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Terahertz topological plasmon polaritons for robust temperature sensing
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We theoretically investigate the application of topological plasmon polaritons (TPPs) to achieving robust
temperature sensing. Based on an analogy of the topological edge states in the Su-Schrieffer-Heeger model,
TPPs are realized in a one-dimensional intrinsic indium antimonide (InSb) microsphere chain. The existence of
TPPs is demonstrated by analyzing the topology of the photonic band structures and the eigenmode distribution.
Due to the temperature dependence of the permittivity of InSb in the terahertz range, the resonance frequency of
TPPs can be largely tuned by the temperature. The temperature susceptibility of the TPP resonance frequency
can be as high as 0.0264 THz/K at room temperature, leading to a figure of merit over 150. Based on calculations
on the optical local density of states (LDOS) near the chain, it is shown that the temperature susceptibility of
TPPs is experimentally detectable via near-field probing techniques. Numerical results also indicate the sensing
performance is immune to disorder. We further propose a robust and practical calibration method to correctly
obtain the peak frequency of the LDOS spectrum due to the TPPs and then the temperature susceptibility, which
is based on the ratio between the LDOS of a topological chain and that of a nontopological one. These TPPs can
be potential candidates for robust temperature sensing, for which several experimental considerations are further
discussed.
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I. INTRODUCTION

Topological phases of matter can support robust edge states
immune against scattering from disorder and imperfections,
which have received a great deal of attention in recent years
and been demonstrated for electronic [1], electromagnetic [2],
acoustic [3], cold atomic [4], and mechanical [5] systems. In
particular, since topological photonic systems can hold topo-
logically protected optical modes [6–9], they provide great
opportunities for achieving precise, robust, and local control
of light, which facilitate high-performance photonic devices
such as unidirectional waveguides [10], optical isolators [11],
and topological lasers [12–14].

Notably, as a unique combination of topological protec-
tion and strong light confinement due to plasmonic exci-
tations, topological plasmon polaritons (TPPs) are arguably
among the most promising approaches to robust and deep-
subwavelength scale light-matter interactions and have there-
fore attracted growing attention in the last a few years
[15–20]. For instance, the modal wavelength of topologically
bounded plasmonic modes in multilayered graphene systems
can be squeezed as small as 1/70 of the incident wavelength
[21]. Low-power-consumption and highly integrated four-
wave mixing processes can also be engineered through the
TPP modes in graphene metasurfaces [22]. As a result, the
topological protection of the spectral and spatial position of
TPPs with enhanced light-matter interactions indeed provides
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a promising route to robust sensing, like what has been done
in non-Hermitian photonics using exceptional points [23–28].
However, there have been very few works concerning topolog-
ical plasmon polariton modes for sensing applications so far.

In this work, we theoretically explore the possibility of
the application of TPPs to temperature sensing. Based on a
photonic extension of the Su-Schrieffer-Heeger (SSH) model
[29], we realize TPPs in one-dimensioanl (1D) dimerized
indium antimonide (InSb) microsphere chains in the terahertz
(THz) range, protected by the band topology that is char-
acterized by the quantized complex Zak phase. The choice
of intrinsic InSb is motivated by its temperature-dependent
carrier concentration that can result in a thermally tunable
plasma frequency in the THz range [30–32]. This work is also
motivated by the rapid development of terahertz technologies,
which makes the flexible generation [33], manipulation [34],
and detection [35] of THz radiation possible and efficient,
leading to promising applications in radar [36], communica-
tion [37], biological imaging [38], and microscopy [39,40].
Here, we reveal that the resonance frequency of the TPPs in
the dimerized microsphere chain can be successfully tuned
by the temperature, leading to a high sensitivity and figure
of merit. By calculating the local density of states (LDOS)
at different temperatures, we further demonstrate that this
temperature sensitivity can be experimentally detected and
find that the LDOS signals of these TPPs are immune to
disorder, giving rise to a robust temperature sensing function-
ality. Furthermore, we propose that the peak frequency of the
ratio between the LDOS of a topological chain and that of
a nontopological one can be utilized to achieve an improved
sensing performance in practice.
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II. MODEL

In Fig. 1(a), the 1D InSb microsphere chain is assumed to
be aligned along the x-axis, where the dimerization is intro-
duced by using inequivalent spacings d1 and d2 for the two
sublattices, denoted by A and B with a dimerization parameter
defined as β = d1/d where d = d1 + d2 is the lattice constant.
This dimerization process gives rise to different “hopping”
amplitudes of plasmon polaritons in either directions, well
mimicking the SSH model for electrons [29]. Note due to the
presence of near-field and far-field dipole-dipole interactions,
a theoretical model beyond the nearest-neighbor approxima-
tion in the conventional SSH model should be implemented
[41,42]. To this end, the radius of the InSb microsphere is set
to be a = 1 μm, which is much smaller than the wavelength of
interest (usually larger than 100 μm). The electromagnetic re-
sponse of an individual InSb microsphere is then described by
the electric dipole polarizability with the radiative correction
given by

