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Information regarding precipitate shapes is critical for estimating material parameters. Hence, we considered
estimating a region of material parameter space in which a computational model produces precipitates having
shapes similar to those observed in the experimental images. This region, called the lower-error region (LER),
reflects intrinsic information of the material contained in the precipitate shapes. However, the computational
cost of LER estimation can be high because the accurate computation of the model is required many times to
better explore parameters. To overcome this difficulty, we used a Gaussian-process-based multifidelity modeling,
in which training data can be sampled from multiple computations with different accuracy levels (fidelity).
Lower-fidelity samples may have lower accuracy, but the computational cost is lower than that for higher-fidelity
samples. Our proposed sampling procedure iteratively determines the most cost-effective pair of a point and
a fidelity level for enhancing the accuracy of LER estimation. We demonstrated the efficiency of our method
through estimation of the interface energy and lattice mismatch between MgZn, and «-Mg phases in an Mg-
based alloy. The results showed that the sampling cost required to obtain accurate LER estimation could be

drastically reduced.
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L. INTRODUCTION

Material parameters are often estimated by fitting a theory
or model to experimentally observed microstructures. For
example, the interface energy between precipitate and matrix
phases is estimated by fitting the Ostwald ripening model
[1] (theoretical formula) to time-series experimental data of
the precipitate radius during the coarsening process. Some
recent studies estimated material parameters by comparing
data regarding microstructure evolution obtained through ex-
periments and simulations [2-5]. Because a precipitate prefers
an energetically favorable shape [6-10], information about
precipitate shapes is valuable for estimating material pa-
rameters. In Mg-based alloys, rod- or plate-shaped precipi-
tates with various aspect ratios have been observed [11-31].
Moreover, precipitate shapes can be predicted using some
advanced computational models if the interface energy and
lattice mismatch between the precipitate and matrix phases
are given [32-35]. Hence, fitting the computational models to
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experimental data on precipitate shape enables us to estimate
material parameters. However, parameter estimation based on
precipitate shapes is time consuming because the computa-
tional cost for predicting precipitate shapes is high.

Therefore, to mitigate this problem, we recently introduced
a Gaussian process (GP)-based selective sampling procedure
for material parameter estimation from precipitate shapes
[36]. Figure 1 shows a schematic illustration of this ap-
proach. When we have a computational model that predicts
the energetically favorable shape of the precipitate under
given material parameters, we can calculate the discrepancy
between the precipitate shape observed in the experiment and
that predicted using the computational model. Because exper-
imental data on precipitate shapes are naturally uncertain, the
exact minimum of the discrepancy is not necessarily a unique
optimal parameter. Instead, the lower-error region (LER) of
the material parameter space, in which the discrepancy is
smaller than a given threshold, is estimated. By determining
the threshold from the variance of the precipitate shapes in
the experiment, LER estimation can provide a region with
reasonable parameters that can be consistent with the current
experimental results.

©2020 American Physical Society
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FIG. 1. LER estimation by GP. (a) Discrepancy between the computational model and experimental image is evaluated through the
difference in the precipitate shapes. (b) Using few observed discrepancy values (black circles) in the material parameter space, GP regression
approximates discrepancy surface. The red dotted line is the underlying true discrepancy that is unknown beforehand. The solid line and shaded
regions represent the GP regression and its predictive variance, respectively. (c) Probability of LER estimated by the GP model. From the GP,
the probability that each material parameter has a discrepancy value smaller than the threshold can be estimated. If the probability is higher

than 0.5, the region is estimated as LER.

Although GP-based LER identification can be much more
efficient than the exhaustive search or naive random sampling
methods, obtaining accurate shapes of the precipitates at every
iteration requires a considerably high computational cost.
However, by controlling the accuracy of numerical computa-
tions, we can also obtain approximate discrepancy values with
much lower computational costs. In a computational model
for predicting precipitate shapes [35], the total energy (sum
of strain and interface energies) of a spheroidal precipitate is
formulated as a function of the precipitate aspect ratio r if the
material parameters are given. By computing the total energy
using different values of r, the equilibrium shape (aspect
ratio) of the precipitate that minimizes the total energy can
be predicted. If we change the step size of r in the numerical
computation, the tradeoff between the computational cost and
accuracy can be controlled. In this study, we considered GP-
based LER estimation that adaptively incorporates training
data from different levels of approximate calculations. The
degree of approximation is called fidelity. Although lower-
fidelity data contain stronger approximations, it is often useful
to narrow the candidate region during early-stage screening in
our material parameter exploration. We considered efficiently
identifying LER by sampling discrepancies not only from
the highest-fidelity calculations but also from lower-fidelity
calculations that are much easier to perform.

