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Origins of the suppression of fibril formation in grafted methylcellulose solutions
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We utilize coarse-grained molecular-dynamics simulations to probe the influence of grafting on the confor-
mation and aggregation of methylcellulose chains in water, inspired by the recent experiments on solutions of
methylcellulose (MC) chains grafted with polyethylene glycol (PEG) that showed inhibition of methylcellulose
fibril formation at high PEG-grafting densities [S. Morozova et al., Macromolecules (Washington, DC, U. S.) 51,
9413 (2018)]. These simulations reveal three features of the grafted system that should frustrate fibril assembly.
First, multichain simulations indicate that the distance between the centers of mass of the chains increases at
high grafting densities, suggesting that the ability to form collapsed structures is disrupted. Second, single-chain
simulations using grafted MC show that the formation of the precursor toroidal structure responsible for fibril
formation is hampered at high grafting densities. Third, the frequency spectrum of conformational fluctuations
indicates that low-frequency modes dominate at higher grafting densities, suggesting a larger decorrelation time
in conformational fluctuations. Together, these results provide a macromolecular basis for the suppression in
fibril formation in grafted methylcellulose solutions for grafting densities exceeding approximately 10%.
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I. INTRODUCTION

Methylcellulose (MC) is a cellulose-based biopolymer
[1–6] that undergoes a lower critical solution temperature
(LCST) phase transition to form stable hydrogels when heated
above 50 ◦C [1–11]. This thermoreversible gelation property
of MC makes it an attractive candidate for applications in,
for example, food processing, concrete and pharmaceuticals
[8,12,13]. Recent works have gradually revealed the mech-
anism of gelation in MC solutions [14–17]. In particular,
Lodge, Bates and coworkers used cryo-transmission electron
micrography in conjunction with small angle neutron scat-
tering (SANS) to show that MC in water forms fibril-like
structures [16–19] of constant diameter (14 ± 1 nm) when
heated above their LCST [15–17]. In addition, small angle x-
ray scattering (SAXS) and SANS studies yielded two notable
results: (i) the composition of the fibrils is 60% water and
40% polymer by volume [6,15], and (ii) the fibril diameter
is independent of the temperature of formation, molecular
weight of MC, and the concentration of the solution [15,16].

The current simulation work is motivated by two recent ex-
periments: (i) Morozova and Lodge [20] used both static and
dynamic light scattering to show that the radius of gyration
of the polyethylene glycol (PEG) grafted polymer increased
with increasing grafting densities. Furthermore, they showed
that their results are consistent with theoretical predictions
for a grafted chain [21]. They attributed the increase in the
radius of gyration to the increased excluded volume repulsion
between the backbone MC chains owing to the presence of
the grafts [20]. (ii) When the MC backbone is grafted with
PEG, Morozova et al. [22] observed a systematic suppression
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of fibril formation with increasing grafting density. Using
atomic force microscopy and SAXS on PEG-grafted MC, they
showed that there exists a transition from anisotropic fibril-
like structures to isotropic structures with increasing number
of graft sites per MC chain [22]. They also demonstrated that
this transition occurred at lower grafting densities for higher
graft molecular weights. However, apart from experimental
speculations, the origins of the aforementioned observations
remain poorly understood.

It is reasonable to assume that the ability to form a fibril is
connected to the morphology of the PEG-grafted MC chains.
Several theoretical [21,23–27] and simulation works [28–48]
have investigated the influence of grafting on the statics of
linear grafted chains. Depending on the grafting density, linear
grafted chains can be classified into comb-like chains (low
grafting density) or bottlebrush chains (high grafting density)
[31,32,49]. Seminal works by Birshtien [23] and Fredrick-
son [21] showed the influence of steric hindrance on the
local structure and rigidity of an isolated chain using scaling
theories. Subsequently, Monte Carlo simulations aimed at
understanding the lyotropic behavior of bottlebrush chains
[41,47] in a dilute athermal solvent showed that the ratio
between the persistence length and the bottlebrush diameter
is (i) independent of the side-chain length, and (ii) increases
with increasing side-chain monomer volume. Effects of side
chain rigidity [26,39,40,42,45] and convex graft surfaces were
also investigated by using theory [50,51] and simulations
[37,38]. Recently, analytical theories and molecular-dynamics
simulations [30–32] in the context of grafted copolymers in
a melt delineated the influence of grafting on the overlap
between chains [31,32,49] and on the mechanical properties
[30] of the melt.