α(ω) = 4πa3α0

1 − 2iα0(ka)3/3
, (1)

where α0(ω) = εp(ω)−1
εp(ω)+2 , ω is the angular frequency of the driv-

ing field and k = ω/c is the wave number with c denoting the
speed of light in vacuum [43–45]. The permittivity function
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FIG. 1. (a) Schematic of the dimerized InSb microsphere chain
with a scattering-type SNOM tip nearby and THz incident radiation.
(b)–(c) Real parts of the longitudinal band structures of a dimerized
InSb microsphere chain under a temperature of (b) 200 and (c) 300 K
with different β.

of intrinsic InSb can be modeled by a Drude model as

εp(ω) = ε∞ − ω2
p

ω2 + iγω
, (2)

where ε∞ = 15.68 is the high-frequency limit of the permit-
tivity, ωp is the plasma frequency, and γ is the damping coef-
ficient, both of which depend on the temperature [30,46,47].
In particular, ωp =

√
Nce2/m∗ε0 and γ = e/m∗μ, where Nc is

the carrier concentration, m∗ is the effective mass of carries,
μ is the mobility, e is the electric charge of an electron, and ε0

is the permittivity of the vacuum.
In the investigated temperature range in this work, the car-

rier mobility varies very slightly with the temperature and thus
can be regarded as constant [46,48], leading to a decay rate of
γ = 10π×1010rad/s [30,48]. The effective mass is chosen to
be m∗ = 0.015me [49]. When the temperature T is in the range
from 160 to 350 K, the energy gap of InSb changes very little,
and its the carrier concentration Nc (in cm−3) as a function
of temperature is described by the following experimental
correlation equation [30,46,47,50]:

Nc = 5.76×1014T
3
2 exp

(
−0.13eV

kBT

)
, (3)

where kB is the Boltzmann constant. When the distance be-
tween the centers of different microspheres is larger than
3a, higher multipolar excitations can be neglected, and thus
the electromagnetic interactions are adequately described by
following coupled-dipole equations [43–45]:

p j (ω) = α(ω)

⎡
⎣Einc(r j ) + ω2

c2

∞∑
i=1,i �= j

G0(ω, r j, ri )pi(ω)

⎤
⎦,

(4)

where Einc(r) is the external incident field and p j (ω) is
the excited electric dipole moment of the jth microsphere.
G0(ω, r j, ri ) is the free-space dyadic Green’s function de-
scribing the propagation of field emitting from the ith micro-
sphere to jth microsphere [44], which is given by

G0(r j, ri ) = exp (ikr)

4πr

(
i

kr
− 1

k2r2
+ 1

)
I

+ exp (ikr)

4πr

(
− 3i

kr
+ 3

k2r2
− 1

)
r̂r̂ − δ(r)

3k2
,

(5)

where k = ω/c is the free-space wave number. The Dirac
delta function δ(r) is responsible for the so-called local field
in the scatterers [51]. This model takes all types of near-field
and far-field dipole-dipole interactions into account and is thus
beyond the traditional nearest-neighbor approximation [15].

III. BAND STRUCTURE AND TOPOLOGICAL MODES

According to the polarization direction of the dipole mo-
ments, the eigenmodes can be divided into two types: trans-
verse and longitudinal [52]. More specifically, the dipole
moments in the longitudinal modes are polarized along the
x-axis, while those in the transverse modes are polarized
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perpendicular to the x-axis. In this work, we are mainly con-
cerned with the topological properties of longitudinal modes.
This is because transverse ones are more strongly coupled
to the free-space radiation with a much narrower band gap
and the localization degree is lower due to the long-range
dipole-dipole interactions, all of which make it difficult to
observe transverse topological eigenmodes experimentally, as
discussed in our previous papers [41,42]. We will also see that
in Fig. 4, the near-field detected signal is mainly determined
by the longitudinal modes [42].

To identify the topological properties, we first calculate the
longitudinally polarized band structures. The calculation is
done by applying the Bloch theorem to Eq. (4) for an infinitely
long chain, which results in the following two-band dispersion
relation [41,42]:

1

4π (ka)3

εp(ω) + 2

εp(ω) − 1
− i

6π
= aL

11(kx )

±
√

aL
12(kx )

√
aL

21(kx ), (6)

where aL
11(kx ), aL

12(kx ), aL
21(kx ) are the matrix elements of

the effective “Hamiltonian” of the system with expressions
presented in Appendix A. By sweeping the Bloch wave vector
(momentum) kx across the first Brillouin zone and solving the
eigenfrequencies from Eq. (6) in the lower complex plane,
we can immediately obtain the band structure. The solved
eigenfrequencies are generally expressed in the complex form
of ω̃ = ω − i	/2 indicating the non-Hermitian property of
the present system [42], where the real part ω amounts to
the angular frequency while the imaginary part 	 corresponds
to the linewidth (or decay rate) of the eigenmode [17]. Note
in the above equation, the radius a only affects the detailed
values of the eigenfrequencies, as long as the electric dipole
approximation with the radiative correction and coupled-
dipole model are valid, not having any qualitative impact on
the band topology [42]. Therefore, without loss of generality,
we adopt a fixed radius throughout the paper.

