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Incorporating density jumps and species-conserving dynamics in XPFC binary alloys
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This work presents a consistent formulation of the structural phase-field-crystal model of substitutional binary
alloys that allows for the description of phases of unequal densities, a key feature in solidification. We further
develop the dynamics of the model to be consistent with conserved Langevin dynamics in the true governing
species densities. Additionally, this work expands on the ability to control pressure, so far only implemented in
pure materials, to binary alloys by improving the control system that controls pressure from previous work. We
study the equilibrium properties of the new model and demonstrate that control of pressure can drive various
kinematic microscopic processes in materials such as grain boundary premelting, phase instability, and grain or
interphase boundary motion.
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I. INTRODUCTION

The macroscopic material properties of engineering alloys
have long been understood to arise out of a complicated
relationship to the microstructure that forms during the casting
and thermomechanical processing of a material. However, due
to the prohibitive difficulty of directly imaging or performing
in situ measurements during these processes the understand-
ing of the microstructural formation is often empirical.

Advances in the ability to predict microstructure have been
largely driven by atomistic and mesoscale phase field type
modeling. One such class of models are so-called phase field
crystal (PFC) models [1]. These are phase field models with
a periodic order parameter, which allow the resolution of
atomic-scale structure and defects that evolve on inherently
diffusive timescales. This class of models thus has many of
the complex physical mechanism that need to be built into
traditional phase field models such as strain relaxation, elas-
ticity, and arbitrary grain orientation; these arise holistically
from the form of a PFC free energy [2]. The ability to model
robust types of crystal structures beyond that possible in the
original PFC model has since led to a class of PFC models
referred to as structural phase field crystal (XPFC) models
[3–5], the alloy version of which was then expanded upon to
model arbitrary enthalpy of mixing by Smith et al. [6].

A key feature absent from past PFC models has been a
consistent description and control of bulk density or volume
changes between phases. This is a crucial prerequisite re-
quired of any model describing shrinkage and void formation
during rapid solidification, as well as free surface creation
under stress. This problem was first addressed in pure ma-
terials by Schwalbach et al. [7] using a phenomenological

interpolation function between gaseous and condensed
phases. Kocher et al. [8] recently formulated a more com-
plete analysis of vapor in pure materials by expanding in a
single field about a fluid capable of taking on both gaseous
and condensed forms and introducing pressure to con-
sider coexistence in pure materials in density(ρ)-pressure(p)-
temperature(T ) space. The first step toward controlling the
ρ-p-T space of a vapor forming binary alloy has been at-
tempted by Wang et al. [9] using a phenomenology that inter-
polates the free energy of a simple triangular-forming crystal
phase with a liquid-vapor system through changes in local
bulk density. The dynamics of this vapor-forming PFC model,
like all previous alloy PFC models, suffers from the fact that
density and concentration evolve as separate conserved fields.
These dynamics are incorrect when large bulk density changes
are allowed, which is the case in solidification processes.

In this paper we address the issue of consistently describ-
ing the density-pressure-temperature-concentration (ρ-p-T -c)
space of complex binary alloys and their dynamics in the
paradigm of the the XPFC alloy model of Smith et al. [6]. We
begin by reinterpreting the fields of the XPFC free energy. We
then generalize some of the ideas of Kocher et al. [8] to control
density-pressure-temperature-concentration space of a binary
system that can form different crystal phases. Moreover, by
connecting solute concentration (c) and total density (ρ) to
the individual species densities of a binary system ρA, ρB, we
introduce alloy dynamics for total density ρ and concentration
c that is consistent with the conservation of individual species
densities.

The remainder of the paper is organized as follows.
Section II reviews the derivation of the original XPFC al-
loy model of Greenwood et al. [5], highlighting recent
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improvements regarding the enthalpy of mixing. In Sec. III,
we reintroduce the definition of concentration (c) in the XPFC
alloy model such as to be consistent with the notion of a
smooth c field that is coupled to a microscopic density. The
dynamics of the alloy XPFC model are then reformulated
in terms of individual species densities of the binary alloy.
This section also introduces algorithms for implementing
pressure and volume changes during dynamical simulations.
Section IV then studies the equilibrium properties of the
reformulated XPFC alloy model in density(ρ)-pressure(p)-
concentration(c)-temperature(T ) space. The demonstration of
the model in effecting pressure controlled kinematics is shown
in Sec. V, while the application of the model to solute drag is
located in Sec. VI. We conclude in Sec. VII.

II. XPFC MODEL OF BINARY ALLOYS

The binary XPFC alloy model has been established for
several years as a PFC phenomenology for simulating sub-
stitutional binary alloys that crystallize into a wide range of
crystalline symmetries [1,10–19]. As with any PFC theory,
it can be derived from classical density-functional theory of
mixtures [20], where the density fields of the two components
ρA and ρB are transformed according to the following relations

n =ρA + ρB − ρ0

ρ0

c = ρB

ρA + ρB
, (1)

where n is the total dimensionless density, c is the concentra-
tion of the B component, and ρ0 = ρ0

A + ρ0
B is the total refer-

ence density around which the theory is nominally expanded.
A key assumption of the XPFC alloy theory is to assume that
the c field is locally smooth compared to n in order to arrive
at the XPFC free energy. This makes it possible to couple
the microscopic density field n to only the long wavelength
properties of concentration c, as tacitly reflected in the form
of the XPFC alloy model reviewed below.

With the variable transforms and assumptions stated above,
the free energy functional for an XPFC binary alloy becomes

�F

ρ0kBT
=

∫
d3r

{
n

2
(1 − Cnn∗)n − t

6
n3 + v

12
n4

+ w(n + 1)Smix − 1

2
c Ccc ∗ c

}
, (2)

where we have introduced the notation A ∗ B to represent
a convolution operation, while t , v, and w are phenomeno-
logical fitting parameters, and Smix is the entropy of mixing,
given by

Smix = c ln

(
c

c0

)
+ (1 − c) ln

(
1 − c

1 − c0

)
, (3)

where c0 is a reference concentration ρ0
B/ρ0. Ordering in the

total mass density is controlled through the direct correlation
function Cnn, which has the form

Cnn(|r − r′|) =
∑
i∈N

ξi(c)Ci(|r − r′|), (4)

where N sums over an arbitrary number of ordered phases
possible and Ci encodes for the density ordering of the phase
i. Equation (4) allows for changes in crystal structure between
phases by coupling each Ci to the local composition c, via the
functions ξi(c). One such interpolation function for eutectic
alloys was proposed by Greenwood et al. [5] as

