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Effect of site disorder on the electronic, magnetic, and ferroelectric properties of gallium ferrite
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The electronic and magnetic properties of the magnetoelectric solid GaFeO; are investigated within the
generalized gradient approximation including the Hubbard interaction (U) on the localized d orbitals of iron.
It was found that using an onsite U = 8 eV describes consistently the experimental results. The origin of
ferrimagnetism was attributed to the cationic site disorders. The density of states at the iron sites, in a octahedral
geometry, show that the occupied e, states are below the ,, states in contradiction with the crystal-field splitting
obtained by a point-charge model. However, for the unoccupied states the ab initio data agree qualitatively
with the model, showing the complexity of the electron-electron interaction in GaFeO;. The computed electric
polarization of the system as a function of the temperature in the linear regime shows a monotonic decreasing
trend. To determine the nature of the magnetoelectric coupling, the computed electric polarization as a function
of the rotation of the magnetization axis indicates that the magnetoelectric effect observed experimentally could
not have been due to a direct coupling between the electric and magnetic order parameters. Finally, the calculated
x-ray absorption and x-ray magnetic circular dichroism spectra for the disordered system are shown to be in good

agreement with experiment.
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I. INTRODUCTION

Magnetoelectric materials are multiferroic materials,
which have coupled magnetic and electric ferroic order pa-
rameters. This type of coupling in materials was speculated
by Curie [1,2] as early as in 1894. However, due to the
difficulty of combining magnetic and electric ferroic orders
in materials, this field was not pursued further. The first
theoretical prediction of the magnetoelectric coupling was
done by Dzyaloshinskii [3] for chromium oxide, and was soon
observed by Astrov [4].

The cross play of the ferroic properties has motivated
further research into potential technological applications, es-
pecially those where the electric properties are controlled
with magnetic fields or vice versa [5]. Few materials have
been reported to show a sizable magnetoelectric effect, among
which gallium ferrite (Ga,_,Fe,O3 or GFO) appears to be
of considerable significance due to the coexistence and cou-
pling of a magnetization and electric polarization at room
temperature [6].

The first gallium ferrite crystals, Ga,_,Fe,O3 with 0.7 <
x < 1.4, were synthesized by Remeika, and were described
as a ferromagnetic-piezoelectric material [7]. The structural
characterization of GFO was determined by Wood, who
found the crystallographic space group to be Pc2in [8].
This was confirmed by Abrahams, with the lattice constants
a = 8.7512 £ 0.00008 A, b = 9.3993 £ 0.00003 A, and ¢ =
5.0806 %+ 0.0002 A [9]. There are four different cationic sites
occupied by Fe and Ga cations: three irregular (distorted)
octahedral sites (Fel, Fe2, and Ga2) and a regular tetrahedral
site (Gal) oriented along the b axis. The oxygen anions are
positioned in six different sites in a double hexagonal compact
arrangement (Fig. 1).

Other studies [10-12] were carried out to probe the mag-
netic structure and magnetoelectric characteristics of GFO.
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However, Frankel et al., using Mossbauer spectroscopy,
showed a ferrimagnetic order with magnetic moments aligned
almost along the ¢ axis, instead of a canted antiferromagnetic
order [13]. Both cationic sites Gal and Fel are antiferromag-
netically coupled to the Ga2 and Fe2 sites, which should result
in a net antiferromagnetic configuration for Fe composition
x = 1. The presence of ferrimagnetism without the presence
of a canted antiferromagnetic configuration hints at a pos-
sible existence of site disorder. Arima et al. found that the
GFO preparation method influenced the magnetic transition
temperature, which was likely caused by the change in the
Ga/Fe occupations at the four cationic sites [14]. The origin
of ferrimagnetism was interpreted as follows: the magnetic Fe
cations at the Gal and Fel sites adopt a magnetic orientation
antiparallel to the magnetic cations at the Ga2 and Fe2 sites
through a superexchange mechanism mediated through the
oxygen anions as described in Ref. [15]. Since the amount
of Fe at the Fe2 and Ga2 sites is larger than that at the
Fel and Gal sites, there is a net nonzero magnetic moment
along the ¢ axis (parallel to the magnetic moment on Fe2).
They also demonstrated experimentally that the magnetic
transition temperature could be tuned with the Fe/Ga ratio and
it increased with Fe content to room temperature for x > 1.1.
In addition, a large linear magnetoelectric effect was measured
for GFO single crystals, which was one order of magnitude
larger than the value reported for Cr,Os.

