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Uncertainty quantification in first-principles predictions of phonon properties and lattice
thermal conductivity
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We present a framework for quantifying the uncertainty that results from the choice of exchange-correlation
(XC) functional in predictions of phonon properties and thermal conductivity that use density functional theory to
calculate the atomic force constants. The energy ensemble capabilities of the Bayesian error estimation functional
with van der Waals correlation XC functional are first applied to determine an ensemble of interatomic force
constants, which are then used as inputs to lattice dynamics calculations and a solution of the Boltzmann transport
equation. The framework is applied to isotopically pure silicon. We find that the uncertainty estimates bound
property predictions (e.g., phonon dispersions, specific heat, thermal conductivity) from other XC functionals
and experiments. We distinguish between properties in silicon that are correlated with the predicted thermal
conductivity [e.g., the transverse-acoustic branch sound speed (squared Pearson correlation coefficient, R2, of
0.89) and average Grüneisen parameter (R2 = 0.85)] and those that are not [e.g., longitudinal-acoustic branch
sound speed (R2 = 0.23) and specific heat (R2 = 0.00)]. We find that differences in ensemble predictions of
thermal conductivity are correlated with the behavior of transverse-acoustic phonons with mean free paths
between 100 and 300 nm. The framework systematically accounts for XC uncertainty in phonon calculations and
should be used whenever it is suspected that the choice of XC functional is influencing physical interpretations.
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I. INTRODUCTION

Ab initio predictions of the lattice thermal conductivity
of crystalline materials have become increasingly widespread
due to their accuracy when compared to experimental mea-
surements [1–3]. The prediction framework relies on density
functional theory (DFT) to determine interatomic force con-
stants, which quantify the change in potential energy of a
material when its atoms are displaced from their equilibrium
positions. The force constants are then used to predict har-
monic phonon properties such as dispersion relations, group
velocities, specific heat, and, by solving the phonon Boltz-
mann transport equation (BTE), anharmonic properties like
scattering rates [2]. These properties are then used to predict
the thermal conductivity. This approach has been successful
in studies of both low and high thermal conductivity materials
[1,4–8], and the predictions can be performed using one of
several open-source packages [9–12]. Models have grown
more sophisticated in recent years to capture increasingly
complex phenomena and resolve discrepancies between pre-
dictions and experimental values [13]. For example, while it
is common practice to consider only three-phonon scattering
processes in solving the BTE, recent work has shown that
four-phonon scattering is strong enough to reduce the pre-
dicted thermal conductivity in a range of materials [14–20].
There has also been progress in the treatment of finite temper-
ature phases [21–25], compositionally disordered materials
[26–29], and defects [30–32].
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While the continued improvement of models is impor-
tant, the quality of the predictions also depends on compu-
tational parameters [2,33,34]. Obtaining converged phonon
lifetimes, for example, requires a sufficiently large cutoff
radius for anharmonic interactions and a sufficiently dense
phonon wave-vector grid. Similarly, the quality of the required
force constants depends on the quality of the DFT calculation,
which in turn is affected by a variety of factors. Some of
these factors, such as the electronic wave-vector grid and
the plane-wave energy cutoff (if a plane-wave basis is used),
require convergence testing. The exchange-correlation (XC)
functional, conversely, is a critical component of all DFT
calculations that must simply be chosen, sometimes with no
a priori knowledge of the most suitable selection.

The impact of XC functional choice, which we call the XC
uncertainty, can be examined by changing the XC functional
in otherwise identical thermal conductivity calculations. Jain
and McGaughey calculated the thermal conductivity of silicon
at a temperature of 300 K using five different XC functionals
[33]. They showed that the predictions could be as low as
127 W/(m K) or as high as 172 W/(m K), in comparison with
the experimental value of 153 W/(m K) [35]. They argued
that the variation was a result of differences in predictions
of group velocities, three-phonon scattering phase space, and
anharmonic effects. Taheri et al. calculated the thermal con-
ductivity of graphene using three XC functionals and found
the predictions to range from 5400 to 8700 W/(m K) at a tem-
perature of 300 K [36]. Qin et al. also performed calculations
on graphene at the same temperature using eight different XC
functionals and reported a thermal conductivity range of 1900
to 4400 W/(m K) [37]. In contrast to the silicon study by
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Jain and McGaughey, both Taheri et al. and Qin et al. found
that all XC functionals tested agreed in predicting harmonic
properties such as group velocity and three-phonon phase
space, implying that the anharmonic properties are responsi-
ble for the large range of predicted thermal conductivities in
graphene. These three previous studies and a similar study on
AlAs and BAs [38] demonstrate the impact of XC functional
choice in predicting thermal conductivity, but the results are
not conclusive indicators of XC uncertainty because the XC
functionals tested were somewhat arbitrary. Additionally, this
approach is computationally inefficient because nearly iden-
tical calculations must be performed for each XC functional
choice. Given the large number of possible functionals, even
within the generalized gradient approximation (GGA) space,
this brute force approach becomes computationally infeasible.