In Figs. 1(b) and 1(c), the real parts of the longitudinal band
structures under two different temperatures of T = 200 and
300 K are presented, respectively, for different dimerization
parameters at a fixed lattice constant of d = 10 μm. Since
band structures are identical for the cases of β and 1 − β with
the difference lying in their topological invariant [16,17], the
band structures for the cases of β = 0.3 and β = 0.4 are not
plotted. For β �= 0.5, band gaps in the real frequency space
persist to be open and a larger |β − 0.5| gives rise to a wider
band gap. This behavior is consistent with the conventional
SSH model [4]. Moreover, at different temperatures, the cen-
tral frequency of the band gap is vastly different, actually close
to the frequency of the localized surface plasmon resonance
(LSPR) of a single microsphere at different temperatures,
as a result of the strong coupling between the collective,
delocalized surface plasmon polariton (SPP) modes of the two
sublattices at β �= 0.5 [42].

While the present system is open and hence non-Hermitian,
for longitudinal modes the non-Hermiticity in essence does
not break the bulk-boundary correspondence (BBC) and the
complex Zak phase θZ is adequate to capture the topological
properties in the bulk side, which is the geometric phase

picked up by an eigenmode when it adiabatically evolves
across the first Brillouin zone (BZ), as proven by previous
works [41,42,53], from which as well as Appendix B more
details can be found. Moreover, although in the present system
the chiral symmetry breaks down, θZ is still quantized (having
only two values, 0 and π ) in a similar way as in the chirally
symmetric system because the eigenvectors are independent
of the chiral-symmetry breaking terms in the effective Hamil-
tonian [17,41,42]. Calculation shows that the complex Zak
phase for β = 0.7 and β = 0.6 is π and 0 for β = 0.3 and
β = 0.4. Detailed calculation and relevant discussions on the
complex Zak phase are also presented in Appendix B. Further-
more, we examined that regardless of the lattice constant and
temperature, the complex Zak phase is guaranteed to be 0 for
β < 0.5 and π for β > 0.5 for longitudinal modes [41,42].
Consequently in the present system, the complex Zak phase
is a well-defined topological invariant in the bulk side, which
can be summarized using the following expression:

θZ =
{
π β > 0.5, (1 − β )d � 3a,

0 β < 0.5, βd � 3a,
(7)

where the restrictions on the geometric parameters (β and a)
are made solely as a requirement of the validity of the dipole
approximation.

To examine the bulk-boundary correspondence (BBC), a
crucial principle in topological physics, we then turn to a finite
system under the open boundary condition and calculate its
eigenmode distribution (i.e., discrete band structures). This
can be done by using Eq. (4) with a zero incident field
[17,52]. More specifically, an eigenvalue equation in the form
of G|p〉 = α−1(ω)|p〉 is obtained, with G standing for the
interaction Green’s matrix and |p〉 = [p1 p2 . . . p j . . . pN ] de-
noting the right eigenvector or the dipole moment distribution
of an eigenmode with p j the dipole moment of the jth
microsphere. This equation also gives rises to a discrete set
of complex eigenfrequencies in the lower complex plane for
the eigenmodes [17,41,42]. Additionally, for each eigenmode,
the inverse participation ratio (IPR) is calculated to quantify
its degree of spatial localization

IPR =
∑N

n=1 |p j |4( ∑N
n=1 |p j |2

)2 , (8)

which is closer to 1 for a more spatially localized eigenmode
[41,54]. The eigenmode spectra for the cases of β = 0.7
[Fig. 2(a)] and β = 0.3 [Fig. 2(b)] under T = 300 K are pre-
sented. In both cases complex band gaps keep open, consistent
with the complex band gaps in the Bloch band structure.
However, a significant difference between the β = 0.7 and
β = 0.3 cases can be noted, which is that there are two
midgap modes with high IPRs in the band gap in the former
case. The dipole moment distributions of the two midgap
modes are shown in the inset of Fig. 2(a), which are found
to be highly localized over both boundaries and thus have
large IPRs reaching 0.5 (namely, mainly localized over two
microspheres). By considering the nontrivial complex Zak
phase of the β = 0.7 case in the bulk side, it can be verified
that these midgap modes are topologically protected edge
modes, namely, topological plasmon polaritons [25,55].
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FIG. 2. Topological eigenmodes in finite systems at T = 300 K. (a) Longitudinal eigenmode distribution of a dimerized chain with N =
100 microspheres under β = 0.7 and d = 10 μm. Note there are two spectrally overlapping midgap modes. Inset: Dipole moment distribution
of the midgap edge modes. (b) The same as (a) but here β = 0.3. (c) Longitudinal eigenmode distribution for a connected chain. (d) Dipole
moment distribution of the interface mode in (c), compared to those of two arbitrarily chosen bulk eigenmodes. (e) Real parts of the complex
eigenfrequency spectrum of longitudinal eigenmodes as a function of the lattice constant d for β = 0.7. (f) Dipole moment distribution for the
topological edge modes at different lattice constants.

