same
as a system with zero binding energy between all the vacan-
cies, the probability of forming a Me-nC vacancy cluster is
C(6, n)yn(1 − y)6−n, where C denotes the number of combi-
nations. This distribution is shown in Figs. 10 and 11 as the
blue bars for Me1−xC0.97 compositions, which demonstrates
that the most probable configuration is the unclustered Me
vacancy with n = 0. Figure 10 shows the distributions that
result from running our MMC code at 2800 K for TiC and TaC
at two different compositions, Me0.998C0.97 and Ti0.995C0.97.
The results for TaC at both compositions shows a nearly
random distribution, indicating only a slight tendency for
clustering. The fraction of clusters with n � 2 is less than 5%,
demonstrating that the distribution is essentially unaffected by
the number of Me vacancies. The increase in the number of
Ta-1C clusters relative to the random distribution is related to
the small binding energy of Ta and C vacancies in the nearest
neighbor shell.

FIG. 11. The fraction of Me-nC vacancy clusters that form in
MMC simulations for Me0.995C0.97 using CEM (cluster expansion
method) at different temperatures. The blue bars represent the frac-
tion of the vacancy clusters that would form in Me1−xC0.97 with a
random vacancy distribution. The red bars represent the fraction of
the vacancy clusters that form during our simulations at 2000 K and
the green bars represent the fraction of the vacancy clusters that form
at 2800 K. This is shown for (a) Ti-nC vacancy-cluster formation and
(b) Ta-nC vacancy-cluster formation.
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Contrary to the case in TaC, we do see obvious evidence of
clustering in TiC as a result of the high Me-C vacancy binding
energy (−1.29 eV) and the continual decrease in formation
energy with cluster size shown in Fig. 7. In Ti1−xC0.97, about
90% of the Ti vacancies exist in Ti-4C and Ti-5C vacancy
clusters. When the concentration of Ti vacancies lies between
0.2% to 0.6% (x = 0.002 ∼ 0.006), the Ti-5C vacancy clus-
ter is the most probable state for a Ti vacancy as computed
from our MMC results. Above 0.6%, and up to our simulated
maximum of 3% Ti vacancies, the most probable location of a
Ti vacancy is in a Ti-4C vacancy cluster. This means that the
favorability of a Ti-nC cluster depends on the ratio between
the number of Ti vacancies and C vacancies. The more Me
vacancies, the less C vacancies surround them, which simply
reflects the number of C vacancies available to form a cluster.
However, the distribution of Ta-nC vacancy clusters does not
change with respect to the Ta vacancy concentration, which
is due the low favorability of forming vacancy clusters in
TaC. If we now consider a fixed composition Me0.995C0.97, the
formation of Me-nC vacancy clusters redistributes at higher
temperatures as shown in Fig. 11. This is indeed expected
since the acceptance rate in our MMC simulations obeys the
Boltzmann distribution.

Given the emphasis placed on the Ti-6C vacancy cluster
proposed by Ref. [21], we now turn our attention to this
cluster in the context of our MMC results. All our simulations,
for Ti1−xC1−y with x = 0.002 ∼ 0.03 and y = 0.01 ∼ 0.06,
show that the probability of a Ti vacancy occurring in a Ti-6C
vacancy-cluster formation is less than 10−4. For example, in
Ti0.995C0.97, the ratio of the number of Ti vacancies and that
of C vacancies is 1:6 providing ample number of C vacancies
for which to form Ti-6C vacancy clusters. However, from
our simulations at 2800 K, there are only 184 Ti-6C vacancy
clusters among the total 1.6 × 107 vacancy clusters in the
whole catalog of our simulation results. Thus, even when the
vacancy binding energy favors the formation of Ti-C vacancy
clusters, the probability of forming a Ti-6C vacancy cluster
in Ti1−xC1−y with x � 0.03 and y � 0.06 is negligible. This
suggests that the Ti-6C vacancy cluster proposed by Razu-
movskiy et al. [21] does not contribute to the migration of
Ti vacancy clusters in low C concentration titanium carbides.
However, we cannot rule out that it is important near composi-
tions of TiC0.5, but it appears irrelevant to the experimentally
measured Ti diffusion activation energies.

