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Efficient thermoelectricity in Sr2Nb2O7 with energy-dependent relaxation times
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We evaluate theoretically the thermoelectric efficiency of the layered perovskite Sr2Nb2O7 via calculations
of the electronic structure and transport coefficients within density-functional theory and Bloch-Boltzmann
relaxation-time transport theory. The predicted figure-of-merit tensor ZT , computed with energy-, chemical
potential–, and temperature-dependent relaxation times, has one component increasing monotonically from
around 0.4 at room temperature to 2.4 at 1250 K at an optimal carrier density of around 2 × 1020 cm−3, while
the other components are small. The Seebeck coefficient is about 250 to 300 μV/K at optimal doping and
reaches 800 μV/K at lower doping. We provide a PYTHON code implementing various approximations to the
energy-dependent relaxation-time transport, which can be used to address different systems with an appropriate
choice of material parameters.
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I. INTRODUCTION

Thermoelectricity as an energy source has been the focus
of much research effort recently. Materials are assessed as
candidate thermoelectrics based on their figure of merit,

ZT = σS2

κe + κL
T,

with σ the electrical conductivity, S the Seebeck coefficient,
T the temperature, and κe and κL the electronic and lattice
thermal conductivities. Recently, we analyzed theoretically a
few materials [1,2], in particular [2] the layered perovskite
La2Ti2O7 (LTO), finding interesting figure-of-merit results. In
this paper, we study the layered perovskite Sr2Nb2O7 (SNO),
which is fairly close to LTO in terms of its low thermal con-
ductivity and has a well-established growth procedure. The
predicted figure of merit of SNO is very good, monotonically
increasing from 0.3 at room temperature to 2.4 at 1250 K.

We also examine several approximations to the definition
and use of relaxation times in the transport coefficient calcu-
lations in the Bloch-Boltzmann approximation [3], extending
our approach in Ref. [2]. We provide and discuss a PYTHON

code [4] that performs the calculations using data generated
by the ab initio VASP [5] code and using the BOLTZTRAP2
(BT2) [6] code as a library.

II. METHOD AND AUXILIARY RESULTS

A. General

The ingredients of ZT are the electronic transport coef-
ficients that can be obtained from the electronic structure
(electrical and electronic-thermal conductivity, Seebeck ther-
mopower) and the lattice thermal conductivity. For the latter,
we adopt the experimental data of Ref. [7]: About 1 W/K/m,
temperature independent, along the b axis and 1.8 W/K/m,
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roughly isotropic and temperature independent, in the a, c
plane. This assumption is justified by the fact that, based on
our previous analysis of the thermal conductivity (Ref. [2],
Sec. II C) in the analogous material La2Ti2O7, the low thermal
conductivity of SNO is probably intrinsic to the material and
not defect originated.

For the electronic transport coefficients we use the ab initio
density-functional band structure to calculate the coefficients
as a function of the temperature and doping in the relaxation-
time approximation to the linearized Boltzmann transport
equation, known as Bloch-Boltzmann theory [3,6]. We ex-
plore several approximations to the energy- and temperature-
dependent relaxation time (Secs. II C and II D). Based on
preliminary calculations and the behavior of LTO, we choose
to concentrate on n-type doping.

B. Ab initio calculations

Ab initio density-functional structure optimization and
band-structure calculations are performed with the general-
ized gradient approximation [8] and the projector augmented
wave (PAW) method [9] using the VASP code [5] with the
Sr_sv, Nb_pv, and O_s PAW data sets and using the maximum
of all suggested maximum cutoffs, 283 eV (increased as usual
by 30% for calculations involving stress). The structure of
the orthorhombic phase of SNO (Fig. 1) has space group
Cmc21 up to 1615 K, above which it becomes Cmcm (we
neglect the minor incommensurate modulation [10] below
490 K, as it preserves closely the layered structure and the
space group). We optimize the structure following quantum
forces (threshold 0.01 eV/Å) and stress (threshold 0.5 kbar).
The computed lattice constants are a = 4.00 Å, b = 27.30 Å,
and c = 5.82 Å, which are 1.5%, 2.1%, and 2.4% from
the experimental values [7] 3.933, 26.726, and 5.683 Å, as
expected due to the density functional we use. Electronic
states are calculated on a (24 × 8 × 16) k-point grid.