To further demonstrate the BBC, Fig. 2(c) shows the
eigenmode distribution of a 1D connected chain consisting
of a topologically trivial chain with β = 0.3 in the left and
a topologically notrivial chain with β = 0.7 in the right. The
distance between the two chains is set to be 10 μm. We can
clearly observe two midgap modes with high IPRs reaching
over 0.9 (namely, mainly localized over one microsphere),
one of which is the topological interface mode while the
other is the topological edge mode localized at the right
boundary of the right chain. In addition, in Fig. 2(d), the
dipole moment distribution for the topological interface mode
is shown compared to those of two typical bulk eigenmodes,
which are extended over the chain. To investigate the effect
of lattice constant on the topological edge modes, the real
part of the eigenfrequency spectrum of a finite chain as a
function of the lattice constant is presented in Fig. 2(e) with
the dimerization parameter fixed as β = 0.7. It is found that
the complex band gaps persist to be open with high-IPR
eigenmodes robustly emerging in the complex band gaps.
Note at large lattice constants, the real band gap almost
closes while the imaginary part still opens, which are not
shown here for brevity. In addition, the complex frequency of
the topological modes hardly varies with the increase of the
lattice constant, indicating its robustness (with a variation of
angular frequency smaller than 0.003 cm−1 or about 5 nm).
The dipole moment distributions of the topological midgap
modes under different lattice constants are also presented
in Fig. 2(f). In addition, we also confirm that for the cases
of β < 0.5 at different lattice constants, no localized edge
eigenmodes can be found. Therefore, by summarizing the
results presented in Figs. 1 and 2, we can unambiguously

confirm that highly localized TPPs are found in the present
system, which are topologically protected by the well-defined
complex Zak phase if the dimerization parameter β > 0.5,
regardless of the lattice constant and temperature.

Let us remark that the main features of our system
presented in this section, including the band structures,
the definition and quantization of the complex Zak phase, the
emergence of topological edge modes and the validity of the
BBC, are in line with the general properties of 1D dimerized
dipolar chains, which have been thoroughly studied in pre-
vious works under different physical settings [15–20,41,42].
The only distinction in the present work is that the TPPs exist
in the THz range and can be tuned by the temperature due
to the intrinsic property of the InSb material. More details on
the general properties of 1D dimerized dipolar chains can be
found in aforementioned works and Appendixes A and B.

IV. TEMPERATURE SENSING APPLICATION

In this section, we investigate the effects of temperature
on these TPPs and their application to temperature sensing.
In Fig. 3, we show the variation of resonance frequencies
of edge and interface TPPs with the temperature. It is ob-
served that the resonance frequency of TPPs can be varied
in a wide frequency range from about 0.2 to 4 THz by
increasing the temperature from 160 to 350 K. The frequen-
cies of edge and interface TPPs almost overlap with each
other, indicating the spectral stability of these topological
modes against geometric parameters. The band gaps also
become wider as the temperature grows, which makes it
easier for experimental observation of TPPs at relatively high
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FIG. 3. (a) Effects of temperature on the resonance frequency
(wavelength) of edge and interface modes of the topological plasmon
polaritons. (b) Susceptibility and figure of merit (FoM) quantifying
the temperature sensing performance of the topological plasmon
polaritons. Here the parameters are β = 0.7 and d = 10 μm. The
disordered realizations are randomly chosen.

temperatures (not shown here for brevity). These observations
feature a temperature sensing functionality for the TPPs. The
temperature sensing performance can be quantified by using
the temperature susceptibility of the resonance frequency of
TPPs, which is defined as S = �ωTPP/�T , where � indicates
a small variation for a physical quantity [56,57]. At room
temperature (approximately taken as 300 K), the susceptibility
is about 0.88 cm−1/K, or 0.0264 THz/K, which is equivalent
to a wavelength shift around 1.3423 μm/K. Moreover, we
can define a figure of merit (FoM) of this temperature sens-
ing performance as FoM = ST/	 = �ωTPPT/(	�T ), which
reaches over 150 at room temperature. In Fig. 3(b), the varia-
tions of S and FoM with the temperature are presented. As a
comparison, a recent design of optical temperature sensors ex-
hibited a temperature susceptibility about 8.9×10−3 THz/K
and FoM around 119 [58], which are significantly lower.

In experiment, it has been shown that TPPs, or more gen-
erally, topological photonic modes, can be conveniently de-
tected by the scanning near-field optical microscopy (SNOM)
[59–61] or other high-momentum sources [62]. In THz wave-
lengths, scattering-type SNOM (s-SNOM) is most widely
used to reach subdiffraction limited resolution [40,63–69].
The images taken by a s-SNOM can closely follow the
local density of states (LDOS) distribution in the system,
yet not rigorously equivalent, as demonstrated theoretically
and experimentally by a number of studies [55,64,70–76].
In particular, it has been shown by recent theoretical and
experimental results that the LDOS value can be deduced
from the phase spectrum [77,78]. Here for simplicity, we only
calculate the LDOS ρ by putting an ideal electric dipole near
the chain with a distance of 100 nm at different temperatures
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FIG. 4. Calculated LDOS as an experimentally accessible signal
of TPP temperature susceptibility. (a) The LDOS values for topo-
logical and nontopological chains at different temperatures. (b) The
LDOS for topological and nontopological disordered (dis.) chains at
T = 300 K, compared to those of ordered (ord.) ones.

as a proof-of-concept demonstration for future experiments,
as schematically shown in Fig. 1(a) with a SNOM cantilever
nearby. The calculation details can be found in Appendix C.
The LDOS can be regarded as an indicator of the strength of
light-matter interactions.