A few other simulation studies have focused on quan-
tifying the changes in shape (or conformation) of polymer
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backbone with grafting [36,52,53], but differ in important
ways from the grafted MC system considered in this work.
For example, simulation studies of flexible comb-copolymers
with attractive side-chain interactions showed that, for a long
backbone length, side chains form spherical micelles with
the backbone wrapped around them [36]. This is somewhat
different than the PEG-grafted MC system, which comprises
a semiflexible backbone with backbone dihedral interactions
and flexible side chains. Furthermore, previous studies [36,52]
considered the backbone to be a homopolymer (comprised of
one interaction parameter) with excluded volume interactions,
whereas in our work, we consider the random copolymer
backbone with attractive interactions arising from the different
substitutions in MC [1,6]. Finally, while the previous study
pertained to understanding the coil-globule phase transition
[36], our effort lies in understanding the influence of grafting
on the ability to form fibril-like structures.

Motivated by the lack of a thorough understanding of the
influence of grafting on fibril formation in MC systems, we
use coarse-grained molecular-dynamics simulations to probe
the conformational changes in the MC backbone upon graft-
ing and the ability for multiple chains to aggregate in solution.
Theory and simulations in the context of bare MC chains
have furnished insights into the conformations [54–58], self-
assembly mechanisms [55–59], and stability [56,58,60,61] of
MC chains in solution. To understand the origins of suppres-
sion of fibril formation in grafted MC chains, we revisit the
necessary conditions for fibril formation in bare MC chains
above the LCST [58]: (i) presence of a precursor toroidal
structure, (ii) presence of conformational fluctuations, and
(iii) collapse into a continuous fibril-like structure. For the
latter, the centers of mass between chains must be be within
a minimum capture radius for a bare chain, so that thermal
fluctuations enable a growing fibril to engulf a free MC chain.

A plausible hypothesis for the suppression of fibril forma-
tion in the experiments of Morozova et al. [22] is that the
aforementioned conditions for fibril formation are violated
in a generic way by grafted MC systems, independent of
the particular physicochemical interactions of a MC-PEG
system. To this end, we performed coarse-grained simulations
of MC chains with flexible side chains. To generalize our
observations, we do not specifically examine PEG-grafted
MC. Instead, we utilize the model developed by Huang et al.
[56] for the MC backbone along with flexible grafts and
systematically vary the interactions between the backbone
and grafts to understand the influence of grafting on MC
systems.

II. SIMULATION DETAILS

A. Simulation setup

We employed coarse-grained molecular dynamics to ana-
lyze the conformations of PEG-grafted MC in solution. Sim-
ulations were performed by using the LAMMPS package [62].
The simulation setup and protocol are similar to our previous
work [58]. We focus here on the additions to the previous
methodology. For completeness, the rest of the simulation
protocol, including the details of the MC model of Huang et al.
[56], is relegated to Sec. S1 of the Supplemental Material [63].

FIG. 1. Schematic of a MC chain (blue) with “PEG-like” graft
monomers (green). Nonbonded interaction parameters between
graft-graft (εgg), graft-backbone (εbg), and backbone-backbone (εbb)
are depicted.

The grafting density � is defined as the ratio between the
number of graft points per chain to the number of backbone
monomers. � was varied between 0.01 and 0.3 for all the
systems studied. Graft sites along the backbone of the MC
chain were chosen at random. The degree of polymerization
of the graft (Ng) and the backbone (Nbb) were fixed at 25 and
1000, respectively. The ratio between the molecular weights
of MC and the grafts are similar to the lower molecular weight
graft experiments reported by Morozova et al. [20,22].