Kim et al. reported a large orbital moment in GFO [16].
This was unusual because Fe in GaFeO3 has a formal valence
of +3 (half-filled d° configuration), for which the orbital
moment is expected to be zero. The mechanism behind the
orbital moment could help provide a better understanding of
the magnetoelectric coupling in this material.

Despite several experimental studies [10-14,16], very few
theoretical reports investigating the properties of GFO are
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FIG. 1. GaFeOj; unit cell with Fe, Ga, and O atoms in yellow,
red, and blue, respectively.

present in literature [15,17-20]. It is therefore important to
ask what is the most appropriate method for the determination
of the electronic structure of a large band-gap magnetic insu-
lator? There are of course many accurate methods, such as the
dynamical mean-field theory (DMFT) [21], or DMFT starting
form a GW calculation, the so-called DMFT+GW [22], but
those methods are computationally prohibitive for materials
with many atoms per unit cell. One of the most interesting
methods, which provides quantitative results, without the high
CPU cost, is the so-called LDA+U method [23]. Indeed,
it has been shown that this method is capable of providing
accurately the electronic properties of materials with localized
orbitals, such as transition metal oxides, without high compu-
tational costs [23-25]. The only issue with this method is how
to choose the Hubbard U parameter for a material? Anisomov
and co-workers [23-25] have shown that the U parameter
can be determined for each material by constrained density
functional theory (DFT) calculation. In general, for oxides
the values of U are shown to be large, but nevertheless can
reproduce photoemission, Bremsstrahlung Isocromat spectra
[24], valence bands of oxygen K« x-ray emission, and x-ray
photoemission [25]. Other calculations have shown that for
CoO not only the band gap and the spin and orbital moments
are reproduced, but also the magnetic-anisotropy energy and
the orientation of the magnetic moment of CoO under strain
caused by silver or MnO substrates [26]. However, Rodl and
co-workers [27] claim that maybe smaller values of U should
be used for oxides. They showed that for a smaller value of
U, the LDA+U is in agreement with a GW calculation when
starting from hybrid HSE functional (GW +HSE), provided
that the LDA+U band gap is increased by hand (the so-
called scissor operator) to achieve agreement with GW 4+-HSE
results. However, the latter results are not in better agree-
ment with experiment compared with the LDA+U results for
higher values of U in the literature. One can indeed check
that the results of photoemission of NiO of Refs. [24,25]
are in much better agreement with experiment than those of
Ref. [27]. Since we do not want to adjust the band gap of
GFO by hand, we have chosen in this paper to follow the pre-
scription of Anisimov and co-workers and use a higher value

of U to describe the band gap and the magnetic properties
of GFO. In addition, our previous LDA+-U results [17] with
higher value of U described correctly the band gaps and the
magnetic properties of GFO with excess iron up to 40%. Nev-
ertheless, the results of Rodl and co-workers are interesting,
and might suggest to combine the GW method and LDA+U
to describe better the short- and long-range exchange and
correlation potential as already performed in the GW +DMFT
method [22].

Early density functional theory (DFT) calculations carried
out on the ideal structure revealed a stable antiferromagnetic
state with zero net spin and orbital moments [28]. Han et al.
also showed that the energy difference between an ideal GFO
structure and a structure with an Fe interchanged with the
Ga2 site can be as small as 1 meV per unit cell, thereby
implying that this kind of site disorder is highly probable and
in accord with the presence of Fe at the Ga2 sites reported in
experiments [28]. With the help of first-principle calculations,
Roy et al. showed that the site disorders are not favored in
the ground state and that available thermal energy at room
temperature (k7 ~ 25 meV) is of the order of the energy dif-
ference for the Fe2-Ga?2 site disorder, hinting toward the role
of thermally induced defects [29]. The same group calculated
the electronic structure and the Born effective charges, which
showed a largely ionic character of the Ga/Fe-O bonds and a
lack of significant anomaly in the Born effective charges [30].
Stoeffler calculated the electric polarization of the system to
be —25 C/cm?, an order of magnitude larger than the value
estimated by Arima et al. [14,31] along the b axis. In the
same year, Hatnean et al. reported a weak dependence of the
Ga/Fe disorder and the magnetic transition temperature on the
growth conditions, in contrast to a strong dependence reported
by Arima et al. [14,32]. They also reported that the disorder
affected magnetic excitations, evidenced through the damped
spin waves.