The Bayesian error estimation functional with van der
Waals (BEEF-vdW) correlation is an XC functional that can
systematically estimate XC uncertainty in DFT energies [39].
It possesses built-in uncertainty estimation capabilities in the
form of an ensemble of GGA XC functionals that are cali-
brated to reproduce the discrepancies observed between ex-
perimental measurements and DFT predictions. The estimate
obtained from the BEEF-vdW ensemble is computationally
efficient because results for thousands of XC functionals are
obtained non-self-consistently through a single self-consistent
calculation. BEEF-vdW has been applied to quantify XC
uncertainty in predictions of molecular vibrational frequen-
cies [40], magnetic ground states [41], intercalation ener-
gies [42], heterogeneous catalysis [43–45], electrocatalysis
[46–48], mechanical properties of solid electrolytes [49], and
thermodynamic properties [50]. Such uncertainty estimates
are useful in machine-learning-based materials design appli-
cations. For example, knowing the uncertainty associated with
a DFT calculation can improve the robustness of workflows
that rely on ab initio calculations to screen materials [51,52].

In this paper, we present a framework to estimate the
XC uncertainty in predictions of phonon properties, specific
heat, and thermal conductivity. The calculation details are
presented in Sec. II. While we include only three-phonon
scattering to save on computational cost, the framework can
be easily extended to account for four-phonon and other
scattering mechanisms. The framework is then applied in
Sec. III to isotopically pure silicon, which is chosen due
to its popularity as a benchmark for thermal conductivity
predictions [1,2,33,53]. For comparison to the BEEF-vdW
ensemble results, predictions of phonon properties, specific
heat, and thermal conductivity using the local-density approx-
imation (LDA) [54], Perdew-Burke-Ernzerhof (PBE) [55],
PBEsol [56], and optPBE-vdW [57] XC functionals are also
presented. We find that the BEEF-vdW ensemble accurately
describes the variation of the self-consistent DFT predictions,
with most predicted quantities bounded to within two ensem-
ble standard deviations of the BEEF-vdW predictions. Based
on analysis of the BEEF-vdW ensemble, we find that the best
predictors of silicon thermal conductivity are the transverse-
acoustic phonon sound speed and X point frequency and
the average Grüneisen parameter. We also demonstrate the
sensitivity of the silicon thermal conductivity prediction to
contributions of transverse-acoustic phonons with mean free
paths (MFPs) in the range of 100 to 300 nm.

II. METHODS

A. Bayesian error estimation

BEEF-vdW is a semiempirical XC functional that provides
a way to systematically estimate the XC uncertainty in a
DFT calculation. Its model space for the exchange-correlation
energy EXC is given by [39]

EXC =
29∑

m=0

(
amEGGA-x

m

)+ αcELDA-c + (1 − αc)EPBE-c + Enl-c.

(1)
Here, ELDA-c, EPBE-c, and Enl-c are the correlation contribu-
tions from the local Perdew-Wang LDA correlation [54], the
semilocal PBE correlation [55], and the vdW-DF2 nonlocal
correlation [58]. EGGA-x

m is the contribution to the exchange
energy and is given by

EGGA-x
m =

∫
εUEG

x [n(r)]Bm{t[n(r),∇n(r)]}dr, (2)

where n(r) and ∇n(r) are the electron density and its gradient,
t is a function taking n(r) and ∇n(r) as its inputs, εUEG

x is the
exchange energy density of the uniform electron gas, and Bm

is the mth Legendre polynomial.
Wellendorff et al. fit the parameters am (0 � m � 29) and

αc to experimental training data to determine the optimal,
or “best-fit,” BEEF-vdW XC functional [39]. The training
data included six different data sets consisting of molecular
formation and reaction energies, molecular reaction barriers,
noncovalent interactions, solid-state properties such as cohe-
sive energies and lattice constants, and chemisorption energies
on solid surfaces. The training data did not include vibrational
frequencies or thermal conductivities, so that our paper will
also serve as a test of the transferability of BEEF-vdW for
predicting these properties.

BEEF-vdW provides a systematic and computationally
efficient approach to estimate the XC uncertainty in a DFT
energy calculation through an ensemble of XC functionals.
The electron density is first obtained through a self-consistent
DFT calculation using the best-fit functional. An ensemble of
XC functionals, each of which has its own set of am and αc,
is then applied to that electron density to yield an ensemble
of non-self-consistent XC energies using Eq. (1). Wellendorff
et al. generated the ensemble of XC functionals using the
following method. For every batch of data in the training set,
proceed as follows.

(1) Use the best-fit XC functional to predict the values of
interest and compare them with the experimental values. Call
the sample standard deviation of these differences s1.

(2) Use the XC functional ensemble to predict the values
of interest and compare them with the prediction from the
best-fit XC functional. Call the sample standard deviation
these differences s2.

By tuning the distributions of am and αc, Wellendorff
et al. set s1 and s2 to be approximately equal, so that the
spread in the ensemble recreates the differences between the
experimental data and the best-fit BEEF-vdW predictions.
Wellendorff et al. generated the functionals through draws
of am and αc from their respective distributions. These func-
tionals are available for use in common DFT codes such
as GPAW [59] and QUANTUM ESPRESSO (QE) [60]. We used
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the same 2000 ensembles in this paper that were used in
several prior publications [40–42,44,46,47,49,50]. Using the
BEEF-vdW ensemble saves computational cost in calculating
the energies of the displaced structures, which must otherwise
be calculated with self-consistent DFT calculations for each
XC functional. These energies are then used to determine
the harmonic and cubic force constants, defined in Eqs. (5)
and (8). The computational savings are significant: in our
calculations, over 99% of the computational cost is due to
calculating the force constants.