Multifidelity modeling is a machine-learning (ML) frame-
work that combines inexpensive lower-accuracy data and ex-
pensive higher-accuracy data to estimate a model with a lower
sampling cost of the training data. By multifidelity modeling,
GP integrates different fidelity samples through which sim-
ilarities among different fidelity functions are automatically
estimated, and information from the lower-fidelity functions
enhance the inference of the highest-fidelity function. Our
cost-effective sampling criterion is based on information en-
tropy, which evaluates the uncertainty of the probabilistic
estimation. At every iteration, the most cost-effective pair
of a sampling point and a fidelity level can be selected for

reducing the uncertainty of LER in terms of information
entropy (Supplemental Material Sec. A [37] shows an exam-
ple on an artificial one-dimensional function). By combining
information entropy and multifidelity modeling, our proposed
method enables us to estimate LER efficiently by sampling
only a small number of points compared with the exhaustive
search; in particular, we can avoid sampling of higher-fidelity
functions many times that results in high computational costs.
Although multifidelity modeling is used in materials science
applications such as band-gap predictions [38], our study uses
a multifidelity-based exploration algorithm involving material
parameters. We applied our proposed method called multi-
fidelity LER (MF-LER) estimation to estimate the interface
energy and lattice mismatch between MgZn, (8]) and «-Mg
phases in an Mg-based alloy, in which we have three different
fidelity levels requiring 5, 10, and 60 minutes to compute,
respectively. We demonstrated that our approach drastically
accelerated the material parameter search by efficiently using
lower-fidelity samples. Although we focused on an Mg-based
alloy in our study, MF-LER is applicable to other material
parameter estimation problems because multifidelity calcu-
lations are prevalent in computational materials science, in
which the computational cost often becomes a severe bottle-
neck.

II. METHODS
A. Problem setting

Let rexpe be the average of aspect ratios of the precipi-

tate obtained from an experimental image and r;’,-?,lc)omput be
the aspect ratio predicted using a computational model with
the material parameter x; € R and the fidelity level m €
{1,...,M}. We assumed a set of N candidates {xi}f\’zl in the
material parameter space (for example, grid points uniformly
taken in the space). If the higher-fidelity level m is calculated,

more accurate results can be obtained though it requires a

083802-2



COST-EFFECTIVE SEARCH FOR LOWER-ERROR REGION ...

PHYSICAL REVIEW MATERIALS 4, 083802 (2020)

higher computational cost. Let AV < A® < ... <A™ be
the sampling cost of each fidelity (computational time of the
model). The discrepancy between the aspect ratios obtained
from the experimental image and through the computational
model is defined by

1 m
2 Z (rexpt (t) i ():()mpu[ (t ))29

teT

y =

where ¢ is the time and 7 is a set of times when the shapes of
precipitates are experimentally measured.

Suppose that the observed discrepancy contains an inde-
pendent additive noise term given as follows: y{™ = f{™ + ¢,
where € ~ N (0, onmse) Then, the LER, in which the true

discrepancy of the highest-fidelity function f* is less than
a given threshold 4, is defined as

LER = {i|f™ < h}.

If a large set of the highest-fidelity values of y(* can be
obtained for a variety of x;, LER can be identified accurately.
However, this leads to prohibitive computational costs be-
cause the fidelity level M needs the highest computational
cost, and further, the number of candidate material parameters
is often high. Our goal is to identify the LER with the smaller
total sampling cost (the sum of A over the sampled points).