B. Interaction potentials

Figure 1 displays the schematic of a MC chain (blue) with
grafts (green) on its backbone. The bonded and nonbonded
interactions for the backbone are adapted from Ref. [56].
The bonded potential Ub between adjacent monomers of a
grafted chain as well as that between graft and backbone MC
monomer, was modeled by using a harmonic potential of the
form

Ub = kb(r − σ )2, (1)

where the stretching constant kb is set to 500kBT/σ 2.
Nonbonded interactions (Unb) between graft monomers as

well as between graft and backbone monomers are modeled
by using a 9-6 Lennard-Jones potential of the form

Unb =
{

4εi j

[( σi j

r

)9 − ( σi j

r

)6
]
, r < rc

0, r � rc,
(2)

where εi j , σi j , and rc correspond to the nonbonded interaction
parameter, average diameter and cutoff for interactions be-
tween monomers i and j, respectively. The potential is shifted
and cut off at rc. These nonbonded interactions depend on the
type of MC monomer [56,63].

We emphasize that, while the experiments that motivate
our analysis were conducted using PEG-grafted MC [20,22],
in this work we explore the effects of a “PEG-like” model
graft monomers on MC backbone. To this end, we chose three
different values {0.8, 1.0, 1.2} for the graft-graft nonbonded
interaction parameter εgg. To rationalize the choice of these
values, we note that the average interaction parameter between
backbone MC monomers (εbb) are between 1.0 and 3.0 in
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reduced units [56]. Hence, our range of εgg corresponds to
a system where the interactions between graft monomers
are weaker than the backbone-backbone interactions. This
choice allows us to model a system where there exists a
competition between the backbone-backbone attraction and
backbone-graft attraction, which leads to interesting behav-
ior. In contrast, if the graft-graft interactions are of similar
strength compared with the backbone-backbone interactions
(εgg ≈ εbb), the chains collapse owing to the lack of enthalpic
penalty from backbone-graft repulsion. If εgg is strongly re-
pulsive compared with εbb, then the time step needed for
equilibration becomes very small owing to the presence of
strong backbone-graft interactions and the chemical bonding
between the backbone and the graft, making this system less
robust for simulation.

The backbone-graft interaction parameter εbg is obtained
by using the geometric mixing rule εbg = √

εbbεgg. With in-
creasing εgg, the interaction strength between graft-graft and
graft-backbone strengthens. Thus, a graft with εgg = 0.8 is
more “repulsive” to the backbone compared with εgg = 1.2.

We note that, instead of varying εgg systematically and
deducing εbg using mixing rules, one could instead vary εbg

and compute εgg. However, there are eight monomer types for
the backbone MC in our simulations. Thus, in the absence of
a unique way to vary εbg systematically, it is more straightfor-
ward to vary εgg.

Since we are interested in the qualitative changes to the
effect of grafting on fibril formation, for ease of calculation,
we chose the function for nonbonded potentials identical to
that of the MC backbone monomers [Eq. (2)]. In addition,
since the graft monomers used in experiments are flexi-
ble polymers (as opposed to relatively stiff MC backbone)
[22], bonded potentials were modeled as harmonic functions
[Eq. (1)], i.e., without the bending and dihedral potentials
used for the MC backbone. To obtain a more quantitative
comparison for a PEG-grafted system, one must coarse-grain
the grafted system (with the graft monomer of interest) to
identify the effect of grafts on MC backbone, which is beyond
the scope of this work. Using a different coarse-grained model
for the graft monomer is also another approach. However, the
mixing rules will make the cross interactions in these cases
somewhat arbitrary. Given these constraints, to understand a
wider range of physical systems (and not their chemical speci-
ficity), we chose interaction values based on the heuristics
above.