ξA(c) = 1 − 3c2 + 2c3 ,

ξB(c) = ξA(1 − c) , (5)

and will be used throughout the remainder of the paper.
In XPFC models, the short wavelength properties of the

correlation functions Ci are controlled in Fourier space by
superimposing a series of Gaussian peaks of the form

Ci(k) = e− T
TM max({Gj (k)}), (6)

where TM is the melting temperature [19], the max(· · · ) func-
tion denotes taking the maximal value from the set of its argu-
ments, and the arguments are made up by a set of Gaussians,

Gj (k) = e
− (k−k j )2

2σ2
j , (7)

where k j = 2π/λ j where λ j is the wavelength of the given
crystallographic plane, and σ j is the width of the Gaussian,
which is related to the elasticity of the crystal. To the sum
of Eq. (6) can also be added a negative k = 0 peak that can
further be used to control the compressibility of emerging
solid phases.

In the model of Eq. (2), correlations in concentration
fluctuations are controlled through Ccc(|r − r′|). In the long-
wavelength limit, Smith et al. [6] proposed a form for Ccc

given by

Ccc(r − r′) = −wε(T )δ(r − r′) − Wc∇2δ(r − r′) . (8)

Applying the divergence theorem, under suitable boundary
conditions, to the Ccc term in Eq. (2) yields a more familiar
form of the XPFC binary alloy free energy functional,

�F

ρ0kBT
=

∫
d3r

{
n

2
(1 − Cnn∗)n − t

6
n3 + v

12
n4

+ w(n + 1)Smix + 1

2
Wc|∇c|2

+ 1

2
wε(T )(c − c0)2

}
. (9)

Equation (9) contains energy penalties for concentration gra-
dients as prescribed by Cahn and Hilliard [21], as well as the
leading order enthalpy of mixing contribution.

III. IMPROVEMENTS TO THE CONSISTENCY OF
THE XPFC ALLOY MODEL

The free energy as derived in Sec. II, and its dynamics,
have been shown to qualitatively reproduce a host of physical
phenomena [1,10–19]. The model has been especially conve-
nient for calculating equilibrium properties of systems, since
n and c are the natural variables used in physical metallurgy.
However, when considering dynamical processes, particularly
those accompanied by significant density changes, difficulties
arise from the use of these variables due to the fact c is not
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truly a conserved field and as such is not governed by con-
served Langevin dynamics. Strictly speaking, the conserved
variables of our system are ρA and ρB. Another problem
with the XPFC alloy model is that it tacitly assumes that
the concentration c field is smooth, although small spatial
oscillations do in fact develop in it in some processes. These
issues are both addressed next.

A. Redefining XPFC concentration

In order to derive dynamics for this system in the governing
density variables of ρA and ρB of components A and B,
respectively, we revisit the underlying assumption made in the
original derivation of Greenwood et al. [5]. Therein, a critical
explicit assumption was the smoothness of the c field, which
implies the substitutional nature of the alloy model. In doing
so, it allowed the simplification of convolution integrals in-
volving c. These assumptions, and consequent manipulations
of the free energy ensured the impossibility of a return to a ρA–
ρB formulation due to the information lost in this smoothing
process. To rectify this, while maintaining a connection with
the variables c and n, we consider the relationship that already
exists between n and c and ρA and ρB. Namely, we insist
on the smoothness of the concentration field by positing a
relationship of the form

c ≡ χ ∗ ρB

χ ∗ (ρA + ρB)
, (10)

where χ is a smoothing kernel that retains long wavelength
information of the field upon which it operates. This is similar
to the use of smoothing kernels employed by Kocher et al. [8]
and is defined in reciprocal space as

χ̃ (k) ≡ e− k2

2λc , (11)

where λc sets the cutoff wavelength. Moreover, this definition
of c also recovers the equilibrium definition of concentration
as a bulk quantity.

We make the further improvement of scaling the free
energy by a reference temperature instead of the model

temperature, as was done by Kocher et al. [8]. This introduces
a factor of reduced temperature τ = T/T0 in the free energy
functional, according to

F

ρ0kBT0
= τ

∫
d3r

{
n

2
(1 − Cnn∗)n − t

6
n3 + v

12
n4

+ w(n + 1)Smix + 1

2
wε(T )(c − c0)2

+ 1

2
Wc|∇c|2

}
+ τ F̄ (ρ0, c0), (12)

where Eq. (12) also retains the free energy of the reference
fluid, F̄ (ρ0, c0). This term will be largely neglected through-
out this paper as it will not affect either the phase diagram
or the dynamics; its primary importance is in quantifying the
reference pressure of our system.

B. Density field dynamics

With the reformulation of the concentration introduced in
Sec. III A, the dynamical evolution of the alloy system may be
calculated with respect to its governing variables ρA and ρB.
Namely, conserved dynamics in these fields follow

∂ρi

∂t
= ∇ · (Mi∇μi ) ≈ Mi∇2

(
δF

δρi

)
, (13)

where Mi is the mobility of the constituent density, assumed
for simplicity to be a constant here, and μi is the chemical po-
tential of the constituent. The chemical potential is calculated
from the (n, c)-based free energy by means of the functional
chain rule

δF [n, c](r′)
δρi(r)

=
∫

d3r′′
[
δn(r′′)
δρi(r)

δF [n, c](r′)
δn(r′′)

+ δc(r′′)
δρi(r)

δF [n, c](r′)
δc(r′′)

]
. (14)

Application of this chain rule gives the respective chemical
potentials of each species as

μA

ρ0kBT0
=τ

{
(1 − Cnn) ∗ n(r) − t

2
n2(r) + v

3
n3(r) + w

(
c(r) ln

(
c(r)

c0

)
+ (1 − c(r)) ln

(
1 − c(r)

1 − c0

))}

− τ

∫
d3r′′χ (r′′ − r)

c(r′′)∫
d3r′′′χ (r′′′ − r′′)(n(r′′′) + 1)

×
[
w(n(r′′) + 1)

(
ln

(
c(r′′)

c0

)
− ln

(
1 − c(r′′)

1 − c0

))

+ wε(T )(c(r′′) − c0) − Wc∇2c(r′′)
]