B. Multifidelity Gaussian process

Suppose we already have the dataset D, =
e (’”*) ,m;)}7_, containing a set of triplets consisting of an
input x, e RY, fidelity m; € {1, ..., M}, and output yo) e R.
To jointly model different fidelity observations with the
GP, we used a multifidelity extension of GP regression
(MF-GP) [39], which is also known as a co-kriging model.
Let f™ ~ GP(0, ky (x, x")) be the GP for the highest fidelity
m = M, in which the prior mean is 0 and the covariance
function is ky : R? x RY — R (the covariance function is
also called kernel function). Note that we can set the prior
mean as 0 without loss of generality [40]. We define the
output for the lower fidelity m =M — 1, ..., 1 recursively
from M as follows;

f(m) _ f(m-H) 4 g(m+l)

where gD ~ GP(0, kq(x, x')) with the kernel function k, :
R? x RY — R. The function g+ represents the differ-
ence between f™ and f"*V. For example, when M = 3,
we obtain f% = f& + g(%) and £V = f@ 4 ¢ = £ 4
g9 + ¢@. The difference between £¥ and f*, which have
neighboring fidelity levels, is modeled using the single GP
model g»). In contrast, the difference between f* and f{V),
whose fidelity levels are more distant from each other, is
modeled by the sum of the two GP models g and g?. As
a result, in this model, the difference between f* and f(V
has a larger variance, compared with £ and f(V.
In MF-GP, the kernel function for a pair of

training  instances  {(x;, YU, my), (x;, y)(c’jn’ m;)} s
written as  k((x;, m;), (x;, m;)) = kp(x;, x;) + (M — max
(m;, m;))kg(x;, x;) (see Ref. [39] for detail). Using the
kernel matrix K € R™*" in which element i, j is defined by

k((x;, m;), (x;, m;)), the GP for all fidelities f@, ..., f®

can be integrated into one GP in which the predictive mean
and variance are obtained as

M;(;m) _ k(m)(x)T (K + O,nmsel) ly’
o™ = k((x, m), (x, m))

— k") (K + o d) R 0),
where y = (", ...,y )T and k™ (x) = (k((x, m),
(xl , My ))’ LR k((xv m)5 (xnv ml’l)))T' By USing MF_GP’

information from the training data is transferred across
different fidelities. As a result, the similarities among
different fidelity functions are automatically estimated, and
the inference of the highest-fidelity function is enhanced by
the lower-fidelity observations.

C. Sampling criterion for LER estimation

Estimating the LER can be considered a classification
problem in which each input x; is classified based on whether
itis included in LER. Let

_ {1,
Iy = 0.
be an indicator variable of the LER classification. From the
definition, we obtain p(zy = 1) = p(f™ < h) and p(z, =
0) = p(f™ > h). If p(zx = 0) and p(zy = 1) are consider-
ably different, the confidence of the prediction is considered
high, while if these two values are close to 0.5, the confidence
of the prediction is considered low
For the dataset D, = {(x;,y ") ,m;)}7_,, the total cost of
sampling is Y & A(™). We c0n51dered estimating an accurate
z with the small total sampling cost. To evaluate the benefit of
sampling from a variety of fidelity levels, we used information
theory [41]. Let p(z¢|D,) be the conditional distribution of
Zy, given the training data D,, and p(zx|y('") D,) be the
conditional distribution of z,, given the training data D, and
a new observation y!"™. For a pair of m and x, the amount
of information, called information gain, obtained about z,
through observing yfc’”) is written as

1(z:y") =H (p(z:|D»))
—E oo [H (P, D)), (D)

where H is the information entropy and E

if £OD <
if M) > h

260D,y 18 the

expectation over y™. Information entropy H is a standard
uncertainty measure of a random variable in information
theory, which is defined as H[p(X)] = E,x)[—log,(p(X))]
for a random variable X. In our case, both p(z:|D,) and
P(zely{™, D,) are Bernoulli distributions. In general, for
a Bernoulli distribution p(z) (z € {0, 1}), the information
entropy is H(p(2)) = —p(1)log, p(1) — p(0) log, p(0) that
takes the maximum value 1 when p(1) = p(0) = 1/2 (most
uncertain) and the minimum value 0 when p(1) =0 and
p(0) = 1,0r p(1) = 1 and p(0) = 0. Thus, the first term of (1)
is the uncertainty of the current z,, and the second term is the
expected uncertainty after adding the candidate y™ into the
training data. Because y"™ is not observed yet, the expectatlon
is taken over the current GP estimation of p(y{™|D,). In other
words, (1) can be seen as the expected uncertainty reduction
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FIG. 2. Schematic illustration of MF-LER. (a) MF-GP provides predictions using all the observations across different fidelities. The cost
values for the low-, middle-, and highest- fidelity functions in this illustration are 1, 10, and 50, respectively. (b) Information gain for identifying
the LER in the highest-fidelity function is evaluated through the MF-GP model. (c¢) Information gain is divided by the sampling cost, which
enables us to evaluate the cost effectiveness of sampling. (d) The computational model is calculated with the selected fidelity and material
parameters (in this illustration, the low-fidelity function is selected). (¢) Discrepancy between the computational model and the experimental
image is evaluated (through the precipitate shapes), and the result is added to the training data.

after sampling y"™. Computational details of the information
gain are provided in Supplemental Material Sec. B [37].