We also need to set the mass and diameter of the graft
monomers. We thus chose values that closely mimic PEG such
that our model is “PEG-like” even if we have not undertaken
a rigorous coarse graining of an atomistic PEG model. The
reduced mass of each graft monomer is chosen to be 0.28,
which corresponds to the ratio between the average molar
mass of a PEG monomer and a MC monomer. The diameter of
graft beads are set to be 0.8 times the diameter of a MC bead,
which corresponds approximately to the ratio between the size
of a PEG monomer and that of a MC monomer. The cutoff
radius was also set to 0.8 times the average cutoff radii of
all MC monomer types. For completeness, all the interaction
parameters along with their variation as a function of distance
r are tabulated in Table S1 and Fig. S1 of the Supplemental
Material [63].

C. Quantification measures: Shape factor

The shape anisotropy factor κ2
i of a polymer chain [64] is

computed from the eigenvalues of its radius of gyration tensor
by using

κ2
i = 3

(
λ4

x + λ4
y + λ4

z

)
2
(
λ2

x + λ2
y + λ2

z

)2 − 1

2
, (3)

where λ2
x , λ2

y , and λ2
z are the eigenvalues of the radius of gy-

ration tensor of the polymer backbone (excluding grafts). The
values of κ2

i = 0, 0.25, and 1.0 correspond to a straight line,
ring, and sphere, respectively. Our previous works [58,59]
showed that the change in shape anisotropy factor is a con-
venient measure to quantify conformational fluctuations.

For brevity, we relegate to Sec. S2 of the Supplemental
Material [63] other definitions for the more common confor-
mational measures such as the square of the radius of gyration
〈R2

g〉 and the distance between the centers of mass dCOM, along
with the Fourier transform of shape anisotropy factor and error
quantification.

Results from four independent initial configurations are
averaged and reported.

III. RESULTS

A. Ability to form fibrils

Our previous work on bare chains (i.e., an ungrafted sys-
tem) showed that the chains need to be present within a
minimum capture radius (�20σ ) to form a protofibril struc-
ture [58] through diffusion and conformational fluctuations.
To probe the influence of grafting on the ability of the MC
chains to form a protofibril structure over a similar timescale
as we observed for ungrafted MC, we perform two-chain
simulations with grafts such that the initial distance between
the centers of mass (dCOM) of the chains (including the grafts)
is approximately equal to 20σ .

Figure 2(a) displays the ensemble averaged normalized
mean distance between the centers of mass 〈d∗

COM〉 [Eq. (S4)]
of two chains as a function of grafting density for three
different interaction parameters. When the attraction between
the graft and the backbone is strongest (εgg = 1.2), irrespec-
tive of the grafting density, the normalized final distance of
approach between the chains was similar to that of a bare
chain (green circles). This result suggests that the chains will
collapse onto each other at high grafting densities for strong
graft-backbone attraction, but does not necessarily imply that
the final structure is the same protofibril observed for bare
chains.

Furthermore, with increasing repulsion between the grafts
and the backbone (εgg = {0.8, 1.0}) and at low grafting den-
sities (� � 0.1), the equilibrium distance between the centers
of mass is approximately equal to that of a bare chain. Hence,
at low grafting densities, irrespective of the interactions be-
tween the grafts, fibril formation should not be disrupted.
However, beyond a critical grafting density (� ≈ 0.15), the
distance between the centers of mass steadily increases with
increasing grafting density, suggesting that the chain collapse
will be disrupted at high grafting densities for these interaction
strengths.
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FIG. 2. (a) Normalized distance between the centers of mass
computed by using the positions of both the backbone monomers
and graft monomers for two-chain systems as function of grafting
density for different graft-graft interactions. The corresponding dis-
tance between the centers of mass for a bare MC system (� = 0)
is 3.61 ± 0.59σ . (b) The distance between centers of mass for two-
chain systems as a function of time for various grafting densities at
εgg = 0.8.