+ τ

2

∫
d3r′′χ (r′′ − r)

c(r′′)∫
d3r′′′χ (r′′′ − r′′)(n(r′′′) + 1)

n(r′′)
∫

d3r′n(r′)
∂Cnn(r′, r′′)

∂c
, (15)

μB

ρ0kBT0
= τ

{
(1 − Cnn) ∗ n(r) − t

2
n2(r) + v

3
n3(r) + w

(
c(r) ln

(
c(r)

c0

)
+ (1 − c(r)) ln

(
1 − c(r)

1 − c0

))}

+ τ

∫
d3r′′χ (r′′ − r)

1 − c(r′′)∫
d3r′′′χ (r′′′ − r′′)(n(r′′′) + 1)

×
[
w(n(r′′) + 1)

(
ln

(
c(r′′)

c0

)
− ln

(
1 − c(r′′)

1 − c0

))

+ wε(T )(c(r′′) − c0) − Wc∇2c(r′′)
]

− τ

2

∫
d3r′′χ (r′′ − r)

1 − c(r′′)∫
d3r′′′χ (r′′′ − r′′)(n(r′′′) + 1)

n(r′′)
∫

d3r′n(r′)
∂Cnn(r′, r′′)

∂c
. (16)
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We draw particular attention here to the terms premultiply-
ing the inter-diffusion potential μinter = δF/δc, which demon-
strate why Eq. (10) must be written with smoothing kernels in
both the numerator and denominator. If a single smoothing
kernel is used which acts on the traditional definition of the
concentration, this prefactor will have a term which goes as
1/(n(r) + 1) which can result in numerical instabilities due to
the oscillations in the n field.

Due to the critical role of the smoothing kernels in the
evaluation of Eqs. (15) and (16), the FFTW algorithm [22]
is used to allow for efficient calculation of convolutions.
We thus choose to utilize the semi-implicit spectral Fourier
method [23, App. A.4] in the numerical implementation of
the conserved dynamics in Eq. (13).

C. Dynamical pressure control and volume dynamics

To describe pressure changes during dynamical simula-
tions, we follow the work of Kocher et al. [8] and utilize
the grand potential density as an approximation for system
pressure, thus allowing for isobaric or pressure controlled
systems. The grand potential density is defined as

ω = 1

V

∫
V

d3r

(
f −

∑
i

μiρi

)
, (17)

where f is the free energy density of the multicomponent
alloy. Specializing to a binary alloy, the grand potential den-
sity can now be calculated using Eqs. (12), (15), and (16).
Generalization to a multicomponent alloy is straightforward.

For single component systems Ref. [8] used a two step
process. The first step is a mass conserving flux of the form

Jn = −n0(t ) + n0(t0)

(
�x(t0)

�x(t )

)d

, (18)

where �x is the side length of the volume element, which is
assumed to be a d cube where d is the dimensionality of the
system, t is the simulation time, t0 is the initial time, and n0 is
the global average density of the system. This flux is added to
each volume element. The second step is changing the volume
element with a proportional feedback loop defined as

�x(t ) = �x(t − �t ) + �tMp

d (�x)d−1
(ω − P0), (19)

where P0 is the target pressure, �t is the length of a numerical
time step, and Mp is the mobility parameter for readjustments
to the volume element—i.e., the ability of the system to re-
spond to pressure differentials. This feedback loop is applied
after each time step of the governing equations.

While such a density flux and feedback loop conserves the
total mass of the system, it violates the physics of diffusion
transport. Under a compression of a volume element, a low
density element and a high density element both receive the
same density flux into the system. Local mass is thus not
conserved as the low density volume element has gained a
larger fraction of its density than the high density element;
mass has effectively moved instantaneously from the high
density region to the low density region. We illustrate a one-
dimensional example of this phenomenon in Fig. 1(a), and the

L = 1

ρ = 0.1

ρ = 0.9

Nright = 0.05Nleft = 0.45

Ntotal = 0.5

=⇒

L = 0.8

ρ = 1.025

ρ = 0.225

Nleft = 0.41 Nright = 0.09

Ntotal = 0.5

L = 1

ρ = 0.1

ρ = 0.9

Nright = 0.05Nleft = 0.45

Ntotal = 0.5

=⇒

L = 0.8

Ntotal = 0.5

ρ = 1.125

ρ = 0.125

Nright = 0.05Nleft = 0.45

(a)

(b)

FIG. 1. A two phase system undergoing a number conserving
change in volume as described by (a) Eqs. (18) and (19) and
(b) Eqs. (24) and (25).

correction using the scheme that we implement in this work
(discussed below) to remedy this problem in Fig. 1(b).

To maintain consistent diffusion behavior we propose a
slightly different mass conserving step. Local conservation of
total number (N), or mass, requires that

∂N

∂t
= ∂ (ρ̄V )

∂t
= 0 , (20)

where V is the volume and ρ̄ is the average density of the
system or subsystem. After expressing the volume as a nu-
merical grid, V = �d

i=1�xNi, and combining with the volume
feedback loop proposed by Kocher et al.,

∂�x

∂t
= Mp

d (�x)d−1
(ω − P0) , (21)

Eq. (20) can be rewritten as

∂ρ̄

∂t
= −Mp(ω − P0)

(�x)d
ρ̄ . (22)

In pursuit of a closed form solution for the numerical update
scheme of Eq. (22), we posit that this equation can be solved
via separation of variables and integration,∫

d ρ̄

ρ̄
=

∫
dt

Mp(ω − P0)

(�x)d
, (23)

which leads to the numerically approximated solution

ρ̄(x, t + �t ) = ρ̄(x, t )e− Mp(ω−P0 )�t

(�x)d . (24)

After a point-wise evaluation of this local density adjustment
on each grid element, we then ensure total conservation of
mass by appropriately updating �x. This update leads to a
revision of �x of the form

J�x = −�x(t ) + �x(t0)

( ∫
Vtotal

dd rρ(t )∫
Vtotal

dd rρ(t0)

)1/d

, (25)
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where Eq. (25) is iterated until J�x reaches zero. Due to the
numerical constraints of the FFTW [22] library used in our
dynamics, the volume element must be a constant throughout
the simulation domain. Thus, we must apply Eq. (25) to each
volume element individually in such a way that the global
update of [common] volume element size conserves mass in
local subdomains of volume elements in the system. As any
arbitrary subdomain of the system must conserve its own local
mass we choose to update the smallest possible subdomain—
i.e., each pixel—as it is both numerically simplest and ensures
that any larger subdomain will also be conserved.