To elucidate the above magnetoelectric properties of bulk
GFO, we performed ab initio studies, under different approx-
imations, including spin-orbit coupling, to probe the elec-
tronic, magnetic, and magnetoelectric properties for the iron
concentration x = 1. Our analysis of the electronic properties
for the structure with cationic site disorders provided the
origin of ferrimagnetism and a good comparison with the ex-
perimental results by Hatnean et al. [32]. Our investigation of
the magnetoelectric effects in the ideal structure by changing
the direction of the magnetic field shows that the coupling
between magnetization and the electric polarization is weak
contrary to the experimental results. Finally, the crystal-field
splitting is understood and analyzed in terms of our ab initio
calculations and a point-charge model. Our calculations for
the x-ray absorption spectra (XAS) and x-ray magnetic cir-
cular dichroism (XMCD) spectra for a disordered system for
comparison with the spectra obtained by Kim et al. [16] show
that the disordered structure used is correct.

Our paper is organized as follows: In Sec. II we briefly
describe the details of our DFT calculations used to obtain
the electronic and magnetic properties of GFO. In Sec. III we
give first the electronic and magnetic properties of ideal GFO
and then the same properties with site disorder to determine
the origin of the ferrimagnetism and at the end of this section
we address the crystal-field splitting and compare our ab
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initio results to a point-charge model. In Sec. IV we analyze
the magnetoelectric properties of GFO and their temperature
dependence in the ideal structure by changing the direction
of the magnetic field. In Sec. V we present our calculations
for the XAS and XMCD spectra for a disordered system and
compare them to the experimental spectra of Kim et al. [16].

II. METHOD OF CALCULATIONS

Our DFT calculations were carried out using the VASP
package [33,34]. We used the projector augmented wave
basis set [35,36] and the exchange-correlation functional was
described using the local density approximation (LDA) as
parametrized by Perdew and Zunger [37], and the generalized
gradient approximation (GGA) as parametrized by Perdew,
Burke, and Ernzerhof [38,39]. We used k-point mesh of
7 x 7 x 9 in the Brillouin zone, which is required to converge
the ground-state energy and the magnetocrystalline anisotropy
energy to within 10 peV [17]. For the plane-wave cutoff,
a value of 550 eV was used and the convergence criterion
for the electronic self-consistent loop for the total energy
was set to 10 ueV. Both LDA and GGA underestimate the
energy band gap and magnetic moments of GFO as com-
pared to the experimental values. This failure of LDA and
GGA is known in correlated systems like transition metal
oxides [40—42]. To accurately account for the strong onsite
Coulomb interaction among the localized Fe 3d electrons,
we used the rotationally invariant approach introduced by
Lichtenstein et al., represented by the Hubbard-type term U
and the exchange term J [43]. This led to an improvement
of the ground-state properties of GFO. Based on an earlier
theoretical study, the value of J was set to 0.9 eV [17]. In
this work, two specific values of U were used, U = 4 and
8 eV, chosen so as to probe the ground-state properties as
well as the hybridization of the localized orbitals with the
remaining delocalized states. The spin-orbit coupling (SOC)
was included in some of our calculations as implemented in
VASP to improve the magnetic properties of the system [44]
and to calculate the x-ray magnetic circular dichroism.

To study the origin of ferrimagnetism in GFO, the ionic
occupancies provided by Hatnean et al. were used [32]. In ad-
dition, a simple predictive model was developed that allowed
us to compute the net spin and orbital magnetic moments in a
disordered structure with the help of the cationic occupancies.
The predictions of this model were then compared with the
values obtained by the ab initio calculations and experiment.

For the crystal-field analysis, the global frame (¢, m)-
site-projected basis set were rotated to the local octahedral
or tetrahedral frame of reference to better understand the
symmetries of the e, and f,, suborbitals. The rotation was
first defined directly using the Euler angles and the real
spherical harmonics (also known as the cubic harmonics) and
then implemented in the VASP code. To study the effect of
crystal-field and hybridization on the eg-t;, splitting on the
octahedral Fe sites, both values of U were used. The e,-1,
splitting was modeled using a point-charge model, where the
potential of the oxygen ligands was expanded in terms of
spherical harmonics in the octahedral center. Such a model
allowed us to determine the effect of the ligand on the splitting
of iron 3d states. The diagonalization of this matrix, using the

x
=

T

U=4eV

L L B B L B

LI ) L B I

— GGA

1

-- LDA

40

=
E
3

TR R

LI B

x
=

Total DOS (states/eV/unit cell)
n
e}

o

LI S B B T
=

o S .
10 -8 -6 -4 -2 2 4 6
Energy E-EF (eV)

I
i
i
i
i
i
|
i
i
i
i .
|
i
i
i
|
0

—
=)

FIG. 2. GGA+U and LDA+U calculated total DOS for GFO for
U =4and 8 eV.

cubic harmonics basis set, gave us the eg-tr, splitting which
we discussed and compared to our ab initio calculations.