To explore the chain dynamics in more detail, the time
evolution of the distance between the centers of mass of the
two chains dCOM is shown for a set of grafting densities in
Fig. 2(b) for the strongest repulsion between the grafts and
backbone (εgg = 0.8). At low grafting densities, the chains
collapse onto each other within 5000τ , as evidenced by the
small distance between the centers of mass of the two chains
(�3.0σ ). However, at higher grafting densities, the distance
between the centers of mass do not converge, suggesting that
the chains do not collapse. This result is indeed consistent
with the average d∗

COM in Fig. 2(a). Furthermore, this result

FIG. 3. Distance between the centers of mass for two-chain
systems as a function of the average radius of gyration of the system.
Dashed line shows the best-fit line.

shows that the timescale for collapse gradually increases with
increased graft density until the chains can no longer collapse
at � = 0.3.

To test whether the average radius of gyration, 〈R2
g〉1/2, is

the length scale controlling the steric hindrance leading to the
disruption in the collapse of the chains, we plot the ensemble
averaged distance between the centers of the chains dCOM

as a function of 〈R2
g〉1/2 in Fig. 3. The data at low grafting

densities collapse nicely onto the best-fit line (blue dashed
line) whereas the data begin to deviate slightly at high grafting
densities. This result suggests that, while 〈R2

g〉1/2 is indeed one
of the key length scales governing the equilibrium distance of
approach, other length scales play a role in determining the
equilibrium distance of approach at high grafting densities.

B. Nucleating structure

Previous experimental [16–18] and simulation works
[55,58,59] have suggested a nucleation and growth type mech-
anism for fibril formation in bare MC chains. Furthermore,
simulation works [55,58,59] showed that a toroidal nucleating
structure is essential for fibril formation in bare MC chains.
To understand the influence of grafting on the nucleating
structure, we analyze the conformations of isolated MC chains
with grafts.

Figure 4 displays the 〈R2
g〉 of an isolated MC chain (com-

puted such that it includes the side chains) normalized with
the square of the radius of gyration of the bare chain 〈R2

g0〉
as a function of the grafting density �, for three different
backbone-graft interactions (εgg). At low grafting densities
(� � 0.1), 〈R2

g〉 is a constant irrespective of the backbone-
graft interactions. When the interaction between grafts and
backbone is strongly repulsive (εgg = 0.8), 〈R2

g〉 increases with
increasing grafting density. In contrast, when the interactions
between the graft and backbone become less repulsive (εgg =
1.2), 〈R2

g〉 becomes independent of the grafting density.
Figure 5(a) displays the effects of the interaction parame-

ters and the grafting densities on the equilibrium conformation
of the nucleating structure in terms of a “phase diagram”;
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FIG. 4. Square of the radius of gyration of the chain (computed
using both the backbone and the grafts) normalized with bare radius
of gyration (no grafts) as a function of the grafting density for
different backbone-graft interactions. The calculated value of the
square of the bare radius of gyration (〈R2

g0〉) is 87.72 ± 6.47σ 2. 〈R2
g〉

values obtained from individual runs are tabulated in Tables S2 and
S3 of the Supplemental Material [63].

we use quotation marks here to emphasize that the structures
we observe are likely kinetically trapped. The most probable
configuration from at least four different initial configurations
are reported in Fig. 5(a). Marker sizes correspond to the prob-
ability of occurrence for a given configuration. At equilibrium,
chains undergo instantaneous conformational fluctuations but
relax (on an average) to structures similar to those shown
in Fig. 5(b). Near “phase-transition” boundaries, owing to
kinetic traps, the configurations that straddle the boundary
may be equally likely (metastable structures). For these tied
cases, legends of the corresponding conformations are fused
and shown. For instance, the marker representing some of
the points near the toroid-distorted toroid transition ({� =
0.15, εgg = 1.0} and {� = 0.15, εgg = 1.2}) consist of both
red diamonds (for toroids) and orange triangles (distorted
toroids). Since we have identified only four different real-
izations of any given point, the conformation of the polymer
chain near these points cannot be determined with absolute
certainty. Furthermore, we note that the loci of the phase
boundary are approximate and should be taken as guidelines
for the eye. Results from all independent runs, along with
their frequency of occurrence, are tabulated in Table S4 of the
Supplemental Material [63].