Due to the exponential nature of Eq. (24), it is imperative
that the argument of the exponential remain reasonably small.
To ensure this smallness, we utilize a “guess-check-correct”
algorithm. For the sake of clarity we detail below the al-
gorithmic structure of the volume dynamics, including the
guess-check-correct algorithm. The steps are as follows:

(1) Set the target pressure P0.
(2) Calculate the universal system pressure through the

grand potential ω. Calculate the error err = ω − P0.
(3) Calculate a quick guess for the change in universal

volume element using Eq. (19).
(4) Check if this quick guess is larger than a cutoff value.
True: Scale the time step such that Eq. (19) will give a

value below the cutoff.
False: Set �t = �tmax.
(5) The mean field density of each volume element is

updated using Eq. (24).
(6) Conservation of the total number of particles in the

entire system is enforced by calculating and applying Eq. (25)
until Eq. (25) gives an output of less than a cutoff value.

This algorithm is also displayed as a pseudocode flowchart
in Fig. 2.

IV. EQUILIBRIUM PROPERTIES OF MODEL

The equilibrium properties of a binary alloy, where den-
sity variations are considered, are defined in terms of the
Helmholtz free energy densities by the system of Eqs. [24,25].

1

ρS

∂ fS (cS, ρS )

∂cS
= μeq ,

1

ρL

∂ fL(cL, ρL )

∂cL
= μeq ,

ρS
∂ fS (cS, ρS )

∂ρS
− fS (cS, ρS ) = p , (26)

ρL
∂ fL(cL, ρL )

∂ρL
− fL(cL, ρL ) = p ,

fL(cL, ρL )

ρL
− fS (cS, ρS )

ρS
= (cL − cS )μeq −

(
1
ρL

− 1
ρS

)
p ,

where we have used the short form notation fS , ρS , and cS

to, respectively, denote the free energy density, total density,
and concentration of the solid phase. Similarly fL, ρL, and
cL, respectively, denote the free energy density, total density,
and concentration of the liquid phase. Here, μ is the chemical
potential and p the pressure.

The solution to the above system of equations in terms
of the free energy defined in Sec. II is highly nontrivial

FIG. 2. Flowchart of algorithm to update the common volume
element and the density in each volume element consistent with the
physics of local mass conservation.

[25]. However, the system of equations can be significantly
simplified by a change of variables such that

F = ν f , (27)

where ν = 1/ρ is the particle volume, akin to a molar volume.
We note that under this transformation, the free energy density
with units of J/m3 becomes free energy per particle with
units of J/particle; when multiplied by Avagadro’s number,
the latter becomes the standard measure used in metallurgical
literature. The equilibrium equations then reduce to

∂FS (cS, νS )

∂cS
= μeq

∂FL(cL, νL )

∂cL
= μeq

∂FS (cS, νS )

∂νS
= −p (28)
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∂FL(cL, νL )

∂νL
= −p

FL(cL, νL ) − FS (cS, νS ) = (cL − cS )μeq − (νL − νS )p.

Equation (28) defines the equations of a common tangent
plane in (ν-c-T ) space. In the traditional formulations of
binary PFC models—with the exception of one amplitude
model [25]—the density (particle volume) are assumed to
be constant across the different phases in equilibrium, which
reduces Eq. (28) to

∂ fS (cS, ρ)

∂cS
= μeq ,

∂ fL(cL, ρ)

∂cL
= μeq ,

fL(cL, ρ) − fS (cS, ρ) = (cL − cS )μeq ,

which defines the equations of a common tangent line in (c-T )
space.

We use a similar, but distinct, approach to define the
isobaric phase diagram from Eq. (28) as follows: For a fixed
pressure we rearrange the last of Eq. (28) to the form

(FL(cL, νL ) + νL p) − (FS (cS, νS ) + νS p)

= (cL − cS )μeq . (29)

The first two of Eq. (28) and Eq. (29) now define a common
tangent in concentration along an isobaric surface, with the
isobaric constraint of said surface being enforced by the third
and fourth equations of Eqs. (28).

While Eq. (28) is shown in dimensional form, an identical
set of dimensionless equations can be constructed by scaling
the variables similarly to Eq. (12):

F̄ = F
kBT0

= ρ0

ρ

f

ρ0kBT0
(30)

μ̄eq = μeq

kBT0
(31)

p̄ = ν0 p

kBT0
= p

ρ0kBT0
(32)

ν̄ = ν

ν0
= ρ0

ρ
(33)

which allows the use of scaled PFC free energies of the form
of Eq. (12) to be used in the construction of phase diagrams
and in the subsequent dynamics.

To determine the equilibrium phase diagram it is necessary
to define a free energy curve along the isobaric surface of the
free energy landscape. To do so we follow the mode expansion
methodology pioneered by Kirkwood and Monroe [26] in
1941 and later refined by Yousseff and Ramakrishnan [27]
and approximate the total density and total particle volume
of a phase as

n ≈ n0 +
∑

j

A j

∑
α

eik{ j,α}·r

n0 = 1

ν̄
− 1,

(34)

where Aj are taken as nonzero in a solid phase. The index j
defines a given family of modes in a solid assumed to have the
same amplitude, while k{ j,α} is the wave vector of the lattice

plane α within the family of modes j, and r is the spatial
coordinate.

Substituting the density expansion ansatz of Eq. (34) in a
microscopically varying free energy density of a PFC model
of Eq. (12), and integrating out short scale variations over the
scale of a crystal unit cell, leads to a mesoscale free energy
representation of the system of the form F (n0(ν̄), {Aj}, c).
Moreover, we note that the derivative

∂F̄ (ν̄(n0), {Aj}, c)

∂ν̄
≡ ω(ν̄(n0), {Aj}, c), (35)

where ω is the amplitude-expanded grand potential density.
Thus we can enforce the pressure constraint by equating the
amplitude-expanded grand potential density to the negative of
the target pressure. As with all mode expansion formulations
this requires a selection of crystallographic orientation; as
there are no phase boundaries in a mode expansion and as
PFC kernels are specifically chosen to be isotropic this choice
is arbitrary.