The electric polarization of GFO was computed as imple-
mented in the VASPcode [45-50]. The preliminary calculations
were done with the aim to study the temperature-dependent
electric polarization on a path between the experimental po-
sitions at 4 and 230 K provided by Arima et al. [14], and
to recover the polarization calculations done previously [31].
This initial calculations were extended to probe the magneto-
electric effect, where the magnetization axis was rotated for
different angles along the c-b plane.

III. ELECTRONIC AND MAGNETIC PROPERTIES OF GFO
A. Ideal bulk GFO

In this section, we present the electronic and magnetic
properties of ideal GFO. The lattice parameters and the atomic
positions were based on the values reported by Arima et al.
[14], which were obtained with neutron diffraction studies at
4 K. The values obtained at 230 K were used in the later mag-
netoelectric studies. The lattice parameters are a = 8.719 A,
b =9.368 A, and ¢ = 5.067 A. The atoms were not relaxed
since the parameters were obtained from experiment. Previous
calculations have shown that atomic relaxations do not change
significantly the experimental positions [17]. Two values of
U were used for the Fe 3d orbitals: 4 and 8 eV, for both
LDA and GGA, to improve the ground-state properties like
the energy band gap and magnetic moments. The calculations
including the SOC do not significantly affect the physical
properties of interest, but allow us to compute the orbital
magnetic moments and XMCD and are of importance for the
magnetoelectric effects.

To understand the electronic structure, we plot the total
electronic density of states (DOS) in Fig. 2. When the value
of U under both LDA and GGA is increased, the Fe 3d
orbitals become more localized and the upper and lower
Hubbard bands are split further. This is in accordance with the
Hubbard model, where higher values of U tend to localize the
d orbitals. Increasing the U value beyond 8 eV will eventually
produce the electronic structure of an isolated Fe atom. Also,
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TABLE 1. Energy band gap (in eV) and spin and orbital moments of the Fe cations in GFO for different U in LDA+U and GGA+U,

compared to experiment.

LDA GGA
Property
Hubbard U (eV) Expt. 4 8 4 8
Energy band gap (eV) 3.2 [51] 1.5 3.0 2.0 32
Spin magnetic moment Fel (ug) —3.9[14] —4.02 —4.41 —4.10 —4.44
Spin magnetic moment Fe2 (up) 4.5[14] 4.02 4.41 4.10 4.44
Orbital magnetic moment (i) +0.027 +0.020 +0.022 +0.017

it should be noted that under both LDA and GGA, though
the value of U = 8 eV gives good values of the energy band
gap and the spin magnetic moments, the hybridization of
the Fe 3d orbitals with the 2p orbitals of the neighboring
O atoms is drastically reduced and may not be physical.
Since no photoemission data are available to compare with
our DOS, we used the value of U that best describes the
observed properties like the energy band gap and the magnetic
moments, i.e., U = 8 eV. The values for these properties are
tabulated in Table I.

It can be seen that value of U = 8 eV for LDA+U and
GGA+U yields an energy band gap in good agreement with
experiment and an improvement in the prediction of the
magnetic moment for the Fe2 site. However, the magnetic
moment at the Fel site does not agree with experiment. As
is shown in the subsequent section, this discrepancy arises
due to the partial iron occupancy at the Fel site, which was
estimated experimentally to be 84%. Assuming a spin moment
at 84% of —4.44up gives us a value of —3.73up, which is
closer to experiment. In addition, we notice that the orbital
moments decrease with an increase in the value of U. This
is not surprising as the higher values of U localize the Fe
3d electrons more, thereby reducing their hybridization and,
thus, their orbital moments. Kim ef al. [16] had performed
x-ray magnetic circular dichroism (XMCD) experiments at
the Fe L3 edges of GFO and found a net orbital magnetic
moment of 0.017up at a temperature of 190 K. Assuming that
the individual spin and orbital magnetic moments behave as
their total magnetization curves, we estimate the net orbital
magnetic moment to be 0.034u5 at 4 K. They estimate their
Fe occupancy at the Gal, Ga2, Fel, and Fe2 sites to be
0, 0.35, 0.825, and 0.825, respectively. Assuming that the
Gal and Ga2 moments are parallel to the Fel and Fe2 sites,
respectively, we obtain net orbital moments of 0.007up and
0.006up for the LDA+U and GGA+U, respectively, which
are much smaller than experiment. This level of discrep-
ancy is known to be present in LDA/GGA methods and
there is no general solution to improve the theoretical orbital
moments [52].