The spectra of normalized LDOS ρ/ρ0 for both topo-
logically nontrivial and trivial systems are summarized in
Fig. 4(a), where ρ0 = ω2/(π2c3) is the LDOS in vacuum.
For topological chains (β = 0.7), it is found that the LDOS
is substantially enhanced at the center of band gaps due to
the existence of TPPs. In the meanwhile, for topologically
trivial chains (β = 0.3), the values of LDOS are substantially
suppressed within the band gaps, and the LDOS peaks emerge
at the band edges due to non-topological plasmon polaritons.
As a result, there is a slight frequency shift between the LDOS
peaks of topological trivial and nontrivial cases [42]. To be
more specific, for T = 300 K at the resonance frequency of
the TPP, namely, ω = 81.4 cm−1, ρ/ρ0 = 854.87 reaches its
maximum for the topological chain, while the LDOS near
the nontopological chain is ρ/ρ0 = 676.86 at this frequency,
whose peak lies at around ω = 81.2 cm−1. Moreover, by
slightly varying the temperature to 299 and 301 K, we can ob-
serve considerable shifts of LDOS peaks for both topological
and nontopological cases.

It seems that both topological and nontopological plasmon
polaritons can be used to perform temperature sensing accord-
ing to Fig. 4(a). However, we will show below that the LDOS
peaks due to TPPs are robust over disorder, while nontopolog-
ical plasmon polaritons are severely affected by the disorder.
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The disorder is introduced by shifting the positions of B-type
microspheres randomly in the range [−ηd1/2, ηd1/2] along
the x-axis, while the positions of A-type microspheres are
fixed, to make the lattice period d constant. Here η stands for
the degree of disorder. Such disorder breaks both inversion
and chiral symmetries, at least one of which are regarded as
protecting the topological properties of the present system
[17,19,42,53] (see Appendix B). In Fig. 4(b), results of the
LDOS at T = 300 K of two randomly chosen disordered
realizations under a substantial degree of disorder (η = 0.3)
for both topological and non-topological chains are presented,
compared with those of ordered ones. It is clearly seen that
the LDOS peaks in topological chains are very robust against
disorder while those of non-topological chains significantly
vary with the detailed positions of microspheres. As a result,
we can confirm that the temperature susceptibility of TPPs
is experimentally detectable via near-field probing techniques
like terahertz s-SNOM and quantum emitters [79], and the
robustness of TPPs makes them advantageous over non-
topological plasmon polaritons.

For s-SNOM measurements, one cannot compare the raw
data obtained at different frequencies directly and quanti-
tatively since the power of radiation sources, the incident
energy upon the near-field probe, and the collection efficiency
of the detection system vary from frequency to frequency,
difficult to exactly determine [40,78,80]. The modulations
over the probe as well as the material and geometry of the
probe also play an important role in the measured signal
[81]. In this circumstance, a calibration procedure based on
a reference signal is usually necessary to demonstrate the
characteristic spectral features solely due to the sample of
interest. Conventionally, reference signals can be obtained
from some spectrally featureless materials like gold or silicon
[40,55,66,67,80,82–85]. However, chances are the calibration
using standard references may not lead to pronounced signals
of spectroscopic resonance peaks. For instance, if the LDOS
measured (manifest as phase spectrum in s-SNOM) from
standard reference samples is also very large, the measured
peak LDOS due to TPP might be smeared. To this end, here
based on the unique features of LDOS spectra of topological
and nontopological chains, we propose a more robust and
practical calibration method to correctly obtain the peak fre-
quency of the LDOS spectrum due to the excitation of TPPs
and thus the temperature susceptibility, which can provide
more pronounced experimental indicators of the resonance
frequency of TPPs. This method is also expected to reduce
other experimental uncertainties.

In a topological chain the LDOS values near the micro-
spheres inside the bulk of chain are substantially suppressed
owing to the band gap, as can be seen in the top panel
of Fig. 5(a), which shows a scanning LDOS map probed
at a distance of 100 nm above the microsphere chains at
T = 300 K and ω = 81.4 cm−1. It is observed that the LDOS
values near the edge microsphere are substantially larger than
those near the bulk spheres. There is no such difference in a
topologically trivial chain as illustrated in the bottom panel of
Fig. 5(a). Hence we can measure the ratio between the LDOS
near the edge microsphere and that near other bulk micro-
spheres, as a calibrated quantity that enables a quantitative
analysis at different frequencies to determine the resonance
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FIG. 5. Comparison of LDOS values at different situations.
(a) The LDOS maps for topological (top) and nontopological (bot-
tom) chains at T = 300 K and ω = 81.4 cm−1. The near-field probe
(electric point dipole) is kept at a distance of 100 nm above the
chains. (b) The ratio between the LDOS values at edge and bulk
positions, ρe/ρb, for a topological chain under different temperatures.
(c) The ratio between the LDOS values at the edges of topological
and non-topological chains, ρtop/ρnon, under different temperatures.