The conduction band minimum is at �, while the valence
band maximum is at X = (π/a, 0, 0); the minimum gap is
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FIG. 1. Sketch of the structure of SNO. The a axis points into
the page, the b axis vertically, and the c axis from left to right. The
primitive cell is outlined.

2.5 eV (underestimated, as expected, in comparison to the
roughly 4 eV experimentally [11,12]), so the n-type coef-
ficients are essentially unaffected by valence states at any
temperature. A closeup view of the conduction bands in the
vicinity of the � point is shown in the left and center panels in
Fig. 2; the right panel shows the density of states weighted by
the Fermi-Dirac function (i.e., the energy-dependent carrier
density), which clearly comes from the first four conduction
bands at typical temperatures. [The density of states is re-
calculated by our code (Sec. IV) from the interpolated band
structure on a 120 × 40 × 80 k grid.]

C. Transport coefficients and relaxation time

To compute the transport coefficients accounting for the
energy-dependent relaxation times we built a new code [4]
(see Sec. IV) using parts of the BT2 [6] transport code as
libraries. Via BT2, the ab initio bands (assumed to be rigid,
i.e., not changing with doping or temperature) are interpolated
as explained in Ref. [6] over a k grid much finer than the
ab initio one. For the calculations reported below, the grid
contains 60 times more points than the ab initio grid, so it
is approximately equivalent to a (94 × 32 × 62) grid.

As discussed in Refs. [1,2] in the constant-relaxation-time
(CRT) approach the constant τ = τ0 will factor out of the
integrals determining the Onsager coefficients. In this case,
the BT2 code returns the reduced coefficients σ 0 = σ/τ0 and
κe,0 = κe/τ0, determined by the band structure, temperature,

FIG. 2. Left and center: Conduction bands of SNO along the
three reciprocal lattice directions, starting at their minimum at �.
Right: Energy-dependent carrier density, i.e., the Fermi distribution
times the density of states, for T = 300, 600, and 900 K. The
chemical potential is 15 meV below the conduction edge.

and doping but independent of τ0. ZT is then calculated from
the reduced transport coefficients under some hypothesis for
the relaxation time τ0. This is generally a poor approximation
because a constant τ0 is uncertain and largely arbitrary, and
it cannot account for various relevant physical effects, such
as Fermi distribution tails and phonon occupation changes,
among others.

To improve over the constant-time approximation, we
adopt a model relaxation time which depends on the tempera-
ture T , chemical potential μ, and carrier energy E . τ enters
the kernel of the Fermi integrals (see Eq. (9) in Ref. [3])
which provide the building blocks of the Onsager transport
coefficients. The relaxation time is

τ (T, E , μ) = 1/Pimp + 1/Pac + 1/Ppolar,

where the rates P of impurity, acoustic-phonon, and polar-
phonon scattering are given in Refs. [1,14,15] and, for conve-
nience, in the Supplemental Material [16]. Piezoelectric scat-
tering is neglected because the relevant matrix element [14]
vanishes by symmetry [17,18]. Also, as in LTO, spontaneous
polarization points along the c axis, so by symmetry it will
not affect transport along a; as it turns out, thermoelectric
transport in SNO is sufficiently interesting only along the a
axis.