B. Origin of ferrimagnetism in GFO

It is important to point out that the net magnetization
obtained theoretically in GFO is zero and, hence, we always
obtain a perfect antiferromagnetic system. To explain the
origin of ferrimagnetism, we performed ab initio calcula-
tions to simulate cationic site disorder effects in the smallest

possible unit cell. There are three ways that a material with an
antiferromagnetic ordering may be ferrimagnetic:

(1) The individual magnetic moments are not the same on
the two antiferromagnetic sites, thereby giving a net nonzero
magnetic moment. Such behavior is seen in magnetite, Fe;Oy,
where there are two Fe states, Fe ™2 and Fet?, which have dif-
ferent moments, and thus give rise to a ferrimagnetic system
[53]. In the case of GFO, the Fe ionic state on the cationic
sites is Fet>.

(2) The individual magnetic moments are canted toward
a particular direction and give rise to a nonzero magnetic
moment along that direction. GFO was thought to be fer-
rimagnetic due to this reason [11,12], but the experimental
observation by Frankel ef al. [13] showed that the easy axis of
magnetization is along the c¢ axis.

(3) Site disorder in an antiferromagnetic system, where a
magnetic atom is replaced with a nonmagnetic atom, would
leave an uncompensated magnetic moment and the system ap-
pears to be ferrimagnetic. Experimental observations on GFO
indicate that the Ga and Fe atoms tend to swap places with a
preference for the Ga2 site [14]. This might produce an un-
compensated moment and hence a ferrimagnetic ground state.

To explain the origin of ferrimagnetism in GFO, we in-
vestigated the third possibility concerning site disorder. This
is not an easy task because each experimental paper on
GFO describes different Fe occupancies at the cationic sites,
as can be noticed in the few examples shown in Table II.
Moreover, given a set of occupancies, it is not computationally
practical to consider larger supercells or even every possible
atomic arrangement in the unit cell. However, all experiments
show that there is a higher preference of Fe occupying the
Ga2 site over the Gal site. This could be due to the fact
that the Gal site is tetrahedral, which would require further
investigation to confirm. In addition, the Fe occupancies at
the Fel and Fe2 sites seem to be identical in all cases. For
these reasons, we consider exactly one such case, where the Fe
occupancies are as those provided by Hatnean ef al. [32], with

TABLE II. Different Fe occupancies at cationic sites in GFO
from different experimental data.

Arima et al. [14] Hatnean et al. [32] Kim et al. [16]

Fe@Fel 0.84 0.75 0.825
Fe@Fe2 0.83 0.75 0.825
Fe@Gal 0.10 0.00 0.000
Fe@Ga2 0.24 0.50 0.350
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FIG. 3. Unit cell simulating a disordered configuration to under-
stand the origin of ferrimagnetism in GFO.

Fe@Gal = 0 and are possible to simulate in the same cell as
earlier. There are obviously many more cells that provide the
same occupancies, but those were not considered.

Before we present our results, it might be important to
first understand the magnetic coupling between the different
cationic sites. Given that the Fel and Fe?2 sites are antifer-
romagnetically coupled, we have two possible cases for the
coupling between the Fe sites and the Ga sites:

(1) Case 1: Fel is antiferromagnetically coupled to Gal
and Fe2 is antiferromagnetically coupled to Ga2.

(2) Case 2: Fel is antiferromagnetically coupled to Ga2
and Fe2 is antiferromagnetically coupled to Gal.