While the BEEF-vdW XC functional ensemble was gener-
ated to recreate differences between experimental and DFT
data, there is no guarantee of its suitability for predicting
properties not considered in the original training data set.
The results of subsequent studies [40,41,43–50], however,
demonstrated that the ensemble can reliably describe the
XC uncertainty in self-consistent DFT predictions of a wide
range of systems and material properties. In other words, the
ensemble is transferable, in the sense that the variation in most
self-consistent predictions is bounded in an interval of a few
ensemble standard deviations. This result likely emerges be-
cause the ensemble exchange enhancement factors are similar
to other common GGA-level functionals for reduced density
gradient (s = |∇n|/2kFn, where kF is the Fermi wave vector
for a uniform electron gas) values between 0 and 2 [39], a
range that describes most important interactions in chemical
and solid-state systems [39,61,62].

B. Phonon properties and lattice thermal conductivity

1. Lattice thermal conductivity

The phonon contribution to the thermal conductivity of a
crystalline solid, i.e., the lattice thermal conductivity in direc-
tion l , kl , can be obtained by solving the BTE in combination
with the Fourier law and is given by [2]

kl =
∑
q,ν

c(q, ν)v2
g,l (q, ν)τl (q, ν). (3)

Here, q and ν are the phonon wave vector and polarization,
c is the volumetric specific heat, and vg,l and τl are the
group velocity and lifetime in the l direction. The specific
heats and group velocities are calculated using harmonic
lattice dynamics, while the lifetimes require a combination
of anharmonic lattice dynamics, perturbation theory, and the
BTE. We only briefly discuss these calculations here as they
have been described in detail elsewhere [2,63].

2. Harmonic lattice dynamics

By assuming the phonon modes to be noninteracting plane
waves, the frequencies ω and eigenvectors e associated with
the wave vector q can be obtained by solving the following
eigenvalue problem [64]:

ω2(q, ν)e(q, ν) = D(q)e(q, ν). (4)

Here, D(q) is the dynamical matrix, which is constructed
using the equilibrium positions of the atoms in the unit cell
and the harmonic force constants, �

αβ
i j . The harmonic force

constants are defined as

�
αβ
i j = ∂2U

∂uα
i ∂uβ

j

, (5)

where U is the potential energy of the system, α and β denote
Cartesian directions (i.e., α, β = x, y, z), i and j denote atoms
in the supercell, and uα

i is a small displacement of atom i
in direction α. We calculated the harmonic force constants
numerically using a central finite difference of DFT energies
with respect to small perturbations of the equilibrium struc-
ture. The finite difference formulas are provided in Sec. S2A
of the Supplemental Material [65]. We calculated the force
constants using the energies, as opposed to the atomic forces
as is typically done [2], because the BEEF-vdW ensemble
estimates uncertainty in the energy and not in the forces.
We show in Sec. S3 of the Supplemental Material [65] that
obtaining the force constants from the energies or the forces
yields the same phonon properties and thermal conductivity
using the LDA XC functional.

The volumetric specific heat and group velocity in Eq. (3)
can be calculated using the output of a harmonic lattice
dynamics calculation. The total volumetric specific heat c is
given by [2]

c = 1

V

∑
q,ν

c(q, ν) = 1

V

∑
q,ν

kBx2ex

(ex − 1)2
, (6)

where V is the volume of the crystal and x = h̄ω(q, ν)/kBT ,
where h̄ is the reduced Planck constant, kB is the Boltzmann
constant, and T is the temperature. To facilitate comparison
with experimental values, we also calculate specific heat in
J/(kg K) using the conversion factor V/(mnqnbasis ), where m
is the atomic mass, nq is the number of phonon wave vectors,
and nbasis is the number of atoms in the unit cell. The group
velocity is given by [66]

vg(q, ν) = ∂ω(q, ν)

∂q
= 1

2ω(q, ν)

[
e†(q, ν)

∂D(q)

∂q
e(q, ν)

]
,

(7)

where the superscript † indicates a conjugate transpose. The
group velocity is calculated by approximating the derivative
of the dynamical matrix in Eq. (7) with a three-point central
finite difference formula.

3. Anharmonic lattice dynamics and the Boltzmann
transport equation

Anharmonic lattice dynamics and BTE calculations are
required to determine the intrinsic three-phonon scattering
rates that are necessary to calculate the lifetimes in Eq. (3).
The intrinsic scattering rate for a three-phonon interaction
is given by Fermi’s “golden rule,” which requires as input
harmonic phonon properties (Sec. II B 2), the atomic masses,
and the cubic force constants 


αβγ

i jk , which are defined as



αβγ

i jk = ∂3U

∂uα
i ∂uβ

j ∂uγ

k

. (8)

The cubic force constants are calculated similarly to the
harmonic force constants using a central finite difference
formula on the energy that is presented in Sec. S2B of the
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TABLE I. Predicted lattice constant, transverse-acoustic (TA) phonon frequency at the X point, [100] longitudinal-acoustic (LA) sound
speed, three-phonon phase space, average Grüneisen parameter, and thermal conductivity (at T = 300 K) of silicon using different XC
functionals. The spreads reported for the BEEF-vdW calculations are the sample standard deviations of the BEEF-vdW ensemble predictions.
Values in parentheses indicate the deviation of the quantity from the BEEF-vdW best-fit value, where σ is the ensemble standard deviation.