peak frequency due to TPPs. We calculate this ratio ρe/ρb for
the topological chain (β = 0.7) at different temperatures as
shown in Fig. 5(b). It is clearly seen that the peak frequency of
this ratio corresponds to the resonant frequency of TPPs. We
can also confirm the peak frequency of ρe/ρb is robust against
disorder [see Fig. 6(a) in Appendix C which shows the results
under 100 random disordered configurations]. In addition, one
can also measure the ratio between the LDOS values near the
edges of topological and nontopological chains, if the two
chains are fabricated in the same sample. The results of this
ratio, represented by ρtop/ρnon, are provided in Fig. 5(c). It
is found that this ratio exhibits more pronounced peaks than
ρe/ρb, thus leading to better signals than ρe/ρb. The peak
frequency of this ratio is also robust over disorder [Fig. 6(b) in
Appendix C]. As a result, this novel calibration method for the
signal is guaranteed by the topological protection of the edge
mode, originating from the collective nature of the topological
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plasmon polariton, which cannot be observed in nontopo-
logical chains or near a single microsphere. This device is
therefore more practically sound than a single microsphere or
other nontopological microstructures.

The present proposal is within the reach of current ex-
perimental technologies. Since the band gap is comparable
to the linewidth of modes, the LDOS within the band gap
of a nontopological chain is not strictly zero but substan-
tial, which arises from bulk modes. However, this is still
an enhancement to LDOS for the topological chain when
compared to the nontopological chain, due to the existence
of TPP, as indicated by the results in Fig. 4. Therefore, the
effect of small linewidth is not that severe. If the experimental
procedure is conducted using a narrowband THz gas laser
[64,86] or THz quantum cascade laser (QCL) [33], which can
resolve this small band gap, or broadband terahertz radiation
sources combined with Fourier transform interferometers, it
is possible to detect this difference [40,63–69,80,87]. On the
other hand, we can incorporate gain media to the microsphere
chains to compensate the intrinsic loss of the InSb material
and obtain more pronounced distinctions between the LDOS
spectra of topological and nontopological chains. Using gain
to compensate losses in plasmonic materials in optical spec-
trum has been extensively investigated by applying optically
pumped laser dyes, semiconductors, or quantum dots [88–93]
to amplify light intensity [94] and generate lasers in optical
spectrum [95,96]. Gain in THz wavelengths can be achieved
by using quantum dots or quantum cascade materials like
AlGaAs/GaAs and InGaAs/InAlAs systems [97–100] as well
as optically pumped graphene [34,101]. Additionally, we can
expect if the microspheres are arranged in more sophisticated
lattices, such as the honeycomb [61], breathing kagome [102],
or bichromatic lattices [103], unidirectionally propagating
or more confined TPPs can be realized, which can lead to
more pronounced signatures for experimental measurement
and thus better sensing performance.

V. CONCLUSION

To summarize, we theoretically investigate the application
of TPPs to achieving temperature sensing. We show that TPPs
can be realized in a one-dimensional intrinsic InSb micro-
sphere chain. By utilizing the temperature dependence of the
permittivity of InSb, the resonance frequency of the TPPs can
be thermally tuned. Moreover, the temperature susceptibility
of the TPPs can be as high as 0.0264 THz/K at room tempera-
ture, leading to a FoM over 150. By calculating the LDOS near
the chain as an experimentally detectable signal, we further
demonstrate that these TPPs can achieve a strong confinement
of radiation near the edges in the band gap and are immune to
disorder. We also propose a robust and practical calibration
method to correctly obtain the peak frequency of the LDOS
spectrum due to TPPs and then the temperature susceptibility,
which is based on the ratio between the LDOS of a topological
chain and that of a nontopological one. The peak frequency of
this ratio is also demonstrated to be immune to disorder. We
envisage these TPPs, as well as TPPs in more sophisticated
microstructures using the same material, can be utilized as
promising candidates for robust and enhanced temperature
sensing, especially for on-chip thermometry [104].
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APPENDIX A: CALCULATION OF BAND STRUCTURES

By applying the Bloch theorem in Eq. (4) for an in-
finitely long, periodic chain with zero incident field, we can
analytically solve the longitudinal Bloch eigenmode with a
momentum kx along the x-axis. Such an eigenmode, in which
the dipole moment of ith microsphere can be expressed as
pmi,kx (ω) exp (ikxxi ) with mi = A, B according to the sublat-
tice that the i-NP belongs to, should satisfy

ω2

c2

N∑
i=1,i �= j

G0,xx(ω, r j, ri )pmi,kx (ω) exp (ikxxi )

= α−1(ω)pmj ,kx (ω) exp (ikxx j ), (A1)

where the xx-component of the Green’s function is used:

G0,xx(x) = −2

[
i

k|x| − 1

(k|x|)2

]
exp (ik|x|)

4π |x| . (A2)

By explicitly carrying out the summations, this equation is
equivalently expressed as

ω3

c3

(
aL

11(kx ) aL
12(kx )

aL
21(kx ) aL

22(kx )

)(
pA,kx

pB,kx

)
= α−1(ω)