The protocol for evaluating the equilibrium states of the
alloy proceeds next as follows: For each value of the av-
erage concentration c we numerically minimize the set of
amplitudes {n0, Aj} and primary wave-vector magnitude k1 =
|k{1,α}| subject to the pressure constraint to build the isobaric
free energy curve using Mathematica [28]. Only the location
of the first peak of a given crystalline structure will be mini-
mized; further peaks are placed based on their relative position
to the first peak for a perfect crystal under zero strain. For the
special case of a single crystalline structure a single minimiza-
tion will yield the free energy values for both the solid {Aj} �=
0 and liquid {Aj} = 0. In the more generic case of multiple
crystalline structures, a minimization is required for each solid
phase; the set of free energies are then compared and only the
minimum is kept. This (minimum) free energy is then shifted
as per Eq. (29) and passed to Mathematica’s convex hull
finding algorithm, which acts as a common tangent finding
algorithm when passed a one-dimensional landscape. This
procedure is repeated for each pressure and/or temperature
of interest.

Using the conserved dynamics described by Eqs. (13) and
constrained to an isobaric phase space by the algorithm out-
lined in Fig. 2 we validate the accuracy of the mode expansion
approximation used to generate phase diagrams for the case
of an eutectic alloy. Without loss of generality, we consider
an alloy of structurally similar elements, differing only in the
equilibrium lattice parameters of the constituent elements.

The initial conditions are set algorithmically based on a
reference system to ensure that the system does not exhibit
a pressure significantly different than the set target. The
algorithm is as follows:

(1) The temperature, mean composition, expected phases,
and initial phase composition offset relative to the mean are
selected.

(2) The structure or structures are seeded into the liquid,
and both phases are offset in composition in opposite direc-
tions from the mean by a small offset. For example, for an
expected coexistence between the α solid and liquid, the solid
would be offset by −coffset while the liquid would be offset by
+coffset. We found that this offset is not strictly necessary but
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FIG. 3. Constant pressure phase diagram for a eutectic triangle-
triangle system. The reduced model pressure of P0 = 0.01. The
parameters used in the ideal free energy were t = 1.4, v = 1.0, w =
0.02, c0 = 0.5, and ε(T ) = 0 for simplicity. The correlation kernel of
the excess free energy used parameters k(A)

10 = 2π , σ (A)
10 = 0.8, T (A)

M =
1.0, k(B)

10 = 7.83185307179586 ≈ 2.5π , σ
(B)
10 = 0.8, and T (B)

M = 1.0.
The equilibrium coexistence concentrations as numerically calcu-
lated by mode expansion are shown in filled black circles while
the concentrations extracted from the bulk concentrations of the
dynamical simulations between liquid-solid coexistence are shown
in hollow gray circles and those values extracted from dynamical
simulations for solid-solid coexistence are shown in hollow gray
squares.

helps to speed up the equilibration so long as the offset is in
the proper direction.

(3) If a liquid-solid coexistence is selected, the solid is
given a small total density increase.

(4) If a eutectic coexistence is selected then a bicrystal is
seeded with a given misorientation.

(5) Equation (24) is iterated without changing the volume
element until the system is suitably close to the target pres-
sure, |ω − P0| � 10−6.

Once these steps are complete, the total number of particles
is calculated and will be conserved in all further iterations; this
state serves as the initial condition for the simulation.

All simulations used to verify our phase diagram were
performed on a 128 by 1024 pixel grid using a square volume
element with initial size �x(t = 0) ≈ 0.0815 and reference
temperatures of T0 = TM = 1.0. To assist with rapid equili-
bration, the mobilities were set to be extremely high compared
to the pressure relaxation coefficient: MA = MB = 20, Mp =
0.1. The cutoff wavelength was set as in Kocher et al. [8] to be
λc = 0.21. After equilibration of the simulation the resulting
bulk concentration and bulk average total density for each
phase is compared to that of the numerically approximated
phase diagram. These results are shown in Fig. 3. To avoid
repeated overhead in the form of initialization, wherever
possible the simulations were continued and quenched by
steps of �T = 0.01 over 10 000 simulation steps. For the
eutectic simulations, a misorientation of 0.1 rad ≈5.73◦ was
used. When deep in the eutectic coexistence region, the
composition profiles of a bicrystal exhibit small-amplitude
long-wavelength oscillations about their equilibrium values
on length scales greater than the lattice planar wavelengths.

This is due to the fact that for a solid-solid system with two
differing lattice constants it is not possible to create a box size
commensurate to zero stress in both crystals.

V. PRESSURE CONTROLLED PHASE TRANSFORMATION
KINETICS

In this section we demonstrate the ability to control var-
ious nonequilibrium phase transformations through the sys-
tem pressure. Each of the following demonstrations can be
achieved through quenches in temperature, however, here,
we will be considering an isothermal system subjected to
different pressures, compression or tension only.

In each of the following simulations we will consider
a 128 × 1024 pixel grid with square volume elements with
initial size �x ≈ 0.0818 and a constant reduced temperature
τ = 0.15, with reference temperatures of T0 = TM = 1.0. The
ideal free energy fitting parameters are t = 1.4, v = 1.0, w =
0.02, and c0 = 0.5. For simplicity we will set the enthalpy of
mixing ε(T ) = 0 for all temperatures. We consider the two-
phase equilibrium system consisting of α and β solid phases,
with each differing in their lattice parameters. To assist with
rapid equilibration, the mobilities were set to be extremely
high compared to the pressure relaxation coefficient: MA =
MB = 20, Mp = 0.1. In all simulations the cutoff wavelength
was set as in Kocher et al. [8] to be λc = 0.21.

As a point of clarification, in the following sections we
will often refer to processes occurring over a fixed number
of “simulation steps,” which refer to a scaled physical time
rather than the actual numerical time steps due to the adaptive
nature of the dynamical time stepping discussed in Sec. III C.
The times have all been rounded to the nearest output call.

A. Control of premelted interphase boundaries

When solids containing interfaces or interphase boundaries
approach their melting temperature, they have a propensity to
undergo a phenomenon known as premelting [29–31]. During
this transition, a disordered, metastable liquidlike film forms
between the abutting solid phases. With the width of the liquid
layer depending on the energetic differences between bulk
solid and liquid phases, it thus decreases with decreasing tem-
perature. The formation of the liquid layer is linked to the cost
of maintaining the interface or phase boundary energy and
its decomposition to distinct solid-liquid interfacial energies.
For the case of our eutectic system, below the eutectic, the
condition for premelting exists when γαβ > γαL + γβL where
γi j is the surface energy of the interface between phases i
and j.