The behavior of τ (E , T ) in SNO is sketched vs E and T
in Fig. 3. Clearly the LO polar phonon scattering dominates,
and its downward jump across the LO phonon energy is at a
very low energy, the most relevant region for transport (the
detailed parameter values involved are discussed below). We
mention in passing that it is now becoming possible [19]
to compute ab initio the full k and energy dependence of
the τ components related to electron-phonon scattering. This
approach is, however, hugely more complex than ours, is still
in its infancy in the field of thermoelectricity, and is therefore
beyond our present scope.
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FIG. 3. Relaxation time τ (T, E ) vs E (T = 700 K) and T (E =
54 meV above the conduction edge). μ is fixed at 0.

D. Approximations and parameters for τ

With the τ model just discussed, here we calculate the
transport coefficients ZT using two approximations. The best
one is the NCRT (nonconstant relaxation time), which uses
the full energy-dependent time in the calculation of the Fermi
integrals, including its chemical-potential dependence (specif-
ically τ multiplies the kernel σ in the integral of Eq. 9 in
Ref. [6]). The ART (average-relaxation-time) approximation
uses instead the T - and μ-dependent, energy-averaged [20]

τART(T, μ) = 2

3

∫ ∞
0 E τ (T, E , μ)D(E )

( − ∂ f (T,E ,μ)
∂E

)
dE

∫ ∞
0 D(E ) f (T, E , μ) dE

[D(E ) is the density of states, and f the Fermi-Dirac dis-
tribution] to compute ZT vs T from the reduced transport
coefficients, as in Eq. 3 in Ref. [2]. The relaxation time,
computed off-line and only once for each T and μ, still
accounts for the T dependence of μ, Fermi function, etc., also
improving slightly over Ref. [2], which used a parabolic band
density of states.

The NCRT is typically relatively inexpensive (depending
on the system and control parameters, up to at most a few
hours on a laptop with a few gigabytes of memory usage, but
typically much less than that). The ART is even lighter and
is useful for exploratory work, providing in our experience
a good guide to the full results (see the discussion below).
Of course, CRT results can be compared by recalculating
the reduced coefficients with BT2 and using a constant time
(which we choose to be τ0 = 5 fs) to obtain ZT . All three
codes are provided in the Supplemental Material [16] as well
as online and discussed in Sec. IV.

The model τ requires several parameters. Some are im-
ported from experiment or previous calculations: dielectric
constants ε∞ = 4.7 and εlattice = 33.5 [13,21], average sound
velocity v = 4438 m/s [7], and dominant LO-phonon fre-
quency h̄ωLO = 11.4 meV [22]. Some others are computed
directly: effective conduction mass m∗

c = 0.3me, deformation
potential D = 10 eV, and density = 4930 kg/m3. The mass
is obtained from a polynomial fit to the conduction band vs
k (we use the a component of the mass tensor, since the

FIG. 4. Components of the ZT tensor at optimal doping
(off-diagonal components are 0).

transport along the other directions is negligible anyway);
the deformation potential is a numerical derivative of the
conduction edge energy vs the strain. We note that the lowest
LO phonon with a polarization in STO is much lower than in
LTO, which enhances the polar scattering at low energy. We
use only one phonon replica in the polar scattering rate.

III. RESULTS

In Fig. 4 we show the diagonal components of the ZT
tensor at optimal doping (i.e., the maximum value as a func-
tion of the doping; as shown below, in this case the optimal
doping changes little with temperature) obtained with our
best approximation NCRT. The b and c components are small
and of no relevance for the thermoelectricity, so we disregard
them henceforth. The a component of ZT is instead large and
therefore of practical interest, especially in the 500–1000 K
range, where it is between about 1 and 2.

FIG. 5. ZT vs T (a component) for the different relaxation time
treatments. In the CRT, τ0 = 10 fs.
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FIG. 6. ZT , Seebeck coefficient, conductivity, and electronic
thermal conductivity vs doping at different T ’s in the NCRT ap-
proach. T increases from 200 to 1300 K in steps of 100 K, indicated
by increasing line thickness. Circles indicate the values at optimal
doping, i.e., where ZT is maximal at that T .