For � = 0 (ungrafted chains), the randomly coiled chains
relax to form toroidal structures and their conformations are
consistent with the previous work [58]. By definition, these
results do not depend upon the interaction between the graft
and the backbone. For convenience, we display this at the
(x, y) coordinate (� = 0, εgg = 0.8).

At low grafting densities (σ � 0.1), irrespective of the in-
teraction strength between the backbone and graft monomers,
single-chain methylcellulose retains its toroidal nucleating
structure. These results suggest that the ability to form fibril-
like structures should be retained at low grafting densities

FIG. 5. (a) Phase diagram of the grafted methylcellulose system,
where the acronyms refer to the structures in panel (b). If two
structures are equally likely, legends of the conformations are fused
and shown. Results from all independent runs, along with their
frequency of occurrence, are tabulated in Table S4. Marker sizes
correspond to the probability of finding that given configuration.
Phase boundaries depicted by using dashed lines are a guide for the
eye; (b) Snapshots depicting various single-chain configurations. The
legend at the bottom of each snapshot displays the name given to
the shape at equilibrium, and the acronym corresponds to the key in
panel (a). Only the backbone chain is represented for clarity. Figures
are rendered using OVITO software [65].

and are consistent with experiments [22]. An isolated grafted
methylcellulose chain forms a toroidal structure or a distorted
toroidal structure at intermediate grafting densities (0.1 �
� � 0.2). The probability to form these structures depends on
the interaction strength between the backbone and the graft.

At higher grafting densities (� � 0.2), a stretched-hairpin
structure is obtained for εgg = 1.0. These structures are also
observed at a lower grafting density (0.1 � � � 0.2) when
εgg = 0.8. For εgg = 0.8 and 1.0, near the “phase-boundaries,”
the structures obtained were metastable and are evinced by the
almost equal frequency of occurrence for multiple possible
structures (cf. Table S4 of the Supplemental Material [63]).
Figure S2 of the Supplemental Material [63] shows the final
configurations for this region of the phase space.

For � � 0.2 and εgg = 0.8, open-loop or rod-like struc-
tures are observed. When the graft-backbone interaction
strength becomes more attractive, the final configura-
tion assumes a stretched hairpin structure at intermediate
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backbone-graft interactions (εgg = 1.0) and a sphere-like
structure when the backbone-graft interactions is strongly
attractive (εgg = 1.2).

We note that a nonmonotonic trend is observed in the phase
diagram at intermediate grafting densities (� ≈ 0.1) and at
intermediate interaction strengths (εgg = 1.0). However, this
may be a simulation artifact arising from the lack of sampling
of the structures in this region. Further independent simula-
tions need to be performed to identify whether this trend arises
from simulation artifacts and can be taken up as a future work.

C. Conformational fluctuations

To understand the influence of grafting on the conforma-
tional fluctuations that enable the nucleating toroid to engulf
a neighboring chain, we compute the shape factor [Eq. (3)]
and temporal changes in the shape factor. To quantify the con-
formational fluctuations we explicitly examine (i) the changes
in the magnitude of κ2 as a function of time, |dκ2/dt |, and
(ii) the fundamental modes of κ2. We examine the real-time
spectrum of κ2 for the former and the Fourier spectrum for
the latter.

Figure 6(a) displays the shape factor as a function of time
for different grafting densities with εgg = 0.8, for one of the
four independent simulations. Qualitatively similar results are
obtained for the other three simulations (cf. Fig. S3). The top
panel of Fig. 6(a) shows the time evolution of κ2 for the lowest
grafting density studied (� = 0.01) and is similar to the bare-
chain results [58]. Both the value of the shape factor and its
fluctuation frequency change with increasing grafting density.
Comparing with low grafting densities (� � 0.1), at higher
grafting densities (� � 0.2) the magnitude of the change in
the values of κ2 with respect to time, |dκ2/dt |, is much larger.