To avoid the growth of either phase this simulation is set
up with a system concentration of 〈c〉 = 0.5 such that we have
equal phase fractions. The system parameters are the same as
those described in the caption of Fig. 3. The misorientation
between grains in the bicrystal is initially set to 0.2 rad ≈
11.459◦.

A schematic of the simulation cycle is shown on a constant
temperature phase diagram in Fig. 4. While the results of the
simulation are shown in Fig. 5, where the average concentra-
tion profile over time and a selection of density-concentration
visualizations are depicted. The target pressure was initially
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FIG. 4. Schematic view of the simulation cycle demonstrating
pressure mediated control of premelted boundary width, with dashed
lines showing the expected equilibrium phases of the system at points
A and B. The system starts with a pressure and total concentration
corresponding to point A. After a period of equilibration the system
pressure is quenched to point B. After a further equilibration the
system is quenched back to point A.

set to P0 = 0.01 and the system was allowed to equilibrate for
20 000 simulation steps. This initial pressure and temperature
combination was chosen such that the system was slightly
above the eutectic pressure and would therefore exhibit pre-
melting. The target pressure is then quenched to P0 = 0.03

FIG. 5. (Top left) Concentration vs time of the pressure mediated
changes to thermodynamic stability. The concentration shown at
each time is the concentration value averaged over the short direction
of the channel. (Top right) The grand potential density of the system
at the time corresponding to the value in the top left. (Upper middle)
The density-concentration profile of the system at the t = 15 000
simulation step represented by the solid horizontal line in the top left
figure. At this time the pressure is at P = 0.01. (Lower middle) The
density-concentration profile of the system at t = 35 000 simulation
steps represented by the dotted line in the top left figure. At this
time the pressure is at P = 0.03. (Bottom) The density-concentration
profile of the system at t = 65 000 simulation steps represented by
the dashed line in the upper left figure. At this time the pressure has
once again returned to P = 0.01.

FIG. 6. Schematic view of the simulation cycle demonstrating
pressure mediated control of thermodynamic stability, with dashed
lines showing the expected equilibrium phases of the system at points
A, B, and C. The system starts with a pressure and total concentration
corresponding to point A. After a period of equilibration the system
pressure is quenched to point B. After a further equilibration in which
the beta phase completely melts the system is quenched to point
C; over the course of the quench the beta phase nucleates from the
solid-liquid front. After the quench is completed the system is once
more allowed to equilibrate for some time.

over 10 000 simulation steps and allowed to equilibrate for
a further 10 000 simulations steps. Under this quench we
see that the interphase boundary narrows significantly and
the amplitude no longer decays to zero between phases. We
then quench back to the original pressure of P0 = 0.01 over
a further 10 000 simulation steps and allow for a further
equilibration of 20 000 simulation steps. Having returned to
the initial condition, we see that there is once again an
increased level of premelting, however it is reduced compared
to the original amount. This is due to a minor change in
the crystallographic orientation of the grains, which changes
the solid-liquid interfacial and the eventual grain boundary
energies.

B. Control of thermodynamic stability

While most metallurgical processes of casting are per-
formed at atmospheric pressure conditions [32, p. 287], after
casting the treatment of many industrially relevant materials
include processes such as annealing and rolling to induce
recrystallization and control grain size and distribution [32,
Ch. 7]. With the present model we demonstrate that changes to
the pressure that a system experiences can affect the stability
of its various phases.

To ensure phase elimination we consider a system at 〈c〉 =
0.3, such that there is a preferred fraction of a particular phase.
A schematic of the simulation cycle is shown on a constant
temperature phase diagram in Fig. 6. Results are observed in
Fig. 7, where we show the average concentration profile over
time and a selection of density-concentration visualizations.
The target pressure is initially set to P0 = 0.01 and the system
is allowed to equilibrate for 20 000 simulation steps. The
target pressure is then quenched to P0 = 0.0025 over 10 000
simulation steps before being allowed to equilibrate for a
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FIG. 7. (Top left) Concentration vs time of the pressure mediated
changes to thermodynamic stability. The concentration shown at
each time is the concentration value averaged over the short direc-
tion of the channel. (Top right) The grand potential density of the
system at the time corresponding to the value in the top left figure.
(Upper middle) The density-concentration profile of the system at
t = 15 000 simulation step, as represented by the solid horizontal
line in the top left figure. At this time the pressure is at P = 0.01.
(Lower middle) The density-concentration profile of the system at
t = 35 000 simulation steps as represented by the dotted line in the
top left figure. At this time the pressure is at P = 0.0025. (Bottom)
The density-concentration profile of the system at t = 80 000 simu-
lation steps as represented by the dashed line in the upper left figure.
At this time the pressure is at P = 0.04.

further 10 000 simulation steps. Over the course of this pres-
sure quench and equilibration, it is evident that both phases
undergo melting, however the β phase melts completely due
to the quench being below the eutectic pressure. This process
is then reversed by a pressure quench to P0 = 0.04 over
30 000 simulation steps. At some point after the simulation
has surpassed the original pressure of P0 = 0.01 the system
precipitates the β phase from the oversaturated liquid. This
hysteresis is due to the metastability of the oversaturated
liquid and the fact that this simulation was performed without
noise. The eventual precipitation is mediated by the correla-
tion length of the α phase penetrating into the liquid—i.e., the
solid phase heterogeneously nucleates from the solid-liquid
front.

C. Nonequilibrium interphase boundary motion

In this subsection we demonstrate pressure-induced devi-
ation from the equilibrium phase diagram and the resultant
nonequilibrium interphase boundary motion that occurs due to
this process. It is noted that as with all structural PFC models,
this current model does not presently have an explicit coupling
between the pressure or strain of the system and the lattice
parameter of the crystal. As such, if the crystal is allowed
to relax to its proper lattice parameter at one pressure it will
not be able to both maintain its proper lattice parameter and
simulation box coherency should the pressure change, barring
crystallographic rotations or recrystallization.

FIG. 8. Schematic view of the simulation cycle demonstrating
pressure mediated control of nonequilibrium interphase boundary
movement. The system starts with a pressure and total concentra-
tion corresponding to point A. After a period of equilibration the
system pressure is quenched to point B and allowed to equilibrate.
Strain on each phase of the bicrystal will result in nonequilibrium
concentrations.