C. The vacancy migration energy

In order to investigate the migration of vacancies and com-
pute the ensemble average of the vacancy migration energy,
we conducted kMC simulations on TiC and TaC with both
Me and C vacancies, i.e., Me1−xC1−y with y = 0.03 and x =
0.002 ∼ 0.006. Example diffusivity plots from our simula-
tions are shown in Fig. 12 for Ti and C migration in TiC
as well as Ta and C migration in TaC. Since the diffusivity
is related to the ensemble average of the migration energy
through the Arrhenius relation:

D ∝ exp(−〈Evm〉/kBT ), (22)

the migration energies can be extracted from a linear regres-
sion of the semilog plots shown in Fig. 12. In addition to

FIG. 12. Semilog plots of diffusion coefficients versus tempera-
tures from the kMC simulations of Me0.995C0.97. The blue markers
are the data obtained from the kMC simulations and the red lines
represents the linear regression curve. In the subplots, the SRO(C|Ta)
parameters at temperatures from 2000 K to 2800 K are shown. This
is for: (a) Ti diffusion in TiC, (b) C diffusion in TiC, (c) Ta diffusion
in TaC, (d) C diffusion in TaC.

the diffusivity, the subfigures in Fig. 12 show the associated
Warren-Cowley short range order parameter for C vacancies
with respect to Me vacancies, i.e., SRO(C|Me).

The data shown in Fig. 12 for the ensemble average of
the vacancy migration energies in Ti0.995C0.97 are 3.79 eV
and 4.17 eV for Ti and C, respectively, and 3.85 eV for Ta
and 4.04 eV for C in Ta0.995C0.97. Thus, we can see that
the migration energy barriers for both C and Me atoms of
the two TMCs are quite similar. However, we note that the
parameters SRO(C|Me) in the two materials are indeed dif-
ferent. The SRO(C|Me) for Ti vacancy migration is above
0.75, indicating that the Ti vacancies are surrounded by four
or five C vacancies and therefore consistent with our MMC
results. Of course, the SRO(C|Me) decreases with increasing
temperature, suggesting that with increasing temperature the
C vacancies are less likely to be tightly bound to the Ti
vacancy as already noted above.

We note that 〈Evm(Ti)〉 in TiC is 0.15 eV smaller than the
lowest Ti vacancy migration energy in the divacancy model
EYY

vm (Ti). This arises due to an uncertainty of 0.19 eV in the
linear regression, suggesting that the EYY

vm (Ti) barrier controls
Ti vacancy diffusion. Hence, this clearly demonstrates that Ti
vacancies move primarily when both its starting and ending
configuration have C vacancies. However, 〈Evm(C)〉 in TiC is
0.3 eV larger than the highest C vacancy migration energy
(larger than our fitting uncertainty) in the divacancy model
ENN (C). The reason is that the jumping rate of C vacancies is
much higher than that of Me vacancies. Therefore, once the
Ti-nC vacancy cluster forms, most of the C jumps are around
Ti vacancies and thus the C vacancy migration is constrained,
resulting in a higher effective activation energy. In contrast,
every jump of a Ti vacancy occurs in a cluster, and diffuses
randomly since there are many more C vacancies than Me
vacancies.
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FIG. 13. The ensemble average of the vacancy migration energy
for Me1−xC0.97 plotted as a function of the Me vacancy concentra-
tion x. The blue lines with markers denotes 〈Evm(Me)〉 and the red
line with markers denotes 〈Evm(C)〉. In the subplot, the values of
SRO(C|Me) are also plotted against the Me vacancy concentration
x. (a) in TiC; (b) in TaC.

In the case of TaC, the 〈Evm(Ta)〉 is similarly 0.13 eV
lower than the lowest Ta vacancy migration barrier EYY

vm (Ta),
but again is within our linear regression error. The migration
barrier for C in TaC is essentially the same as the largest C
vacancy migration barrier ENN

vm (C). The SRO(C|Me) for TaC
is positive but small, suggesting that most of the Ta vacancies
either have one or zero bound C vacancies. However, the low
activation energy in Ta vacancy migration suggests that they
move in a way that is coordinated by C vacancies. We interpret
these results to suggest that the Ta vacancy typically migrates
with one C vacancy in its nearest neighbor to another lattice
site with a nearest-neighbor C vacancy, but not in the way of
being surrounded by multiple C vacancies like in TiC.