To quantify this smoothness (or the presence of different
fundamental modes of κ2), Fig. 6(b) displays representative
data for the fluctuation modes as a function of the fundamental
frequencies ω/(2π ). The corresponding real-time κ2 data
are shown in the inset of Fig. 6(b). A smoother variation
in the real-time data for κ2 qualitatively indicates that the
long-wavelength modes are dominant relative to the short-
wavelength modes. For higher grafting densities, κ2(ω) for
small ω [ω/(2π ) � 10−3τ−1] is at least an order of magnitude
higher for systems with higher grafting densities, showing
that the low-frequency modes are significantly larger at higher
grafting densities. Together, the results in this section show
that, while the changes in the magnitude of κ2 are larger
at high grafting densities (� � 0.2), long-wavelength modes
are dominant relative to the short-wavelength modes for the
fluctuations in κ2.

IV. DISCUSSION

Results in the previous section unequivocally showed that
there exists a suppression of the conditions deemed necessary
for fibril formation in grafted methylcellulose solutions at
high grafting densities. In this section, we provide energetic
arguments to explain the results at both low and high grafting
densities, and interpret our results in the context of what we
would anticipate to happen to fibril formation in a many-chain
system based on the one-chain and two-chain systems.

FIG. 6. (a) Shape factor as a function of time for different graft-
ing densities with εgg = 0.8. (b) Fourier transform of the shape factor
for a subset of the data given in panel (a). The data in panel (a) used
to obtain the frequency spectra are plotted in the inset. Additional
figures depicting the shape factor for other initial conditions and the
Fourier transform of the shape factor are displayed in Figs. S3 and
S4 of the Supplemental Material [63].

At low grafting densities (� � 0.1), owing to the smaller
number of grafts and the side chain’s molecular weight (in
comparison to backbone molecular weight), the enthalpic
and entropic contributions to the free energy from the
backbone-graft interactions are minimal, irrespective of the
graft-backbone interactions studied. For these cases, the
conformational properties of the single-chain grafted systems
(Figs. 4–6) are primarily determined by a competition
between the backbone-backbone dihedral interactions, which
favor a planar structure, and the self-attractive backbone-
backbone interactions, similar to the competition governing
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the conformations of ungrafted chains [58]. Furthermore,
the changes in κ2(ω) [Fig. 6(b)] over the entire frequency
spectrum are small compared with those at higher grafting
densities, suggesting the presence of stronger high-frequency
fluctuations, or equivalently a shorter decorrelation time in
κ2. Again, this behavior resembles that observed in ungrafted
chains [58,59]. In multichain systems, the steric hindrances
arising from the presence of grafts are weak, leading to the
collapse of multiple chains (Fig. 2). These observations are
consistent with fibril formation being retained at low grafting
densities, since the structure and dynamics of the grafted sys-
tem are effectively unchanged up to a grafting density of 10%.

A transition zone is observed at intermediate grafting den-
sities (0.1 � � � 0.2), wherein the conformational properties
of the grafted MC chains begin to deviate from those of
the ungrafted MC chains [58]. Furthermore, the magnitude
of deviation increases with increasing repulsion between the
graft and the backbone, or equivalently, decreasing εgg. It
is unclear, based on our models [58] for extrapolating the
physics of single MC chains and two-chain systems to fibril
formation, whether these deviations are sufficient to suppress
fibril formation in experiments.

The deviations from the ungrafted and the low graft density
cases arise from a competition between two effects: On the
one hand, the grafts are attractive and hence grafts tend
to be near each other to minimize enthalpy. On the other
hand, for multichain systems, the entropic cost arising from
steric hindrance becomes stronger with increasing grafting
densities, thereby pushing the chains away. In addition, at high
grafting densities with strong backbone-graft repulsion (εgg =
{0.8, 1.0}), when the chains are close to each other, grafts in a
given chain experience strong backbone repulsion from both
their parent chain and from other chains, thereby contributing
to the steric hindrance. These competing effects also explain
the presence of a local maximum in dCOM [Fig. 2(a)] around
� = 0.25 when the backbone-graft interactions are strongly
repulsive. For single-chain systems, the backbone-graft repul-
sion results in the stretching of the backbone leading to an
increase in R2

g (Fig. 4) and distortion in the toroidal structure
(Fig. 5).