For higher m, a larger amount of information about z, can
be obtained. However, this requires a higher sampling cost.
We selected a pair of m and x; that maximizes the following
cost-effectiveness criterion a(x;, m), in which information
gain is divided by the sampling cost of y":

1(z394")

a(xi, m) = —=5

Because this criterion represents the amount of information
per unit sampling cost, our sampling process can be efficient
in terms of the actual computational cost rather than the
number of iterations. Figure 2 shows the entire procedure
of our method, called MF-LER, in which the most cost-
effective pair of a sampling point and a fidelity level is
iteratively selected. Further, a demonstration using a simple
one-dimensional function is shown in Supplemental Material
Sec. A [37].

III. RESULTS
A. Computational model for predicting precipitate shape

We assumed a rod- or plate-shaped precipitate as a
spheroid (x?/a* +y?/b* +72/c> =1,a = b, r = c/a). The
total energy (sum of strain energy and interface energy) of the
spheroidal precipitate is formulated as

Eioa1 (1) = Egrain (1) + Einerface (1)

Yo 0 (.0

= - Cijnieu (el

where Vy is the precipitate volume (in m?), G ki 1s the
elastic modulus tensor (in Pa), e?j is the crystal lattice mis-
match between the precipitate and matrix phases, S;j;u,(r) is
Eshelby’s tensor [42], A(r) is the interface area (in m?), and y

- Sijmn(r)gi)nn)—i_A(r)y’

is the interface energy (in Jm~2). The formulas for computing
Sijmn(r) and A(r) can be found in Ref. [35]. When the values
of the material parameters are given, we can compute Eiop
as a function of the aspect ratio of the spheroid r, which is
changed from 1 to 100 with a step size Ar. Then, the aspect
ratio that minimizes Ejoar 1S 7compu that corresponds to the
equilibrium precipitate shape. In this study, we computed the
aspect ratio of the MgZn, phase in the «-Mg phase. The s?j is
given by

. &), (3 0
& = 0 €55 0 ,
0 0 0.00182

where &), = &9, [35,36]. The elastic modulus tensor for the
«-Mg phase [43] was used for the computation. Computa-
tional models with low-, middle- and highest-fidelity func-
tions were prepared by setting Ar as 1073, 107, and 1073,
respectively. We considered estimating the interface energy
y and lattice mismatch &), between the MgZn, and a-Mg
phases, using the experimental data on the changes in the
aspect ratio of the rod-shaped MgZn, phase in an Mg-based
alloy aged at 160 °C for 2, 8, and 24 hours [28].

B. Performance evaluation

In our study, we demonstrated the performance of MF-LER
using the Mg-based alloy data. On the basis of the analysis in
our previous study [36], we set h = 5 that was empirically
inferred from the standard deviation of the aspect ratio in the
experimental image. Figure 3 shows the heat map of discrep-
ancy and LER. We have three fidelity levels M = 3, and the
sampling costs of the low-, middle-, and highest-fidelity func-
tions are A( =5, A@® =10, and A® = 60 minutes, respec-
tively. For the candidate parameter x = (y, ¢,)", we used
250 equally spaced grids in 8(1)1 € [—0.250, —0.001] and y €
[0.001, 0.250] (Jm’z). Thus, we have a total of N = 62500

083802-4



COST-EFFECTIVE SEARCH FOR LOWER-ERROR REGION ...