A calculation using the occupancies provided in Table II
and the magnetic moments for both cases provides us with
a net magnetization. Comparing this with the magnetic mo-
ments obtained in the corresponding experiments [14,16,32]
indicates that the second case is more likely. Using the oc-
cupancies as reported by Hatnean et al. and the magnetic
moments of 4.5up for Fe, we get the magnetic moments
at the Fel, Fe2, and Ga2 (since the occupation at Gal is
zero) as —3.375up, +3.375up, and +2.250u 5, respectively,
as compared to the corresponding experimental values of
—4.0up, +3.5up, and +2.7up. It should be noted that this
calculation helps understand the origin of ferrimagnetism
in GFO intuitively and does not consider hybridization ef-
fects and exchange mechanisms beyond those mentioned, and
hence may not be accurate. The disordered unit cell that was
used in our ab initio calculation is given in Fig. 3. Table III
shows our average site magnetization results with ab initio
techniques and compares them to the experimental and the
simple calculation results.

The table shows that the ab initio supercell site disorder
calculations agree relatively well with experiment. Note that
the experimental values are different from those in Table I
since they are from different experiments. We have a disagree-
ment of —0.665up and 0.457up for the magnetic moments
on the Fel and Ga2 sites. However, the magnetic moment
on the Fe2 site is in good agreement with experiment as
well as the net magnetization, which differs from experiment
by —0.619up per unit cell. Moreover, the simple calculation

TABLE III. Ab initio spin (mg) and orbital (m,,) averaged mag-
netic moments per site for a disordered GFO (disorder) compared
with experiment and simple calculation based on site occupations
(average) as given in the middle column of Table II.

U=4eV U=28¢eV

ms/mon (p) Expt. [32] Disorder Average Disorder Average

mg @Fel —-4.0 -3.01 -3.09 -334 338
Mo, @Fel —-0.017 -0.017 —-0.012 -0.013
mgs @Fe2 35 3.08 3.09 3.35 3.38
Mo, @Fe2 0.018  0.017 0.014  0.013
ms@Gal 0.0 0.0 0.00 0.00 0.00
Mo, @Gal 0.0 0.00 0.00 0.00 0.00
ms@Ga2 2.7 2.05 2.06 2.24 2.26
Mo, @Ga2 0.011  0.011 0.009  0.008

scheme described earlier is a very good indicator of the site
magnetization as compared to the ab initio results. These
results are similar to those obtained by Roy et al. [18], who
predicted that the individual Fel and Fe2 moments do not
change by a large amount with respect to the perfect structure.
However, they observed that the Fe ion at the Ga2 site has
a relatively lower moment of 4.11up, in contrast to our
observed moment of 4.486x5. The corresponding individual
moments of the Fe ion at the Ga2 sites based on experimental
average values of 2.7up are 5.45, which do not seem likely
considering that the maximum magnetic moment Fe can
possess is Sup. The same is true for the value of —4.0up
reported for the Fel site, which corresponds to individual
moments of —5.33p based on the iron occupancy of 0.75.
The net magnetic moment obtained is about 10up per unit
cell and, thus, we infer that the origin of ferrimagnetism in
GFO is due to cationic site disorders. When we compare the
ground-state energies between the ideal structure in Fig. 1 and
the disordered structure in Fig. 3, we obtain a difference of
231 meV (~2700 K), which is lower than the sum of the
predicted values of 25 and 400 meV for the Fe2-Ga2 and
Fel-Ga2 disorders, respectively, as reported by Roy et al. [18].

To study the changes in the electronic structure, we plot
the total DOS for the ideal and disordered structures in Fig. 4.
The figure shows that the two systems are similar in their
electronic structure and energy band gaps. Additionally, our
calculations indicate that the orbital moments for Fe remain
parallel to the corresponding spin moments with a magnitude
of 0.017up. Thus, the net orbital magnetization in the system
is 0.034up with a direction parallel to the next spin magne-
tization. Since we considered Fe at the octahedral Fel, Fe2,
and Ga2 sites only, the similarity of DOS and magnitudes
of the spin and orbital magnetic moments indicate that the
octahedral sites all behave similarly. It might be of interest to
study the electronic structure of Fe at the tetrahedral Gal site.
Another point that should be made is that the ions were not
relaxed and the net forces on the individual atoms increased
by a factor of 3 as compared to those in the ideal structure.
Performing ionic relaxations might reduce the ground-state
energy of the disordered system to the point where the thermal
energy (~1000-1500 K) available during synthesis of the
experimental samples might be sufficient to cause cationic
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FIG. 4. Comparison of the total DOS for the ideal and disordered
structures of GFO for U = 8 eV. Similar results are obtained for
U =4eV.

disorders. These cationic site disorders are statistical and
might require larger supercells and more swappings, leading
to impractical computational requirements. These are the rea-
sons why ionic relaxations or further investigation of different
site disorders were not carried out.