For intermediate grafting densities and strong attractive
interactions (εgg = 1.2), the conformational properties of
the grafted systems do not deviate significantly from those
of the ungrafted systems [58]. For these cases, we speculate
that the steric hindrance arising from the grafts, which tends
to swell the chain, are offset by the graft-graft and the graft-
backbone attractions that tend to collapse the chain.

At high grafting densities (� � 0.2), the conformational
properties of grafted MC chains (Figs. 2–6) deviate signifi-
cantly from those of the ungrafted MC chains. For isolated
MC chains and at εgg = {0.8, 1.0}, the backbone strongly
stretches to minimize the backbone-graft contacts. This leads
to an approximately sixfold increase in its radius of gyra-
tion (Fig. 4) and is consistent with the open-loop and rod-
like structures observed in Fig. 5. Furthermore, the ratio
between high- and low-frequency modes is larger compared
with low grafting densities [Fig. 6(b)], suggesting that the
decorrelation time in κ2 is higher. The presence of weak,
slow modes may also contribute to the disruption of fibril
formation at higher grafting densities. These low-frequency

modes indicate that the nucleating structures at higher grafting
densities undergo conformational changes over a much longer
timescale compared with lower grafting densities, suggesting
that the nucleating structures are metastable. This can be
visually corroborated from Fig. 6(a) which shows that κ2

relaxes slowly to its equilibrium values at higher grafting
densities. Thus, the condition of a stable nucleating structure
for fibril formation becomes less obvious at higher grafting
densities. For multichain systems, the steric repulsion arising
from the grafts and strong backbone-graft repulsion result in
the disruption of chain collapse.

However, when the backbone-graft interactions are
strongly attractive (εgg = 1.2), at a high grafting density,
backbone-graft interactions dominate the steric hindrance as-
sociated by the larger number of grafts, leading to a collapsed
structure (Fig. 2). For isolated MC systems, these attractive
graft-backbone interactions lead to a globule-like structure
(Fig. 5). These results correspond to the behavior of polymer
in a poor solvent and were also observed in previous works
on grafted chains with attractive backbone interactions [36].
We speculate that, if there is a disruption in fibril formation
under these conditions, it would arise from the disruption of
the nucleating structure (cf. Sec. III B) rather than from the
inability to form collapsed fibril-like structures [Fig. 2(a)].
Nevertheless, there are no existing experimental results to test
this speculation, and we would require many-chain simula-
tions to draw a definitive conclusion about these dynamics
from our model.

V. CONCLUSIONS

Motivated by recent experimental findings that fibril for-
mation is suppressed in PEG-grafted methylcellulose solu-
tions at high grafting densities [22], we used coarse-grained
molecular-dynamics simulations to understand its origins. Our
simulations showed that the nucleating structure forming the
fibrils is disrupted at high grafting densities, irrespective of the
interactions between the graft and the backbone. Furthermore,
we demonstrated that the decorrelation time of the shape
anisotropy factor for repulsive graft-graft (or equivalently
graft-backbone) interactions increases with increasing graft-
ing densities. Finally, we showed that the equilibrium distance
of approach steadily increases with increasing grafting densi-
ties when the graft-backbone interactions are strongly repul-
sive. Together, these simulation results provide a fundamental
understanding of the origins of suppression of fibril formation
in grafted methylcellulose solutions at high grafting densities.

Code Repository: LAMMPS codes used to generate the tra-
jectories, PYTHON codes used to run the simulations, and
FORTRAN codes used to analyze the trajectories can be found
in Ref. [66]. Data corresponding to each figure can be found
in Ref. [67].
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