PHYSICAL REVIEW MATERIALS 4, 083802 (2020)

-~ 0.00
W 175
5 —0.05'; 150
e 125
2 100
§ 75
B 50
8 25

Interface energy -y (Jm_2)

FIG. 3. Heat map of highest fidelity discrepancy and LER de-
fined by threshold & = 5.

candidates that require 3 750 000(= 62 500 x 60) minutes to
compute all the points in the highest-fidelity function. To
evaluate the usefulness of the low-fidelity observations, we
compared MF-LER with two strategies that take samples
only from the highest-fidelity function. The first approach is
to use information gain (1) as the sampling criterion [36],
called single-fidelity LER estimation (SF-LER), and the sec-
ond approach is single-fidelity GP with random sampling
(SF-Random). Note that applying SF-LER and SF-Random
only to lower-fidelity functions does not make any prediction
about the highest fidelity, because they cannot provide any
estimation about differences of multiple fidelities. Further, it
also should be noted that since differences among discrepancy
surfaces were unknown beforehand, using the predicted LER
of the lower-fidelity functions (i.e., £ < h for m < M) for
the LER estimation of the highest-fidelity function cannot
be justified. Therefore, sampling from the highest-fidelity
function is indispensable in our problem setting. For the initial
points, SF-Random and SF-LER randomly selected the five
highest-fidelity points, and MF-LER randomly selected the
ten lowest fidelity points. For all approaches, a candidate x
is classified as LER if p(z, = 1) > 0.5. Detailed explanations
of the GP are given in Supplemental Material Sec. C [37].

Figure 4 shows the sampling processes of MF-LER, SF-
LER, and SF-Random. At “Cost 500 (minutes),” MF-LER de-
termines LER approximately, while SF-LER and SF-Random
do not estimate LER accurately. At “Cost 1000 (minutes),”
MF-LER starts sampling from the highest-fidelity function
and identifying LER in more detail. However, the predicted
LER of SF-LER and SF-Random are still largely different
from the true region. At “Cost 2000 (minutes),” SF-LER starts
identifying the rough shape of the LER, and the prediction of
SF-Random is not still stable. At this cost, MF-LER provides
almost precise LER estimation. The total cost 2000 (minutes)
is only approximately 0.05% (~2000/3 750000 x 100) of
that used for exhaustive search on the highest-fidelity sur-
face. This suggests that MF-LER is effective to accelerate
the search process by reducing the sampling from expensive
computations.

Figure 5 shows the quantitative performance evaluation.
We evaluated the accuracy of LER estimation through the
predicted binary label z,. Note that our objective was only to
identify LER and not to approximate the entire discrepancy
surface accurately that would require a higher number of
samples. We used standard evaluation measures of the classifi-
cation problem called recall, precision, and F score. Because
MF-LER sampled only from low-fidelity function values as
initial points, unlike the other two methods, the initial cost
values of MF-LER in the plot are different from those of
SF-LER and SF-Random. All the results are the averages of
10 runs with random initial points.

The left plot in Fig. 5 shows recall, defined by

TP
ILER|’

where TP (true positive) is the number of points i € LER
which has p(zy, = 1) > 0.5. This is the ratio of the number
of LER points that are correctly identified over the number of
points in the true LER. This evaluates how many LER points
are correctly identified. At the beginning, recall was approx-
imately 0.1 for all sampling strategies owing to the absence
of sampled points. However, MF-LER rapidly increased recall
substantially faster than SF-LER and SF-Random. The middle
plot in Fig. 5 shows precision, defined by

TP
TP + FP’

where FP (false positive) is the number of points i & LER
which has p(z, = 1) > 0.5. Precision has the same numerator
as recall, but the denominator is equal to the number of points
predicted as the LER. This evaluates the specificity of pre-
diction, which cannot be considered by recall. The precision
values were higher than the recall values in the beginning,
indicating that the large part of predicted LER was actually
yM < h. Similar to recall, MF-LER was better than SF-LER
and SF-Random at all the cost values. Because recall and
precision have a tradeoff relationship, their harmonic mean,
referred to as the F score, is often used as a comprehensive
evaluation criterion. The right plot of Fig. 5 shows the superior
performance of MF-LER in terms of the F score.