In Fig. 5 we show ZT (a component) vs T at optimal
doping for the three methods discussed above. Clearly, there
are no dramatic deviations between the ART and the NCRT.
The CRT result, aside from its direct dependence on τ0 (which
in this case was chosen sensibly after the fact), deviates most
from the others due to its lack of temperature dependence.

Next, in Fig. 6 we report the ZT , Seebeck coefficient,
electrical conductivity, and electronic thermal conductivity vs
the doping as obtained by the NCRT, for T between 200 and
1300 K. The different curves for increasing T have increasing
line thicknesses. The circles indicate the values at optimal
doping, i.e., the doping at which ZT is maximal, which is
between 1 and 3 × 1020 cm−3. Of course, it is easy to read
off the graph any of the quantities at a fixed doping; for
example, ZT � 1 at 5 × 1019 cm−3 and 900 K. Similarly, the
T behavior can be inferred by following the positions of the
circles, and it is similar to that of LTO [2].

This prediction of ZT vs doping is also, implicitly, a pre-
diction of the optimal doping needed to achieve the maximum
ZT . We are in no position to evaluate the dopability of SNO,
so it remains to be seen whether the optimal doping, or
anything close to it, can be achieved experimentally. Also,
we recall in passing that the conductivities are determined
solely by electrons living in the perfect-crystal bands and
subject to scattering from (mostly polar) phonons and charged
impurities as embodied in τ (T, E , μ), but no scattering is
accounted for from disorder, dislocations, neutral impurities,
traps, etc.; these could affect transport in ways we cannot
quantify.

In this context, we note that the material may be useful
even if not highly dopable, for applications requiring just a
high thermoelectric power: |S| is indeed larger at low doping,
about 750–800 μV/K at 1018 cm−3.

In Fig. 7 we report (XART − XNCRT)/XNCRT, the relative
deviation between the ART and the NCRT methods for quan-
tity X . It appears that the ART is within about ±5% to 10%
of the full result for ZT in the optimal doping region. The

FIG. 7. Percentage deviations of the various quantities calculated
with the ART from those calculated with the NCRT in Fig. 6. Circles
as in Fig. 6.

conductivities are overestimated (by 0 to roughly 40%) using
the ART, although the difference is largely compensated in
the ZT ratio. Interestingly, this figure also reveals the extent
to which the treatment of τ affects the Seebeck coefficient.
S does depend on τ in the NCRT, whereas by construction it
does not in the ART. The NCRT description appears to reduce
S (in absolute value) by about 5% to 10% in this material. Note
that, of course, none of the above findings need be generally
applicable to other systems.

We close with an estimate of a directional average of
ZT , potentially useful for polycrystalline material. In Fig. 8
we report three averages: The trace of ZT , the harmonic
average [25] of the components of ZT , and ZT calculated
from the harmonic averages of the conductivities and the trace
of the Seebeck coefficient. The latter is probably the appro-
priate choice, but in any event the results are, as expected,
much less exciting due to the small c and b components
and the dominance of low conductivities in the averages.
This suggests that the scope for SNO in thermoelectricity is
as a monocrystal, not quite as a polycrystal. This may not

FIG. 8. Three types of directional averages of ZT .
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FIG. 9. Flux diagram of the code for the NCRT.

be entirely disheartening, because the structural and growth
properties [23] of SNO render it unlikely to be produced in
the form of nanometer-sized polycrystals, multimicron-sized
crystallites as in sintered powder ceramics being likely [24]).
Decently sized monocrystals are indeed fairly common and
should be the ultimate goal of growth experiments.

IV. THE CODE AND HOW TO USE IT

Our code [4] is written in PYTHON (tested up to version 3.7)
and is a free and open source. We provide its current snapshot
in the Supplemental Material [16], with the VASPRUN.XML and
INPUT files used for the present material. The code comes in
three stand-alone versions implementing the approximations
CRT, ART, and NCRT discussed above.