C. Crystal-field analysis: Theory, implementation, and results

Crystal-field theory helps describe the splitting of the
electron orbitals of an atom, usually a d or f cation, in the
presence of a Coulomb potential generated by neighboring
atoms, usually anions. This model has been very successful
in analyzing d and f splitting for different magnetic orders
and when combined with molecular orbitals has successfully
explained spin-crossover phenomena, where the energy gap of
the splitting can be of the order of the pairing energy between
the electrons [54]. In GFO we have two types of crystal-field
environments in the system: octahedral and tetrahedral. An Fe
ion at the center of these environments would be influenced
by six and four O anions, respectively, and the splitting of
the degenerate 3d orbitals of Fe would reflect this interaction.
In the case of an octahedral environment, the electrons of
the anions are closer to the the d> and d,»_» orbitals of
Fe and away from the dy,, d,., and d,; orbitals. The strong
electron-electron repulsion would lead to a splitting of the
five d orbitals into two subshells, called t,,, consisting of the
dyy, dy;, and d,; orbitals, and e, consisting of the d. and
d»_y» orbitals, with the former being lower in energy due
to a lower electron repulsion compared to the latter. For a
tetrahedral environment, the e, orbitals tend to be lower in
energy than the f,, orbitals due to their relative proximity
to the anion p orbitals. This effect which is purely due to
the crystal geometry and can be schematically visualized as
shown in Fig. 5.

Two important details should be pointed out here: first,
that the e, and #,, orbitals are described using real spherical
harmonics, also known as cubic harmonics, and second, that
these are defined through their m quantum number, i.e., the
eigenvalue of the L. operator, and depend on the coordinate
system. The second point is visualized in Fig. 5 in the refer-
ence frame. If the coordinate system is not as shown in the

Octahedral .

: 0—’7 3d_< g
A ———ug
Tetrahedral o
e o< g
¢ -

FIG. 5. Crystal-field splitting of 3d orbitals in octahedral and
tetrahedral fields.

figure, up to a rotation of /2, then the d orbitals obtained
would be a superposition of the maximally split suborbitals
and can not be clearly defined as e, and #,,. To obtain the
effect of the crystal field on the e, and £, DOS we need
either to rotate the real spherical harmonics from the global
coordinate system to the local one or make a passive rotation
of the coordinate system to align the anions appropriately. We
thus have a rotation matrix for the real spherical harmonics
analogous to the rotation matrix for the Cartesian coordinate
system. Using ab initio techniques, there are at least two ways
this can be achieved.

In the first approach, we rotated the crystal structure com-
pletely for a cation under study, wherein the wave functions
obtained would describe the crystal-field splitting on the given
cation appropriately. Such an approach can be used effectively
for certain cases only, for example, if there is one cation in a
molecular system. In general, however, a crystal does not con-
sist of only one cation surrounded by anions in a given crystal
geometry and, thus, the rotations that need to be performed for
different cations might be many and different. In the second
approach, we rotated the projected spherical harmonics of the
cation under study. This can be done during the same self-
consistent cycle and is computationally faster since only the
local orbitals are rotated. We have implemented this feature
VASP, the details of which are presented in Appendix B. We
present below our results for the octahedral cationic Fel site
in GFO.

The crystal-field analysis was performed on all the Fe sites
in GFO. Figure 6 shows the d-projected density of states of an
Fel atom in GFO, which are similar to all the other Fe sites.
The SOC was included in the calculations, which were done
using the GGA functional with the Hubbard U = 4 (top) and
8 eV (bottom). The e, and 1,, orbitals are shown in black and
red, respectively. We observe that for both values of U, the
occupied 3d states are split clearly with the e, orbitals lower
in energy than the #,,. The splitting between the unoccupied
states seems to depend upon the value of U, and thus the
hybridization, with the e, orbitals slightly lower in energy
than the #,, for U = 8 eV, and the 1, orbitals clearly lower
in energy for U = 4 eV. Since the Fel site (and Fe2 and Ga2
sites as well) is an octahedral site, the results obtained for the
occupied states contradict the splitting expected for octahedral
sites.