IV. DISCUSSION

A. Uncertainty of material parameters

The lattice mismatch between matrix and precipitate
phases is often calculated based on the information of crystal-
lographic lattice correspondence and lattice parameter. How-
ever, it is challenging to determine the lattice correspondence
between the «-Mg and nanometer-size MgZn, phases by
transmission electron microscopy. Prior to material parame-
ter estimation, we minimized the number of parameters to
be estimated. The lattice mismatch along [0001], could be
calculated as £9; = 0.00182, since the lattice correspondence
along [0001], was presumed from the crystallographic ori-
entation relationship between the «-Mg and MgZn, phases
[12]. Furthermore, on the basis of the formation mechanism
of [0001], rod-shaped precipitate [35], the lattice mismatch
along the directions perpendicular to [0001], was assumed as
equal to each other 8(1)1 = 8(2)2.
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FIG. 4. Illustrative comparison of MF-LER, SF-LER, and SF-Random. For each sampling strategy, results obtained using three different
total sampling costs namely 500, 1000, and 2000 minutes are shown. In each sampling cost of MF-LER, three heat maps represent the predictive
mean ™ for m = 1 (upper left), m = 2 (lower left), and m = 3 (upper right). The right-bottom binary image in MF-LER is the predicted LER
[the blue region is p(zy; = 1) > 0.5]. For SF-LER and SF-Random, the heat map for the predictive mean of the highest-fidelity function and
binary image of the predicted LER are shown. In each heat map, the white points represent the observed samples, and the black lines represent
the boundary of the LER for 4 = 5.

As described in Sec. IIT A, the total energy of the pre-

cipitate is formulated as the sum of the strain energy and
interface energy. The precipitate shape is determined by the
interplay between the strain energy and interface energy [44].
The balance between the strain energy and interface energy
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FIG. 5. Performance evaluation with 2 = 5. The left, middle, and right plots indicate the recall, precision, and F score (see the main text
for definition), respectively. The horizontal axis denotes the accumulated sampling cost.

where
- Sijmn(r)sgm) .

Note that Vj is the precipitate volume, A is the interface area,
and L = Vj/A is a typical precipitate size. The equilibrium
shape of an isolated precipitate is determined by the value
of K [44]. Hence, at a given precipitate volume, a unique
parameter set [the lattice mismatch (s?j) and interface energy
(y)] cannot be obtained from experimental data on precipitate
aspect ratio. Meanwhile, we conceived that we might obtain
a unique parameter set (s% and y) by using experimental data
on the changes in the aspect ratio of MgZn, phase during
aging, where L increases with time. This is why we used
experimental data in an Mg-based alloy aged at 160 °C for
2, 8, and 24 hours [28]. However, since experimental data on
precipitate shapes are naturally uncertain, we estimated LER
instead of a unique parameter set (s?j and y) that minimizes
the discrepancy (yfcM )) defined in Sec. IT A.

The uncertainty (standard deviation) of rex, was used to
infer the threshold % in the LER estimation; the LER becomes
narrower with decreasing the uncertainty of the experimental
measurement and thus lowering the value of 4. Although the
statistical values (average and standard deviation) of 7ey, were
used to estimate the LER in our proposed method, it might be
possible to narrow the LER by using “raw data” of rexp; values
for individual precipitates measured in an experimental image,
which seems to be a critical issue to be addressed in the future.

_ 1o 0(0
B = 3Cijuey (Sij

B. Numerical accuracy of computational model

In the LER estimation, we evaluated the discrepancy (y{™)
between the precipitate aspect ratios obtained from the ex-
perimental image (7expt) and through the computational model

[rg’,’gompm]. Note that rexpy is the average of precipitate aspect
ratios measured in an experimental image, and yfg") is eval-
uated independently of the uncertainty of e, Meanwhile,
to obtain r;:flc)omput, the total energy of a spheroidal precip-
itate (Ey) is computed as a function of the aspect ratio r

(Sec. IIT A); the aspect ratio that minimizes Ei iS r;f_’fgompm.
(m)

For obtaining accurate values of 7, comous

the computational
error was minimized by setting Ar as 107>, Then, Ar = 107>
was used in the highest-fidelity function to obtain the value
of y™ . The fidelity level was controlled by the value of Ar,
which was changed independently of the uncertainty of 7exp.

We demonstrated the performance of MF-LER using the
Mg-based alloy data. The low-, middle-, and highest-fidelity
functions were prepared by setting Ar as 1073, 107#, and

1075, respectively. The values of rif'_‘c)ompm
Ar =107 were more accurate than those computed with
Ar = 1073 or Ar = 107*. The histograms of the difference
between discrepancy surfaces yj(nl_) and yfc?) or yg) and yj(j)
are shown in Supplemental Material Sec. D [37]. There were
non-negligible differences between the discrepancy surfaces
computed with the low-, middle-, and highest-fidelity func-
tions. Hence, there is a tradeoff between the computational
cost and accuracy in this case. Note, however, that we are
unable to know in advance the effect of the value of Ar
on the discrepancy surface yg"). Therefore, a high accuracy

computation (in this case, Ar = 107°) is often required even
when the improvement of accuracy is moderate.