(
pA,kx

pB,kx

)
, (A3)

where the superscript L indicates the longitudinal modes.
Hence we arrive at an eigenvalue problem whose solution
corresponds to the dispersion relation (or band structure) of
the longitudinal eigenmodes, and the matrix in the left-hand
side (LHS) can be regarded as the effective Hamiltonian H (kx )
in the reciprocal space. For a fixed kx, α−1(ω) is the eigen-
value of that matrix. This fact allows us to straightforwardly
calculate the eigenfrequency and thus the band structure.
The diagonal elements in the effective Hamiltonian are given
by [41]

aL
11(kx ) = aL

22(kx ) = −i
Li2(z+) + Li2(z−)

2πk2d2

+ Li3(z+) + Li3(z−)

2πk3d3
, (A4)

where z+ = exp [i(k + kx )d] and z− = exp [i(k − kx )d], and
Lis(z) = ∑∞

n=1 zn/ns stands for the polylogrithm (or Jon-
quiére’s function) [105]. The off-diagonal series sums as [41]

aL
12(kx ) =

[
−i

�(z+, 2, β )

2πk2d2
+ �(z+, 3, β )

2πk3d3

]
exp (ikβd )

+
[
−i

�(z−, 2, 1 − β )

2πk2d2
+ �(z−, 3, 1 − β )

2πk3d3

]

× z− exp (−ikβd ), (A5)
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and

aL
21(kx ) =

[
−i

�(z+, 2, 1 − β )

2πk2d2
+ �(z+, 3, 1 − β )

2πk3d3

]

×z+ exp (−ikβd )+
[
−i

�(z−, 2, β )

2πk2d2
+�(z−, 3, β )

2πk3d3

]
× exp (ikβd ), (A6)

where �(z, s, a) = ∑∞
n=0 zn/(n + a)s denotes the Lerch tran-

scendent [105].
Note the above matrix elements are not unique, depending

on the choice of unit cell [4], which are chosen such that
it fulfills aL

i j (kx ) = aL
i j (kx + 2π/d ), i.e., using the periodic

gauge [2,15]. This gauge leads to a Z2 invariant in calculating
the topological invariant, namely, the complex Zak phase, as
will be shown later in Appendix B.

APPENDIX B: CALCULATION OF THE
COMPLEX ZAK PHASE

For non-Hermitian systems without exceptional points
(EPs), it was recently shown that the complex Zak phase,
which is defined by simultaneously using the left-eigenvectors
and right-eigenvectors of the non-Hermitian Hamiltonian
[13,106,107], can be exploited to characterize the band topol-
ogy of 1D systems. According to Eq. (6), since a12(kx )a21(kx )
is always not exactly zero when β �= 0.5, the bulk band struc-
tures are always separable in the complex frequency plane
[41,42,108], without any EPs. For a separable band structure,
it is hence expected that the complex Zak phase is quantized
and can describe the topological phase transition [53].

It seems that the present non-Hermitian Hamiltonian ex-
hibits a breaking of chiral symmetry (or sublattice symmetry)
due to the existence of diagonal elements a11(kx ) and a22(kx ).
According to the conventional Altland-Zirnbauer (AZ) clas-
sification [109], this system belongs to the AI class and is
topologically trivial [109,110]. However, a close scrutiny of
the effective Hamiltonian tells us that although the frequencies
of eigenstates are affected by the diagonal terms (chiral-
symmetry breaking terms), the eigenvectors of eigenstates are
still the same as those of the chirally symmetric counterpart
of the Hamiltonian, i.e.,

H̃ (kx ) =
(

0 aL
12(kx )

aL
21(kx ) 0

)
, (B1)

which obviously fulfills the chiral symmetry condition
σzH̃ (kx )σz = −H̃ (kx ). Here σi with i = x, y, z refers to Pauli
matrices. Such a property can be viewed as a trivial chiral-
symmetry breaking as pointed out by Pocock et al. [17]. In
that sense, the complex Zak phase preserves the feature in
a chirally symmetric system, and thus is still quantized and
can be used to determine the topology of bulk bandstructure,
as recently discussed by Lieu [53]. Note this quantization
does not refer to the inversion symmetry, unlike the real Zak
phase, which is defined solely based on right eigenvectors
and requires the inversion symmetry to be quantized [53].
Nevertheless, here the effective Hamiltonian still obeys this
symmetry, i.e., σxH (kx )σx = H (−kx ) over the center of the
lattice.

In particular, the normalized (i.e., 〈pL
kx
|pR

kx
〉 = 1) left and

right eigenvectors for longitudinal eigenmodes are solved as
follows:

∣∣pL
kx

〉 =
(

pL
A,kx

pL
B,kx

)
= 1√

2

⎛
⎝∓

√
aL,∗

21 (kx )√
aL,∗

12 (kx )

1

⎞
⎠, (B2)

∣∣pR
kx

〉 =
(

pR
A,kx

pR
B,kx

)
= 1√

2

⎛
⎝∓

√
aL

12(kx )√
aL

21(kx )

1

⎞
⎠. (B3)

The left eigenvector is solved through the relation of
H†(kx )|pL

kx
〉 = E∗

kx
|pL

kx
〉. Based on the orthogonality of left and

right eigenmodes (namely, biorthogonality) [108,111,112] in
1D non-Hermitian systems, the complex Zak phase, as the
geometric phase picked up by an eigenmode when it adiabat-
ically evolves across the first Brillouin zone, is expressed as