TA frequency Three-phonon Average Thermal conductivity
XC DFT Lattice at the X [100] LA sound phase space Grüneisen at T = 300 K
potential package constant, a (Å) point (THz) speed (m/s) (×10−3) parameter, γ̄ (W/(m K))

BEEF-vdW GPAW 5.479 ± 0.077 4.82 ± 0.57 8564 ± 162 1.15 ± 0.05 0.92 ± 0.14 171 ± 24
optPBE-vdW GPAW 5.504 (+0.32σ ) 4.77 (−0.09σ ) 8475 (−0.55σ ) 1.16 (+0.20σ ) 0.92 (0.00σ ) 165 (−0.25σ )
LDA GPAW 5.408 (−0.92σ ) 3.97 (−1.49σ ) 8388 (−1.09σ ) 1.23 (+1.60σ ) 1.16 (+1.71σ ) 122 (−2.04σ )

QEa 5.400 (−1.03σ ) 8340 (−1.38σ ) 1.11 (+1.36σ ) 142 (−1.21σ )
PBE GPAW 5.478 (−0.01σ ) 4.58 (−0.42σ ) 8512 (−0.32σ ) 1.19 (+0.80σ ) 0.96 (+0.29σ ) 154 (−0.71σ )

QEa 5.466 (−0.17σ ) 7830 (−4.53σ ) 1.03 (+0.79σ ) 145 (−1.08σ )
PBEsol GPAW 5.442 (−0.48σ ) 4.03 (−1.39σ ) 8406 (−0.97σ ) 1.23 (+1.60σ ) 1.10 (+1.29σ ) 128 (−1.79σ )

QEa 5.430 (−0.64σ ) 4.04 (−1.37σ ) 8320 (−1.51σ ) 1.11 (+1.36σ ) 137 (−1.42σ )
Experiment 5.430b (−0.64σ ) 4.48c (−0.60σ ) 8430d (−0.83σ ) 153c (−0.75σ )

aRef. [33].
bRef. [71].
cRef. [35].
dRef. [73].

Supplemental Material [65]. Along with the harmonic quan-
tities described in Sec. II B 2 and the cubic force constants,
the phonon mode populations are needed to determine the
lifetimes. The mode populations are calculated by solving the
phonon BTE, which we do using an iterative approach [67].

C. Computational details

Self-consistent DFT calculations were performed with the
real-space projector-augmented wave (PAW) method [68,69]
as implemented in GPAW [59,70]. We used the PBE, PBEsol,
LDA, optPBE-vdW, and BEEF-vdW XC functionals. The
BEEF-vdW XC functional was used with 2000 ensemble
functionals for each calculation. Using more than 2000 func-
tionals has been found to have little effect on the standard
deviation of the ensemble energy values [39,49]. We used a
real-space grid spacing of 0.18 Å. To calculate the harmonic
force constants, we used a 3 × 3 × 3 supercell consisting of
216 atoms with a 1 × 1 × 1 electronic wave-vector grid, while
we used a 2 × 2 × 2 supercell (64 atoms) and a 2 × 2 × 2
electronic wave-vector grid for the cubic force constants. All
energies were converged so that the variation between the final
three iterations was at most 10−9 eV.

To determine the zero-pressure lattice constants, energies
were calculated for a series of strains. For each XC functional,
five equally spaced points between a maximum compression
of 0.95 times the experimental lattice constant of 5.430 Å [71]
and a maximum tension of 1.05 times the experimental lattice
constant were used to fit a third-order polynomial. A wider
range of 0.85 to 1.15 times the experimental lattice constant
with ten equally spaced points was used for each member of
the ensemble. The zero-pressure lattice constant corresponds
to the minimum energy of the fitted polynomial [72].

Atomic displacements of ±0.01 Å were applied to cal-
culate the harmonic and cubic force constants using the
equations in Sec. S2 of the Supplemental Material [65].
The harmonic and cubic force constant cutoffs correspond to
the tenth and third nearest neighbors (i.e., 1.5 and 0.9 lattice

constants). A 24 × 24 × 24 phonon wave-vector grid was
used to predict the harmonic phonon properties and thermal
conductivity. This grid is based on the convergence testing
of Jain and McGaughey [33]. Translational invariance in the
harmonic and cubic force constants was enforced using the
Lagrangian approach presented by Li et al. [8].

III. RESULTS

A. Overview

We now apply the proposed framework to isotopically pure
silicon. A summary of the key results and relevant values
from Jain and McGaughey [33], who used QE [60] for their
DFT calculations, are provided in Table I. To ensure proper
comparison to our values, we only include results where Jain
and McGaughey used PAW pseudopotentials. The spreads
reported for the BEEF-vdW calculations are the sample stan-
dard deviations of the ensemble predictions.