In the computational model for predicting the precipi-
tate shape (Sec. III A), we assume that the MgZn, phase is
spheroidal and the anisotropy in the interface energy can be
ignored. This assumption is effective for rod- or plate-shaped
precipitates observed in Mg-based alloys [11-31]. However,
some faceted or lenticular precipitates have been observed
[45—48], which cannot be assumed as spheroidal, and their
formation mechanism is closely related to the anisotropy in
the interface energy [33]. For such precipitates, further ad-
vanced computational models for predicting precipitate shape
should be used in material parameter estimation. One of the
best choices would be to employ a phase-field model [32-34],
which can predict the precipitate shape under the influence
of anisotropy in both strain energy and interface energy. If
different levels of approximate calculations are available, our
proposed MF-LER estimation would be useful to efficiently
estimate material parameters in the phase-field model using
experimental data of precipitate shape.

computed with

C. Considerations on machine-learning modeling

In this study, we used three fidelities. As shown in Sec. II B,
MF-LER can deal with an arbitrary number of fidelities. How-
ever, improvement in efficiency would saturate with too many
fidelities, because it may only increase functions which have
very similar surfaces and similar costs, though computations
of MF-LER linearly increases with the number of fidelities.
We empirically conjectured that, at most, five fidelities would
be sufficient for most practical problems.

In addition to the number of fidelities, it is also important
to determine the lowest fidelity level that is used as the
training data. Theoretically, an arbitrary fidelity level can
be incorporated, because our method adaptively estimates
similarity between different fidelity levels, by which the most
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cost-effective fidelity can be selected at every iteration. How-
ever, the similarity between fidelities needs to be estimated
from the sampled data, and it may cause additional samplings
that are not worth the costs if the fidelity is not effective for the
LER identification. Therefore, a safer approach is to confine to
fidelities that are strongly correlated with the highest-fidelity
function (typically, it would be inferred by prior knowledge
or preliminary inspection of the data). Although the superior
performance of MF-LER has been confirmed in Figs. 4 and
5, it might be advantageous to prepare the low- and middle-
fidelity functions in relation to the uncertainty of experimental
measurements. As for the Mg-based alloy data used in this
study, the threshold & was assumed to have a value between 1
and 5 based on the standard deviation of rexp [36]. In this case,
the low- and middle-fidelity functions prepared with 10~ and
10~* might not be necessarily the best setting for maximizing
the efficiency of the MF-LER exploration. A different choice
of low- and middle-fidelity functions could further increase
the performance of MF-LER, which should be examined in
the future.

The discrepancy surface in this study is highly smooth
(as shown in Fig. 3), and the dimension is not high (two-
dimensional parameter space). On the other hand, when the
parameters are in a high dimensional space or the surface is
discontinuous, estimating the accurate GP regression model
becomes difficult. These are open problems of Bayesian opti-
mization in the machine learning community, and we consider
that these issues are also important future work for a wide
range of the materials informatics researches.

V. CONCLUSIONS

We proposed an ML-based selective sampling procedure
for estimating the LER of the material parameter space.
The LER is defined using the discrepancy in the precipitate

shapes between the computational model and experimental
image. To efficiently explore the material parameter space,
we introduced multifidelity modeling that can incorporate
several levels of approximate samples. Based on the informa-
tion entropy measure, our sampling method, called MF-LER,
can determine the most cost-effective pair of a sample point
and a fidelity level at every iteration. We demonstrated the
effectiveness of our method by estimating the interface energy
and lattice mismatch between MgZn, and «-Mg phases in
an Mg-based alloy. The results show that lower-fidelity data
are highly useful for accelerating the LER estimation drasti-
cally. Although we used a computational model for predicting
precipitate shape, there are various computational models
and approaches in materials science, from atomistic length
scale to macroscopic length scale; molecular dynamics, phase
field, cellular automata, crystal plasticity, finite-element code,
where the computational cost often becomes a severe bottle-
neck. When experimental data are combined with these com-
putational calculations at different levels of fidelity, MF-LER
should be useful to estimate model parameters efficiently.
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