In the simulations presented in this subsection, we con-
sider an overall system concentration of 〈c〉 = 0.4 and excess
free energy parameters k(A)

10 = 4π/
√

3, σ
(A)
10 = 0.8, T (A)

M =
1.0, k(B)

10 = 1.1k(A)
10 , σ

(B)
10 = 0.8, and T (B)

M = 1.0 such that the
increased overlap between peaks will result in larger sol-
ubility. A schematic of the simulation cycle is shown on
a constant temperature phase diagram in Fig. 8. We show
the results of the simulation in Fig. 9, where the average
concentration profile over time and a selection of density-

FIG. 9. (Top left) Concentration vs time of the pressure mediated
interphase boundary movement. The concentration shown at each
time is the concentration value averaged over the short direction of
the channel. (Top right) The grand potential density of the system
at the time corresponding to the value in the top left figure. (Mid-
dle) The density-concentration profile of the system at t = 15 000
simulation step, as represented by the solid horizontal line in the top
left figure. At this time the pressure is at P = 0.005. (Bottom) The
density-concentration profile of the system at t = 77 000 simulation
steps as represented by the dotted line in the top left figure. At this
time the pressure is at P = 0.01.
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concentration visualizations are displayed. The target pressure
was initially set to P0 = 0.005 and the system was allowed
to equilibrate for 20 000 simulation steps. The target pressure
was then quenched to P0 = 0.01 over 10 000 simulation time
steps before being allowed to equilibrate for a further 60 000
simulation time steps. The pressure quench and resultant
change in volume took the system entirely off equilibrium due
to box strain effects. As the α phase in this system has the
larger lattice parameter, it is energetically favorable for this
phase to take on additional solute, lowering its effective lattice
parameter and reducing strain. Due to the limited amount
of solute in the system the β phase has two options—lower
its volume fraction or lower its concentration. As lowering
its concentration would increase its lattice parameter and
therefore its strain, the energetically favorable choice is to
lower its volume fraction and thus the interphase boundary
moves.

VI. STRESS INDUCED GRAIN BOUNDARY
MOTION AND SOLUTE DRAG

Control of the growth and coarsening of grains in a solid
state material is of particular practical interest due to the
intimate relationship between the distribution of grain size and
macroscopic material properties [32, Ch. 7]. One of the means
by which one can control coarsening is by the addition of
various solutes which are attracted to the grain boundaries and
have been long known to drag the motion of these boundaries
[33,34]. While some work has been done in PFC modeling to
study solute drag on moving grain boundaries [12], this work
relied on artificial driving forces through ad-hoc impositions
of orientation biases.

In this section we illustrate the robustness of our new
model and the methodology presented herein to incorpo-
rate strain-induced grain boundary motion under isobaric
conditions. This will be of use in studies of solute drag
and other solid state phenomena to be examined in future
work.

Similarly to the simulations discussed in Sec. V, we will
consider a binary system where both the solute and solvent
prefer a triangular lattice symmetry. For completeness, we
added a k = 0 mode to the correlation function here in order
to control the bulk modulus of our phases and the density
jump between them. A depth, Bx = 1.0, and width, σ0 = 0.8,
of the Gaussian controlling the bulk modulus was chosen
to be a constant between phases for simplicity; additionally,
the depth of this well was chosen to be temperature inde-
pendent. The correlation kernel with this addition takes the
form

C̃i(k) = −Bx

τ
e
− k2

2σ2
0 + e− T

TM e
− (k−ki )2

2σ2
i , (36)

where for convenience the peak widths have been chosen
to have low degrees of overlap. Some care must be taken
in selecting either the width of this Gaussian or the cut-
off wavelength of the density-smoothing kernel. Should the
cutoff wavelength of the smoothing kernel be significantly
larger than the width of the k = 0 mode of the correlation
kernel, oscillatory behavior in concentration can result on
wavelengths that are considered long by the smoothing kernel

FIG. 10. Phase diagram for the triangle-triangle system with a
constant model pressure of P = 0.05. The parameters used in the
ideal free energy were t = 1.4, v = 1.0, w = 0.02, c0 = 0.5, and
ε(T ) = 0 for simplicity. The correlation kernel for the excess free
energy used parameters of k(A)

10 = 4π/
√

3, σ
(A)
10 = 0.6, T (A)

M = 1.0,
k(B)

10 = 2π , σ
(B)
10 = 0.8, and T (B)

M = 1.0. The k = 0 peak which con-
trols the bulk modulus of the system was set to a depth of Bx = 1.0
and width of σ0 = 0.8 for all phases. The red star denotes the 〈c〉 and
τ values at which the simulation will occurs.

but not penalized by the correlation function. The two-point
correlation function of a real material displays a low-k shelf
which smoothly transitions to the first peak of the structure. In
the XPFC formalism, correlation kernels can have a plateau
between this shelf and the first peak—it is this control over
parameters that results in this oscillatory behavior for suffi-
ciently poor parameter choices. Thus, reducing the extent of
this plateau leads to a reduction of undesirable oscillations in
concentration. The phase diagram for this system is shown in
Fig. 10 with the thermodynamic parameters discussed in the
figure caption.

To generate a system with a driving force between two
crystals of the same phase, we first generate two supercells
for the crystals using a 64 × 64 pixel grid with rectangular
volume element with initial size and constant temperature of
τ = 0.1, reference temperatures T0 = TM = 1.0, and average
concentration of 〈c〉 = 0.05 (a generalization of the number
conserving feedback loop to a rectangular volume element is
discussed in the Appendix). In this case the supercells cor-
respond to two unstressed boxes with a commensurate crys-
tals at orientations of θ = 0.0◦ and with initial volume ele-
ments �x(t = 0) = 0.12487858552217967 and �y(t = 0) =
0.14419736993450027 and θ ≈ 3.67◦, respectively, with re-
spect to the short axis of the eventual channel, with initial
volume elements �x(t = 0) = 0.12099641271809497 and
�y(t = 0) = 0.13971462290754239. Just as they do not start
equal, the volume elements of the two supercells are not
equal post relaxation. Thus, seeding the density profile of
one of the supercells into a box with differing dimensions
imposes a stress on that crystal. We use this concept to seed
the initial condition of the solute drag channel; we set the
volume elements of the simulation to that of the relaxed θ =
0.0◦ supercell and copy the density profile of the θ = 0.0◦
supercell to one part of the simulation domain and the density
profile of the θ ≈ 3.67◦ supercell to the remainder of the
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FIG. 11. (Top left) Concentration vs time of the strain induced
stress driven grain boundary motion. The concentration shown at
each time is the concentration value averaged over the short direction
of the channel. (Top right) The grand potential density of the system
at the time corresponding to the value in the top left figure. (Middle)
The concentration profiles averaged along the short dimension at t =
25 000 and t = 35 000 as represented by the solid and dashed lines
in the top left figure, respectively. (Bottom) The total density profiles
averaged along the short dimension at t = 25 000 and t = 35 000 as
represented by the solid and dashed lines, respectively.

domain. This setup corresponds to an approximate isotropic
strain on the box-misaligned crystal of ≈3%.