B. Lattice constant

The lattice constant is accurately predicted by all XC
functionals tested, with a maximum deviation of 1.36% from
the experimental value (5.430 Å) [71] from optPBE-vdW
(5.504 Å). LDA is the only XC functional that underpredicts
the lattice constant, while all other functionals (PBE, PBEsol,
optPBE-vdW, and BEEF-vdW) overpredict it. The same trend
was observed by Jain and McGaughey [33] and is consistent
with previous observations that LDA tends to overestimate
binding strength [74]. The ensemble lattice constants are
determined by fitting and minimizing an equation of state
with respect to energy for each BEEF-vdW ensemble func-
tional. A histogram of the results is provided in Fig. S1(a) of
the Supplemental Material [65]. All predicted self-consistent
lattice constants and the experimental value are bounded to
within one ensemble standard deviation (σ = 0.077 Å) of the
BEEF-vdW best-fit value of 5.479 Å, with the exception of the
LDA lattice constant from Jain and McGaughey (−1.03σ ).
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There is an ambiguity in the choice of the lattice constant to
be used in the ensemble lattice dynamics calculations. There
are two possible approaches.

(i) Use the lattice constant from the BEEF-vdW best-fit
XC functional for all calculations because the ensemble force
constants are calculated at this lattice constant.

(ii) For each member of the ensemble, use the lattice
constant determined from that member’s equation of state.

While we believe that both choices are reasonable, we
chose to use (i), the BEEF-vdW best-fit lattice constant,
because it is consistent with the ensemble force constant
calculations. The effect of this choice on the ensemble thermal
conductivity predictions is explored in Sec. III E.

C. Phonon dispersion, sound speed, and specific heat

Predicted and experimental [75] phonon dispersion re-
lations on the �-X-W-L-� loop are plotted in Figs. 1(a)
and 1(b). The transverse branches are degenerate on �-X-W
and �-L. On W-L, for clarity, only the lower-frequency
transverse branch is plotted. All branches, including the two
excluded ones, are plotted in Figs. S2(a)–S2(f) of the Sup-
plemental Material [65]. The ensemble bounds the exper-
imental and self-consistent DFT dispersions. The greatest
spread amongst the self-consistent DFT dispersions is found
in the transverse-acoustic (TA) and longitudinal-optical (LO)
branches at the Brillouin-zone edge X point. This behavior is
mirrored in the ensemble dispersions. As noted in Table I, the
TA branch frequency has a standard deviation of 0.57 THz at
the X point, compared to a standard deviation of only 0.14
THz for the longitudinal-acoustic (LA) branch at that point.
Some of this TA branch spread is due to some ensemble mem-
bers decreasing in frequency near the X point, a result that
contradicts experimental observations [75]. Previous authors
have also noted difficulty in using lattice dynamics to model
the TA branch in silicon and germanium [76,77], which has
been ascribed to the sensitivity to the number of neighbor
shells included in the calculation [2,53,78]. The ensemble
results demonstrate that the TA branch is also sensitive to the
force constants.

The sound speed is calculated using Eq. (7) near the �

point for the LA branch in the [100] (i.e., �-X) direction. The
experimental value of 8430 m/s and all self-consistent DFT
predictions are bounded to within two ensemble standard de-
viations of the BEEF-vdW best-fit value of 8564 m/s with the
exception of the PBE value from Jain and McGaughey [33]
(−4.53σ ). Histograms of the sound speed of the TA and LA
branches are shown in Figs. S3 and S4 of the Supplemental
Material [65].

Specific-heat values in units of J/(kg K) are plotted in
Fig. 2 as a function of temperature between 1 and 1000 K.
Experimental values from Flubacher et al. [80] are shown for
comparison. The experimental data are bounded by the en-
semble over the entire temperature range. The largest spread
in the ensemble is 12 J/(kg K) at a temperature of 50 K, which
is 15% of the BEEF-vdW best-fit value of 76 J/(kg K) at that
temperature. As temperature is increased, x = h̄ω/kBT gets
smaller, such that the differences in frequencies predicted by
each ensemble are suppressed. This effect is reflected in the
narrowing of the ensemble predictions above a temperature of

FIG. 1. Silicon phonon dispersion relations for the (a) LA and
TO branches and (b) TA and LO branches along high-symmetry
directions. (c) Grüneisen parameters for the TA branch plotted along
the same high-symmetry directions. The cutoff Grüneisen parameter
curve reaches −25 at the X point. Experimental dispersion values
are from Nilsson and Nelin [75] and Grüneisen parameter values are
from Madelung et al. [79]. Each curve traces along the � (0, 0, 0),
X (1, 0, 0), W (1, 0.5, 0), and L (0.5, 0.5, 0.5) reduced wave-vector
points in the Brillouin zone.

100 K. As the temperature approaches 1000 K, all ensemble
and DFT self-consistent predictions approach the Dulong-
Petit limit of 3kB/m = 888 J/(kg K) [81].

We also include the specific heat predicted using the Debye
model:

cDebye = 9kB

m

(
T

θ

)3 ∫ θ/T

0

x4ex

(ex − 1)2
dx, (9)

where θ = 645 K is the Debye temperature for silicon [35].
The Debye model prediction is worse than any of the ensem-
ble predictions in the 30–100-K range, but is as accurate as
any self-consistent calculation at temperatures below 10 K and
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FIG. 2. DFT and Debye model predictions of silicon specific
heat. The Dulong-Petit limit is shown as a dotted line at 888 J/(kg K).
The experimental values are from Flubacher et al. [80].

above 100 K. The agreement at low temperatures is because
the assumption of a linear dispersion relation for all phonons
in the Debye model is most accurate at temperatures much
lower than the Debye temperature [35].