In the CRT and ART, the reduced coefficients calculated by
BT2 [6] are used to compute ZT either with the constant τ0

or, in the case of ART, with an energy-averaged τ , computed
separately. If the NCRT is used, the code follows BT2 [6] up
to the calculation of energies εb(k) on the fine grid, at which
point it computes the relaxation time τ (ε) on the same energy
grid and multiplies the integrand of the Fermi integrals by τ .
After that, it goes back to the BT2 sequence and eventually
outputs the full coefficients. The current version works for n-
type doping; extension to p-type doping may be implemented,
in which case the code will be updated at [4].

The multiprocessing PYTHON library is used for τ and
the Fermi integrals (currently only for ART.PY). The output
is saved in JSON format, and the data structure is based on
NUMPY multidimensional arrays: For example, the figure of
merit ZT is a three-dimensional array, the dimensions being a
Cartesian component (with no magnetic field, ZT has only
diagonal elements), the temperature T , and the chemical
potential μ.

The operative structure comprises three folders: SCRIPT,
INPUT, and DATA. The folder SCRIPT contains the code in
the three versions CRT.PY, ART.PY, and NCRT.PY (Fig. 9).
Also, it hosts the utilities TAU.PY, which computes the re-
laxation times vs T and E for plotting and external use, and

PLOTTER.PY, which plots a number of quantities of interest, as
well as the custom libraries FUNZVAR.PY and RELAXTAU.PY.
The latter contains the τ model and can be edited to include,
for example, additional scattering mechanisms.

The folder INPUT must contain two (optionally, three)
files. The file VASPRUN.XML contains the ab initio calculation
results, including the band structure, obtained with VASP (for
information on using other DFT codes refer to the BT2 fo-
rum [26]). The file INPUT contains control parameters (among
which are the mesh multiplier from Sec. II C and the ranges
of temperature, chemical potential, energy, etc.) and material
parameters (dielectric permittivities, effective masses, defor-
mation potentials, sound velocities, LO-phonon energies) that
enter the relaxation-time model, as well as the lattice thermal
conductivity tensor. The latter can alternatively be read from
the third optional file LATTHCOND.

The chosen script (or scripts) plus TAU.PY are run in
SCRIPTS. The output, dumped in DATA, is then analyzed using
PLOTTER.PY, which reads and deserializes JSON data toNUMPY

arrays and plots the quantities of interest (and can of course be
adapted to fit individual requirements). The package is stand-
alone and its disk occupation is minor, so it can be placed
anywhere, for example, in a local directory for the material
under study. More information is given in the package’s
README.pdf file [4] and in the Supplemental Material [16].

As already mentioned, the NCRT is fairly inexpensive
computationally, depending on the system and control param-
eters. For the present material, it costs a couple of hours with
about 1 Gbyte memory usage for production-level parameters.
We will implement multiprocessing in the NCRT also shortly,
which will speed up the proceedings accordingly. The ART,
on the other hand, will run in minutes, being lighter by its
very nature as well as its use of parallelism.

V. SUMMARY

We predicted a monotonic ZT of between 0.4 and 2.2 at
between 300 and 1200 K under n doping in the layered per-
ovskite Sr2Nb2O7 via calculations of the electronic structure
and transport coefficients. The optimal carrier density is in
the low–1020 cm−3 range. At optimal density the Seebeck
thermopower coefficient is between 220 and 320 μV/K, but it
can reach 800 μV/K at lower doping. The largest ZT is along
the a crystal axis; other components are one to two orders
of magnitude smaller. Much of the potential of this material
is due to its low and almost T -independent lattice thermal
conductivity. We explored the use of constant or energy-
and temperature-dependent relaxation times. Averaged-time
or full calculations are rather comparable in the present case,
though of course this need not be the case in general. To help
improve the treatment of relaxation time for other materials,
we provide a code [4] implementing our approach.
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