Once this system has been seeded we allow it to reach as
close to an equilibrium as it can achieve without changing
the physical structure of the system at any given position. To
facilitate this “pseudoequilibration” we run dynamics on the
long wavelength components of the free energy using model
A dynamics.

∂ (χ ∗ ρi )

∂t
≈ −Mi

(
χ ∗ δF

δρi

)
(37)

Once the pseudoequilibration is complete we simulate the
normal conserved dynamics of each density field at a constant
system pressure of P = 0.05 and density mobilities of MA =
MB = 1.0. To ensure that no crystallographic rotation of the
crystal occurs during the simulation we hold the short direc-
tion at a constant length, adjusting only the length element in
the long direction. Additionally, we reduce the stress in the
long direction by utilizing a scheme used by Berry et al. [35]
and introduce a penalty function to the edges of the system
which generates an artificial liquid. The results of this simula-
tion are shown in Fig. 11 and Fig. 12. The unstressed crystal,
being more energetically favorable than the stressed crystal,
begins to consume the stressed crystal. Solute is attracted
to the grain boundary due to its relatively disordered nature,
and thus as the grain boundary moves so too must the solute
peak. A thorough examination of the individual component
mobilities on the speed of the grain boundary motion will be
the topic of an upcoming paper.

FIG. 12. Density-concentration profiles of the system for some
selected subdomain of the system to show various features. (a) The
first 1400 pixels in the x direction to demonstrate the liquid penalty
layer as well as the system structure at early times, t = 1000.
The y direction is repeated three times in this figure for ease of
visualization. (b) An 800 pixel snapshot at t = 25 000 as represented
by the solid line in Fig. 11. (c) The same 800 pixels as (b) but at later
time t = 35 000 as represented by the dashed line in Fig. 11.

VII. CONCLUSION

We have presented a relationship that consistently maps the
concentration, a long-wavelength field, on to the constituent
density fields of a binary alloy, thus making consistent the
underlying assumptions used to derive the alloy XPFC model.
We have further reformulated XPFC dynamics in terms of
the chemical potentials of the individual component densities,
thus allowing for proper conserved dynamics in alloys, as
well as independent control of the component mobilities. We
have presented a more consistent formulation for the control
of pressure than previously done, through volume dynamics,
and applied these dynamics to an XPFC alloy. We have elu-
cidated the means of generating isobaric phase diagrams and
dynamical simulations within the XPFC alloy formalism. We
tested the fidelity of dynamical simulations against the cor-
responding phase diagrams. We also demonstrated the ability
to control kinetic processes through changes in pressure, an
important avenue for controlling phase transformations not
previously available in the PFC literature. Finally we have
provided a proof of concept for self-consistently simulating
strain induced stress driven grain boundary motion, which
could be used for the study of solute drag effects. This work
also allows various other strain effects to be considered more
consistently as shown in Sec. V C.
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APPENDIX: RECTANGULAR VOLUME ELEMENTS
AND ANISOTROPY

Specializing to two dimensions and generalizing to a rect-
angular volume element Eqs. (24) and (25) become

ρ̄(x, y, t + �t ) = ρ̄(x, y, t )e− Mp(ω̄−P0 )
�x�y , (A1)

Jisotropic = −
√

�x(t )�y(t ) +
√

�x(t0)�y(t0)

∫
V d2rρ(t )∫
v

d2rρ(t0)
.

(A2)

To further allow for relaxation of any box stresses we also
introduce an anisotropic component to the volume flux in
the form of an approximated strain energy. Since the ideal
contribution should not support any anisotropic stresses we
consider only the excess energy when formulating our phe-
nomenology. Thus to crudely measure the change in energy
of a given deformation of the system as a whole we propose
the phenomenological but qualitative form

εx = 1

V

∫
V

d2r n(r)F−1

{
∂C̃nn(k)

∂kx
ñ(k)

}
,

εy = 1

V

∫
V

d2r n(r)F−1

{
∂C̃nn(k)

∂ky
ñ(k)

}
, (A3)

where F−1{...} denotes the inverse Fourier transform. Such a
form has a few attractive features for a single bulk phase; it is
agnostic to both the structure of the density field and the box

dimensions; it vanishes both in the presence of a liquid and
an unstressed crystal; most importantly it is easy to calculate
numerically. As we are mostly interested in the stress present
in bulk phases, we have explicitly neglected the contribution
of gradients in the concentration, under the assumption that
they will be negligible far from grain boundaries, interfaces,
and explicit defects. Such an assumption is motivated in part
by the fact that the grand potential is only strictly analogous
to pressure in the absence of interfaces and defects. In this
paper we have found generally good results using the grand
potential as a stand-in for pressure across various systems with
interfaces; we thus assume that an anisotropy motivated by
bulk phases can similarly be applied to coexistence.

To apply this anisotropy the guess-check-correct algorithm
is slightly modified. The expected change in volume element
is calculated with an anisotropic contribution as

δ(�x) ≈ �tMp

�x + �y
(ω − P0),

δ(�y) ≈ �tMp

�x + �y
(ω − P0) + �tMp�x

�x + �y
(εy − εx ), (A4)

where we have chosen to only apply the anisotropy to the
y component so as to not double count the isotropic driving
due to the crystal elasticity. In this case the time step is
scaled based on the larger of the two expected changes to the
volume elements. Next the density is adjusted as per Eq. (A1)
before changing �x and �y as given by Eq. (A4). Finally,
Eq. (A2) is applied to both �x and �y to ensure proper
number conservation.
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