θZ =
∫

BZ
dkxA(kx )

= i
∫ π/d

−π/d

[
pL,∗

A,kx

∂ pR
A,kx

∂kx
+ pL,∗

B,kx

∂ pR
B,kx

∂kx

]
dkx

=
arg[a21(kx )] − arg[a12(kx )] + i ln

( |a12(kx )|
|a21(kx )|

)
4

∣∣∣∣
π/d

−π/d

, (B4)

where A(kx ) is the Berry connection. According to this
equation, the real part of θZ is simply half the difference of
the winding numbers of a21(kx ) and a12(kx ) encircling the
origin multiplied by π . Since |a12(−π/d )| = |a21(−π/d )| =
|a12(π/d )| = |a21(π/d )| from Eqs. (A5) and (A6), the imag-
inary part of θZ is exactly zero, as we have already shown in
Ref. [41]. Therefore, the complex Zak phase is actually a real
quantity [41]. Note the directions of the encircling of a12(kx )
and a21(kx ) are always opposite because a12(kx ) = a21(−kx ).
Therefore the winding numbers of a12(kx ) and a21(kx ) are +1
and −1, respectively when the dimerization parameter fulfills
β > 0.7, and are both zero when the dimerization parameter
fulfills β < 0.5. As a consequence, the complex Zak phase for
β > 0.5 and is 0 for β < 0.5.

Note the above conclusions are made on the basis of the
periodic gauge, which is necessary for the quantization of
the complex Zak phase [15,17,112] Otherwise if we choose
a different unit cell, for instance taking the center of A-type
microspheres as the boundary of the unit cell, we would get
new matrix elements as a′

12 = a12 exp (−ikxβd ) and a′
21 =

a21 exp (ikxβd ), which do not fulfill the periodic gauge. In
this circumstance, the complex Zak phase becomes θZ =
(1 + β )π for β > 0.5 and βπ for β < 0.5, which is hence
not quantized, although we can see that their difference is
quantized.

Regarding the BBC, it should be noted our system is
very simple with negligible non-Hermiticity (as can be seen
from the phase rigidity [41]), which leads to the validity of
BBC. As a matter of fact, in our system both time-reversal
symmetry and inversion symmetry hold, leading to the ab-
sence of any real/imaginary magnetic flux in the viewpoint
of non-Hermitian Aharonov-Bohm effect that invalidates the
BBC. According to the authors of Ref. [112] who investigated
the role of non-Hermiticity in a general non-Hermitian SSH
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FIG. 6. Calculated LDOS ratios under different disordered con-
figurations. (a) The ratio of the LDOS spectrum near the edge and
that near the bulk of a topological chain ρe/ρb. (b)The ratio of the
LDOS spectrum of a topological chain to that of a nontopological
chain ρtop/ρnon. The working temperature is T = 300 K and the
degree of disorder is η = 0.3, with 100 randomly chosen disordered
configurations presented.

model, in our system, BBC holds with the non-Hermiticity
being not essential. In addition, we note the arguments in
Ref. [112] were based on nearest-neighbor hoppings. Al-
though we included long-range hoppings in our model, they
are indeed very weak for longitudinal modes, making the
contribution of nearest-neighbor hoppings dominant. In this
sense, the band topology and the emergence of edge states
are independent of the boundary condition, unlike the case
of transverse modes in lattices when the lattice period is

comparable to the wavelength, as we investigated in a pre-
vious work [42].

APPENDIX C: CALCULATION OF LDOS

The LDOS can be obtained under the framework of the
coupled-dipole equations, while the incident field is replaced
by that emitted from a point source [113,114]:

p j (ω) = ω2α(ω)

c2

⎡
⎣G0(ω, r j, rs)ps

+
N∑

i=1,i �= j

G0(ω, r j, ri )pi(ω)

⎤
⎦, (C1)

where ps is the dipole moment of the emitting point source
whose position is rs. After calculating the electromagnetic
responses of all microspheres based on Eq. (C1), the total
scattered field of the NP chain at an arbitrary position outside
the microspheres is computed as [113,114]

Es(r) = ω2

c2

N∑
i=1

G0(ω, r, ri )pi(ω). (C2)

From the scattered field, it is straightforward to obtain the
full Green’s function with respect to the point source at rs as
G(ω, r, rs) = G0(ω, r, rs) + S(ω, r, rs) [113,114]. Here the
elements in scattering field tensor S(ω, r, rs) can be calcu-
lated through the relation Es(r) = S(ω, r, rs)ps by aligning
the dipole moment of the point source along different axes.
Afterwards LDOS is obtained from the full Green’s function
as

ρ(rs, ω) = 2ω

πc2
Im[TrG(ω, rs, rs)]. (C3)

This total LDOS contains all electromagnetic eigenmodes
including both longitudinal and transverse ones.

Figure 6 shows the spectra of the LDOS ratios, ρe/ρb and
ρtop/ρnon, of 100 randomly chosen disordered configurations.
It can been seen that the peak frequencies of these ratios are
quite robust under disorder.
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