D. Grüneisen parameter and thermal expansion coefficient

The mode-dependent Grüneisen parameters quantify the
effect of crystal volume change on the phonon frequencies
and are a measure of anharmonicity [33]. We calculated them
using the cubic force constants through Eq. (2) from Fabian
and Allen [82]. The results for the TA branch are plotted in
Fig. 1(c) on the �-X-W-L-� loop. The remaining branches
are plotted in Figs. S5(a)–S5(f) of the Supplemental Material
[65]. The TA branch at the X point has the largest spread of
any of the modes, with a standard deviation of 1.00. At the X
point, the largest deviation of any self-consistent prediction
from the BEEF-vdW value of −1.31 is the LDA value
of −2.54.

The average Grüneisen parameter γ̄ can be calculated
as a specific-heat-weighted average of mode Grüneisen
parameters from

γ̄ =
∑

q,ν c(q, ν)|γ (q, ν)|∑
q,ν c(q, ν)

. (10)

The average Grüneisen parameter predictions are reported
in Table I. BEEF-vdW and optPBE-vdW yield the lowest
average value (0.92) and LDA yields the highest (1.16).
All self-consistent predictions are bounded to within two
standard deviations of the BEEF-vdW value. The differences
in predictions of anharmonicity in both the self-consistent
and ensemble calculations are correlated with the predicted
thermal conductivity, an effect that we explore in Sec. III F.

FIG. 3. DFT predictions of silicon thermal conductivity at T =
300 K, with the BEEF-vdW ensemble shown in gray. The lightest
(middle) shade of gray indicates a range of ±σ (±2σ ) around the
BEEF-vdW best-fit value. The experimental value is from Inyushkin
et al. [35]. The overlaid distribution is a skewed normal distribution
with mean 190 W/(m K), standard deviation 36 W/(m K), and
skewness −3.7.

The mode-dependent Grüneisen parameters can be used
to calculate the thermal expansion coefficient (TEC) [83].
The ensemble TEC values for silicon are compared to the
values from Guan et al. [50] in Sec. S1F of the Supplemental
Material [65]. While Guan et al. did not perform calculations
for silicon, the coefficient of variation (COV = standard
deviation/mean) for the silicon TEC ensemble is 0.40, con-
sistent with the range of values they report (0.26 to 0.75). In
contrast to our negatively skewed silicon TEC distribution,
however, all TEC distributions reported by Guan et al. have
a positive skew.

E. Thermal conductivity

The thermal conductivity results are plotted in Fig. 3. The
BEEF-vdW best-fit value is 171 W/(m K) and the ensemble
has a standard deviation of 24 W/(m K). The ensemble distri-
bution is not symmetrical, with a longer tail to the left of its
mean. A majority of ensemble functionals (1165 out of 2000)
predict a lower thermal conductivity than the BEEF-vdW
best-fit value. Following the procedure outlined by Guan et al.
[50] for fitting distributions based on the Cramer von Mises
goodness of fit test [84], the distribution is best described (p
value = 0.94) by a skewed normal distribution, which is also
plotted in Fig. 3, with a mean of 190 W/(m K), a standard
deviation of 36 W/(m K), and a skewness of −3.7. Additional
distribution fits for other ensemble quantities are presented
in Sec. S1E of the Supplemental Material [65]. The BEEF-
vdW best-fit prediction is higher than the experimental value
of 153 W/(m K) [35]. An overestimation is reasonable be-
cause the prediction framework does not account for isotope,
phonon-boundary, phonon-defect, or four-phonon scattering,
all of which reduce thermal conductivity.

The BEEF-vdW ensemble bounds nearly all self-consistent
DFT predictions, including those from Jain and McGaughey
[33], to within two ensemble standard deviations of the
BEEF-vdW best-fit value. The largest discrepancy is the
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FIG. 4. Self-consistent and ensemble thermal conductivity accumulation functions of silicon at a temperature of 300 K for (a) all branches
and (b) the TA branches, assumed to be the two lowest-frequency branches (left vertical axis). The red dotted line indicates (a) the standard
deviation of the ensemble thermal conductivity accumulation and (b) the ensemble TA accumulation standard deviation (right vertical axis).
The experimental thermal conductivity accumulation is from Cuffe et al. [86].

122-W/(m K) thermal conductivity prediction from GPAW

LDA (−2.04σ from the BEEF-vdW value). This LDA value
is the lowest value from the self-consistent DFT predic-
tions [85] and deviates from previously reported LDA values
[2,4,26,33,53]. There is no self-consistent thermal conduc-
tivity value in Table I greater than the BEEF-vdW best-fit
functional prediction. It is noteworthy that the optPBE-vdW
value of 165 W/(m K) is closest to the BEEF-vdW value.
Parks et al. [40] found that XC functionals that include
vdW correlations, such as BEEF-vdW and optPBE-vdW, tend
to predict higher vibrational frequencies for molecules and
molecular complexes compared to GGA-level counterparts
that do not include vdW correlations. A similar result is
observed here in the BEEF-vdW and optPBE-vdW phonon
dispersions in Figs. 1(a) and 1(b). BEEF-vdW and optPBE-
vdW predict the highest X point frequencies for both the TA
and LA branches, which results in higher group velocities, and
the lowest average Grüneisen parameter. These effects both
contribute to a higher thermal conductivity.