We also studied the Me vacancy composition on the va-
cancy migration energy, 〈Evm〉, to ensure that our choice of
the number of Me vacancies is not affecting our results. The
vacancy migration energy, 〈Evm〉, was computed for different
values of x in the Me1−xC0.97 compounds from the linear
regression method shown in Fig. 12. This average migration
energy barrier and the average SRO(C|Me) for temperatures
from 2000 K to 2800 K are shown in Fig. 13. These results
indicate that 〈Evm(Me)〉 is independent of the Me vacancy
concentration in both TiC and TaC. In Ta1−xC0.97, both
〈Evm(Ta)〉 and 〈Evm(C)〉 do not depend on the Me vacancy
concentration because there is no aggregation of Ta and C
vacancies, which can also be explained from the values of
SRO(C|Ta). In Ti1−xC0.97, there is a slight dependence of
〈Evm(C)〉 on the Ti vacancy concentration, which increases
with increasing Ti vacancy concentration. In addition, there is
a corresponding decrease in SRO(C|Ti). We can attribute this
to the ratio of C vacancies to Ti vacancies. As we increase
the number of Ti vacancies, these vacancies should attract C
vacancies, reducing the coordination of Ti vacancies overall,
as seen in the SRO(C|Ti). This further constrains the motion of
the C atoms, which causes the C migration energy to increase
slightly.

To better understand the nature of the vacancy diffusion
mechanisms as random walks, we extracted the random walk
exponents for all four vacancy types: Ti and C in TiC and
Ta and C in TaC. The log-log plots of 〈�R〉 with respect to
the number of vacancy jumps N is shown in Fig. 14, where
〈�R〉 is the square root of the displacement dispersion in Eq.
(20): 〈�R〉 ≡ 〈�R2〉1/2. In all the cases, these results exhibit

FIG. 14. Log-log plots of 〈�R〉 versus N demonstrating the scal-
ing law in the kMC simulations of Me0.995C0.97 at 2800 K. (a) Ti
diffusion in TiC; (b) C diffusion in TiC; (c) Ta diffusion in TaC; (d) C
diffusion in TaC.

a linear relationship with a slope of ν, which was extracted
via linear regression, that varies between 0.48 and 0.52. This
means that both the Me vacancy migration and the C vacancy
migration are isotropic and random for both TiC and TaC,
irrespective of vacancy concentrations and temperatures. This
clearly demonstrates that the vacancy cluster motion mecha-
nism does not affect the isotropic nature of diffusion in these
materials.

D. Temperature effects on the activation energy
for the self-diffusion

In DFT calculations, the computed total energy for a mi-
crostate is an approximation of the many-body problem and
is formally evaluated at zero Kelvin. Thus, when the vacancy
formation energy and migration barriers are computed in DFT
as done here and in previous work, this activation energy,
Qa = Ev f + Evm, is similarly evaluated at zero Kelvin. How-
ever, in experiments the activation Gibbs free energy (Q∗

a)
is measured, which can be related to the value computed in
DFT as:

Q∗
a = Qa − T (�Sc f + �Svib + �Sel ) + p�V, (23)

where �Sel is the electronic entropy, �Sc f is the configura-
tional entropy, and �Svib is the vibrational entropy [56]. In this
study, the ensemble average of the vacancy formation energy
and migration energy were obtained using Monte Carlo sim-
ulations at different temperatures and therefore included the
effects of configurational entropy. Thus, there are three factors
that need further investigation: the electronic entropy �Sel ,
the entropy of phonons �Svib, and the thermal expansion
effects of the MeC compound, �V .

At a finite temperature, the electronic entropy has two
forms: the thermal smearing of electronic states around Fermi
level [57] and the configurational entropy associated with
the distribution of localized and unlocalized charges [58]. In
TiC and TaC, the electrons are localized to form covalent
bonds or covalent-metallic bonds. Previous studies on the
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TABLE VI. Values of the activation energy for the self-diffusion obtained in experiments (Expt.) and in Monte Carlo simulations (MC)
(units in eV).

TiC TaCa

Qa(Ti) Qa(C) Qa(Ta) Qa(C)

Expt. 7.58 ± 0.16b 4.09c(1.15 ∼ 4.59)d (3.69 − 4.34)e

MC 7.66 ± 0.19 4.32 ± 0.10 6.41 ± 0.15 4.38 ± 0.10

aNo experimental data found for the direct measurement of Qa(Ta) for the self-diffusion in TaC.
bTiC0.67−0.97 in 2193 ∼ 2488 K; Ref. [12].
cTiC0.97 in 1723 ∼ 2553 K; Ref. [9].
dTiC0.4−0.89; Ref. [10], Ref. [11].
eTaC1-y; Ref. [13]; Ref. [14]; Ref. [15].

band structure in TiC [59,60] and TaC [61] indicate that the
peaks are several eV below the Fermi level, which means the
number of states within ±kBT of the Fermi level are relatively
small. Therefore, the electronic entropy contributions to the
activation free energy in TiC and TaC should be negligible.