The thermal conductivity accumulation function kaccum(�)
provides the contribution to thermal conductivity of phonons
having MFPs less than �, where �(q, ν) = |vg(q, ν)|τl (q, ν)
for heat flow in the l direction [2]. The ensemble results
are plotted in Fig. 4(a) as a heat map, with darker colors
indicating a greater fraction of the ensemble predictions. The
experimental curve was determined by Cuffe et al. [86],
who used a transient thermal grating technique to measure
the thermal conductivity of single-crystal silicon membranes
of varying thickness. We also plot the ensemble accumula-
tion and corresponding standard deviation from just the TA
branches (assumed to be the two lowest-frequency branches)
in Fig. 4(b).

All functionals indicate that phonons with MFPs shorter
than 10 nm do not contribute to thermal conductivity. The en-
semble accumulation functions spread widely between MFPs
of 100 to 300 nm, a trend that is reflected in the sharp
increase of the ensemble standard deviation in this range.
The spread then remains uniform up to 104 nm, the longest
MFP considered. This result suggests that ensemble members
that predict a high thermal conductivity overpredict the con-
tributions of phonons with MFPs between 100 and 300 nm.

This interpretation is consistent with the GPAW BEEF-vdW
[171 W/(m K)] and optPBE-vdW [165 W/(m K)] predictions
and with the findings of Jain and McGaughey [33], who
predicted a silicon thermal conductivity of 172 W/(m K)
with the Becke-Lee-Yang-Parr XC functional and attributed
it to an overprediction of the contributions of ≈100-nm MFP
phonons. The TA ensemble accumulation standard deviation,
shown in Fig. 4(b), mirrors the total ensemble accumulation
standard deviation in that it increases sharply in the 100–300-
nm MFP range. In Fig. S6 of the Supplemental Material [65],
we show that the TA branches contribute at least 60% of the
total thermal conductivity accumulation for MFPs longer than
100 nm. Due to the large contributions of the TA branches to
the total accumulation, we attribute a significant portion of the
ensemble spread to the TA branches.

The experimental accumulation is bounded by the ensem-
ble and has a similar slope compared to the self-consistent
predictions, indicating agreement in the relative contributions
of phonons with the displayed range of MFPs.

In Sec. III B, we noted an ambiguity in the choice of the
lattice constant for the ensemble lattice dynamics and BTE
calculations. The thermal conductivities plotted in Fig. 3 are
calculated using the BEEF-vdW lattice constant. Choosing
instead to use the ensemble lattice constants changes any
individual thermal conductivity by at most 7 W/(m K) and has
no effect on the ensemble thermal conductivity standard devi-
ation. A histogram of thermal conductivity values calculated
using the ensemble lattice constants is shown in Fig. S1(b)
of the Supplemental Material [65]. Based on the von Mises
goodness of fit test (p value = 0.97), this distribution is also
best described by a skewed normal distribution, with mean
of 192 W/(m K), a standard deviation of 38 W/(m K), and a
skewness of −4.4. This ensemble and its fitted distribution are
nearly identical to the results obtained using the BEEF-vdW
lattice constant shown in Fig. 3.

F. Thermal conductivity correlation analysis

We now examine how the spread in the ensemble uncer-
tainty in the silicon thermal conductivity is related to the
spreads in other ensemble quantities. We use the square of
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FIG. 5. Pearson (R2) and Spearman (ρ2) correlation coefficients of the BEEF-vdW ensemble predictions of thermal conductivity at T =
300 K with other phonon and structural properties. The panels are presented in decreasing order of R2. The quantities are (a) [100] TA sound
speed, (b) average Grüneisen parameter, (c) X-point TA frequency, (d) three-phonon phase space, (e) X-point LO frequency, (f) [100] LA
sound speed, (g) lattice constant, and (h) specific heat at T = 300 K. Self-consistent predictions are denoted with colored markers.

the Pearson correlation coefficient (R2), which measures the
strength of linear correlation between two variables, and the
square of the Spearman rank correlation coefficient (ρ2),
which is a nonparametric measure of the strength of mono-
tonic correlation between two variables. The significance of
each Pearson correlation coefficient is evaluated using an F
test. A discussion of both correlation coefficients and the F
test can be found in Sec. S5 of the Supplemental Material [65].

The results are shown in Figs. 5(a)–5(h) as scatter plots
in order of decreasing R2. The best predictors of thermal
conductivity uncertainty are the [100] TA branch sound speed
(R2 = 0.89, ρ2 = 0.89), the average Grüneisen parameter
(R2 = 0.85, ρ2 = 0.80), and the TA branch X-point fre-
quency (R2 = 0.77, ρ2 = 0.77). It is not surprising that these
quantities are strong predictors of the thermal conductivity
uncertainty, as the TA branch has a high group velocity
and the Grüneisen parameter is a measure of anharmonicity.
An initially surprising result is that the [100] LA branch

sound speed is a poor predictor of thermal conductivity un-
certainty (R2 = 0.23, ρ2 = 0.23), as LA phonons, like TA
phonons, have high group velocities. The LA sound speed is
likely a poor predictor because there is not enough spread
in the ensemble predictions to account for the variation in
the thermal conductivity ensemble predictions. The COV for
the LA sound speed is 0.019, while that for the TA sound
speed is 0.048.