The entropy contribution due to phonons, �Svib, and
lattice thermal expansion, �V , can be evaluated using den-
sity functional perturbation theory [62,63]. Alternatively,
Razumovskiy et al. [21] performed finite temperature DFT
calculations of TiC and they found that, from 0 K to 2000 K,
the lattice constant change was less than 1% and the vibra-
tional entropy �Svib lowered the vacancy formation energy
only 0.12 eV, which is generally small comparable to Evm and
Ev f . Sun et al. [22] also performed the finite temperature DFT
calculations and came to the same conclusion. Therefore, all
three terms, �Svib, �Sel , and �V in Eq. (23), are negligible.
In other words, the ensemble average of the activation energy
〈Qa〉 = 〈Ev f 〉 + 〈Evm〉 in our work, which includes the con-
figurational entropy, should be a good approximation to the
experimental data.

To be consistent with experiments in TiC, we report the
average values of 〈Qa〉 in Me0.995C0.97 from 2000 K to 2800 K,
which are listed in Table VI. In these calculations, the vacancy
formation energy for an isolated C is used for 〈Ev f (C)〉. As
listed in Table V, the vacancy formation energy for an isolated
C is less than 0.2 eV, which is much smaller than the Me va-
cancy formation energy and therefore it is sufficient to assume
that the C atoms can spontaneously form in the calculation
of the Me vacancy formation energy. The uncertainties in the
reported activation energies come from convergence tests in
DFT and the fitting errors in the linear regression.

For TiC, we compare our simulation results to the listed
experimental data [9,12] of the self-diffusion activation en-
ergy since the temperature range and vacancy concentration
in those measurements are close to our simulation conditions.
Other reported experimental data for the self-diffusion Qa(C)
in TiC with higher C vacancy concentrations are mentioned
in parenthesis. For TaC, the data for the C self-diffusion acti-
vation energy are listed in parenthesis because the activation
energies are extracted from diffusion couples and represent
averages of the homogeneity range of B1 TaC1−y. Unfortu-
nately, there is no data on the self-diffusion of Ta in TaC.
Assuming the activation energy measured for creep at high

temperature is close to the activation energy for bulk diffu-
sion, we can refer to the experimental data obtained from the
tensile creep test [6], which is 7.2 ± 1.3 eV and close to our
simulation results of Qa(Ta). However, it is not as good an
agreement with the bending creep tests by Smith et al. [7], but
there is a lack of a direct physical link between the activation
energies extracted from those bending creep experiments and
the activation energy for diffusion and thus a disagreement is
understandable. Therefore, from Table VI, the activation en-
ergy for self-diffusion obtained in our statistical study shows
good agreement with experimental data.

Finally, it was suggested in a previous theoretical study
[64] that the activation energy for Ti self-diffusion decreases
as the C vacancy concentration increases, which is also
observed in our statistical results. However, this vacancy-
composition dependence of Qa(Ti) in TiC was not found in
experimental measurements [12,65] due to the large experi-
mental uncertainty.

IV. CONCLUSIONS

In this paper, the formation and migration of vacancies
in TiC and TaC were investigated at different scales, from
electronic structure calculations to Monte Carlo simulations.
Using the energetics parameterized from DFT, Monte Carlo
simulations were used to determine the ensemble averages of
the vacancy formation energy and vacancy migration energy.
These values were found to be in reasonable agreement with
experimental results.

Our DFT simulations demonstrate that the energetics of
vacancy formation in TiC and TaC are quite different. DFT
energetics suggest it is very difficult to form isolated Ti va-
cancies, but the vacancy formation energy for an isolated Ta
vacancy is considerably lower. In addition, we found that the
binding energy of C vacancies to Ti vacancies is quite high,
−1.45 eV, while the binding energy between a Ta and C va-
cancy is considerably lower, −0.16 eV. Similarly, the vacancy
formation energy of Me vacancies in both Ti-nC and Ta-nC
clusters were calculated confirming that the formation energy
for Ti vacancies decreases with the increasing number of
bound vacancies. We demonstrated that such a trend is nearly
absent in TaC. All of these DFT simulations demonstrate that
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TiC has a much stronger preference to form vacancy clusters
than TaC.

Our MMC simulations further provide evidence of the
nature of clustering in these two materials. The statistical
number of vacancies around both Ti and Ta vacancies were
computed at different compositions and temperatures with
the trends generally agreeing with our DFT simulations.
However, in this case we can directly determine the relative
probability of forming different cluster sizes. In TiC, we found
that most of the Ti vacancies are part of Ti-4C and Ti-5C
clusters, with so few Ti-6C clusters that they can be ignored.
This is in direct contrast to the importance of the Ti-6C cluster
put forth by Razumovskiy et al. [21] in which they proposed
this was the most important microstate. In the case of Ta
vacancies, our simulations demonstrate that these vacancies
tend to form either as isolated vacancies or as part of Ta-1C
bound divacancies.

The kMC simulations confirm our MMC results with re-
gards to the nature of C vacancy clusters in the migration of
Ti and Ta vacancies. The ensemble average migration energies
of the Me vacancy are associated with its migration in between
states that are both bound to C vacancies. In TiC, this is easily
achieved due to the large number of C vacancies in which it is
surrounded. However, this result for Ta vacancies suggest that
their motion is primarily coordinated by C vacancies as well
even if it is not surrounded by a large number of them. Thus
we can conclude that the isolated Ta vacancies, while more
prevalent, contribute less to the diffusion of Ta vacancies.
Finally, the values of the ensemble-average activation energy
〈Qa〉 obtained in our MC simulations include configurational
entropy and are close to experimental data in both TiC [9,12]
and TaC [5–7].
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APPENDIX: STATISTICAL REQUIREMENTS IN MONTE
CARLO SIMULATION

In any Monte Carlo simulation, the simulation should con-
verge to the correct statistical solution after sufficient, and
perhaps infinite, time. However, running Monte Carlo simula-
tions are computational expensive and therefore it is important
to reduce the number of samples down to those that correctly
represent the system response without excessive simulation
time. In this Appendix, we justify the values of our two MC
simulations.

First, it is important to ensure that the simulated cell sizes
in our simulations are of sufficient size. If we consider m
Me vacancies and n C vacancies in the B1 structure, the
statistical distribution of the vacancy displacements from their

initial configurations should be normally distributed with a
zero mean value as m diverges. However, in a system with
a finite number of vacancies, the distribution is defined by
the students t distribution [66]: t (m − 1). To correctly repro-
duce the normal distribution statistics, the number m must be
larger than 30 so that the students t distribution sufficiently
represents the normal distribution, which defines the smallest
acceptable simulations cell. Thus, our Monte Carlo simulation
cells at the smallest Me vacancy concentration must have at
least 30 vacancies.

Second, it is important to establish the number of Monte
Carlo steps necessary to take between each output step to
ensure that the configurations used in the analysis are in-
dependent. As noted in the methodology section, we chose
this output to occur after each vacancy moves 60 times (on
average). This criterion was chosen in order to ensure that
the binomial distribution, which represents the jump proba-
bility, converges to the normal distribution. To understand our
rationale, note that the ith vacancy can jump in one of 12
directions, which corresponds to all of the possible 〈110〉 di-
rections in the B1 structure. Since the jumps in each direction
are isotropic and independent, after nj jumps the displace-
ment in the jth direction, �Ri j , should satisfy the binomial
distribution [67] �Ri j ∼ B(n j, p) where p = 1/12. One widely
used convention that ensures the normal approximation of the
binomial distribution [68] B(n, p) is np � 5, which leads to
the requirement of n j � 60 for our 12 directions. Thus, we
chose to ensure that all of our vacancies have jumped at least
60 times to ensure we have achieved independent or random
atomic configurations in our MC simulations.

In our kMC simulations, the values of R2(Me) for all m Me
vacancies were computed in all of the output configurations,
nout, using Eq. (18), which satisfies the chi-square distribution
[69]: R2(Me) ∼ χ2(m). To obtain the vacancy migration en-
ergy, the diffusion coefficient D is computed from Eq. (19) as
the average in all nout configurations:

D(Me) = 1

nout

nout∑
k=1

〈R2(Me)〉k

6tk
. (A1)

Studies [68] show that the sample mean D(Me) converges
to the normal distributions when nout � 50, which sets
the minimum number of output configurations that can be
used.

As noted above, each independent configuration was gen-
erated after an average of 60 jumps per vacancy: n j = 60.
Thus, our MMC and kMC models used nout = 105 and nout =
102 in each run, respectively. Thus, both the parameters pa-
rameters n j and nout satisfy the statistical requirements for
the simulations in our study. Since nout is smaller in kMC
simulations, we observe larger deviations in 〈Evm〉 than that of
〈Ev f 〉. The simulated bulk material Me1−xC1−y has at least 64
vacancies when x = 0.2%, which is much larger than 30 we
established as a minimum. From the results of the scaling law,
we observe that the mean displacements for both Me and C
vacancies show little change during the simulations providing
further evidence that our choice of simulation parameters do
indeed meet the statistical requirements.
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