The worst predictors are the specific heat at a tempera-
ture of 300 K (R2 = 0.00, ρ2 = 0.00) and lattice constant
(R2 = 0.08, ρ2 = 0.07). As with the LA sound speed, both
the specific heat (σ = 4 J/kg K, COV = 0.005) and lattice
constant (σ = 0.077 Å, COV = 0.014) have small standard
deviations and thus make a minimal contribution to the 24-
W/(m K) standard deviation and 0.14 COV of the thermal
conductivity ensemble. The low correlation of the lattice
constant uncertainty and thermal conductivity uncertainty is
consistent with our observation that the lattice constant used in
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the lattice dynamics calculations does not significantly impact
the behavior of the thermal conductivity ensemble.

It is instructive to compare Figs. 5(c) and 5(e), which
plot the thermal conductivity ensemble versus the frequency
ensembles of the TA and LO branches at the X point. These
two dispersion branches have large frequency spreads at the
X point. The TA branch has a standard deviation of 0.57 THz
and that of the LO branch is 0.39 THz. The TA frequency
at the X point, however, is a better predictor of the thermal
conductivity uncertainty (R2 = 0.77, ρ2 = 0.77) than the LO
X-point frequency (R2 = 0.42, ρ2 = 0.44). Because the LO
group velocities are small, they do not make a significant con-
tribution to the thermal conductivity, so that it is not surprising
that there is a weak correlation between these quantities.

A quantity that we anticipated would be correlated with
thermal conductivity uncertainty is the three-phonon phase
space, which is defined in Sec. S4 of the Supplemental Ma-
terial [65]. Although the three-phonon phase space is purely
a harmonic property, Lindsay and Broido showed that it is
inversely correlated to the thermal conductivity of several
semiconductors including silicon [87], indicating that mate-
rials with fewer available scattering processes tend to have
higher thermal conductivities. As shown in Fig. 5(d), there
is an inverse correlation between the ensemble phase-space
uncertainty and thermal conductivity uncertainty for silicon,
but the qualitative behavior is different from that observed by
Lindsay and Broido. There is only an inverse correlation for
thermal conductivity predictions above 150 W/(m K) (R2 =
0.65, ρ2 = 0.65), while the correlation is weak for predictions
below 150 W/(m K) (R2 = 0.02, ρ2 = 0.01). The five self-
consistent XC functionals follow this relationship, with two
functionals (LDA and PBEsol) lying in the lower range and
the other three (BEEF-vdW, optPBE-vdW, and PBE) lying in
the upper range.

The correlations in the ensemble uncertainties are also use-
ful for understanding the self-consistent thermal conductivity
predictions. For example, LDA predicts a low TA X-point
frequency of 3.97 THz compared to the BEEF-vdW value of
4.82 THz and a high average Grüneisen parameter of 1.16
compared to the BEEF-vdW value of 0.92. As such, the LDA
thermal conductivity of 122 W/(m K) is low compared to
the BEEF-vdW value of 171 W/(m K). This correlation is
also apparent in the PBEsol predictions [4.03-THz TA X-point
frequency, γ̄ = 1.10, and k = 128 W/(m K)] and the optPBE-
vdW predictions [4.77-THz TA X-point frequency, γ̄ = 0.92,
and k = 165 W/(m K)].

IV. CONCLUSION

We presented a computationally efficient framework that
uses the BEEF-vdW ensemble to quantify the uncertainty due

to XC functional choice in predictions of phonon properties
and lattice thermal conductivity. We applied this framework
to isotopically pure silicon, a popular benchmark of ab initio
predictions of thermal conductivity. As summarized in Table I,
we found that the BEEF-vdW best-fit value bounds most
of the self-consistent predictions to within two ensemble
standard deviations. This agreement encompasses harmonic
quantities such as the phonon frequencies [Figs. 1(a) and
1(b)], specific heat (Fig. 2), and the three-phonon phase space,
as well as properties that require incorporating anharmonic
effects like the thermal conductivity (Fig. 3) and the average
Grüneisen parameter.

In addition to quantifying the XC uncertainty, our results
provide insight into the way that DFT at the GGA level
describes the phonon dynamics in silicon. We found, for ex-
ample, that the greatest spread in ensemble dispersions occurs
at the X point in the TA branch, in agreement with previous
works that found accurate prediction of phonon frequencies
in that part of the Brillouin zone to be challenging. We found
that ensemble functionals vary widely in their descriptions of
transverse-acoustic phonons with mean free paths (MFP) be-
tween 100 and 300 nm, and that these variations are correlated
with predictions of thermal conductivity (Fig. 4). As shown
in Fig. 5, we were able to use the ensemble to identify the
[100] TA sound speed and the average Grüneisen parameter
as good predictors of thermal conductivity. Conversely, we
found that the specific heat and [100] LA sound speed, which
are described consistently amongst the ensemble members,
are poor predictors of the thermal conductivity despite being
essential components of the calculation.

Due to the nonlinear nature of the lattice dynamics and
BTE calculations, the correlations observed for silicon may
vary for other materials. In such cases, because our framework
can be used to examine the predictions of thousands of XC
functionals, it can be applied to identify trends in phonon
dynamics that occur due to, or in spite of, the choice of XC
functional.
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