Using the crystal-field splitting, it is possible to probe the
filling of d orbitals and understand why Fe in GFO possesses a

074406-6



EFFECT OF SITE DISORDER ON THE ELECTRONIC, ...

PHYSICAL REVIEW MATERIALS 4, 074406 (2020)

Projected DOS (states/eV/atom/unit cell)

| | |
-6 -4 2
Energy E-E (eV)

FIG. 6. Crystal-field effect on the Fel e, (black) and #,, (red)
DOS using GGA+U method for U = 4 eV (upper panel) and 8 eV
(lower panel).

nonzero orbital magnetic moment and why the spin magnetic
moment of Fe is less than Sup. To do so, we plot the (¢, m, s)-
projected DOS of the 3d electrons of the same atom in Fig. 7.
Also shown are the effects of the SOC on the DOS. This is
an Fel site which is why the majority spins are of spin-down
nature. Moreover, there are some spin-up states, mainly of
I, character, which belong to the neighboring oxygen atoms.
These states oppose the moments on the Fe sites and create
a small nonzero orbital moment and reduce the spin mag-
netic moment from its maximum value of 5ug. This would
indicate that the bonding between the Fe and O ions in GFO
has a partial covalent character. As a result of this covalent
character, certain spin-polarized states should be present on
the oxygen ions. Our calculations indeed agree with this
prediction, indicating small spin magnetic moments between
0.010up and 0.087up for U = 4 eV, and between 0.008up
and 0.065up for U = 8 eV on the oxygen atoms. These values
are more affected by the level of hybridization controlled by

- KZE(U:4cv)
I - eg(U=4eV)
20 | — 4, (U=8eV)
Fo|— cg(U:ScV)

With SOC A -

s-projected 3d DOS of Fe (states/eV/atom)

-10 -8 -6 -4 -2 0 2 4
Energy E-E_ (eV)

FIG. 7. Effect of SOC and U on the the spin-polarized (positive
values spin up and negative values spin down) Fel e, (black) and 1,,
(red) DOS.

U than the SOC. We thus conclude that increasing the value
of U drives the Fe system to a +3 state and that the bonding
between the Fe and O atoms is partially ionic. Furthermore,
our results show that this bonding is not influenced by the
SOC, with the exception of creating a nonzero orbital mo-
ment. The conclusions drawn here support the calculations
done by Ibrahim and Alouani [17], where they obtained Bader
charges of +1.63 to 4+1.73 on the Fe atoms depending on U,
instead of 42 as expected for an ionic crystal, and concluded
a partial ionic bonding.

To understand the mechanism causing a tetrahedral-type
splitting in an octahedral environment, a point-charge model
was developed, in which the effects of hybridization can be
fully neglected. Such a model would help us understand the
eq-1, splitting obtained for the two different values of U.
Qualitatively, the electrons in the model can only interact
through the Coulomb interaction with the neighboring nega-
tively charged oxygen ions. With this requirement in mind,
we assumed ionic charges of +3 on the central atom and
—2 on the neighboring atoms forming the octahedron. For
maintaining consistency between the ab initio calculation and
the point-charge model, the octahedron was oriented in the
same way as in the rotated frame of reference, i.e., with the
octahedral arms aligned maximally along the axes. We then
rewrite the Coulomb potential felt at the central atom in terms

of the spherical harmonics as [55]
6

V(r)= ; r—R)| iIiR,»I
6 [} L
—4r Y g, (=)' —— V" VIR
; gmzz—i 2t+1 ‘

7t

X _<’ 1
p (D

where r < (r >) is the smaller (larger) of  and R;, and where

= Cé? is an effective charge of electron-electron interac-
tion, which describes the interaction of the ligand effective
charge of Ce with an electron of charge e in the 3d. Here,
we set the effective charge on the neighboring ligand atoms to
two, which corresponds to that of 02 in GFO. The V' is the
spherical harmonics, and R; is the distance vector connecting
the central atom to the ligand i. Note that the local reference
frame is centered on the iron atom and its axes are along the
ligands if the octahedron is perfect. Since the octahedron is
deformed, the local frame is optimized to reduce the angles
between R; and the corresponding axis (see Appendix A for
details). The spherical angles 8 and ¢ of the vector R; are
then obtained in this optimized reference frame to compute the
cubic harmonics ;" (ﬁi). Using the above expression, we can
calculate the matrix elements M,, ,,» of the ligand’s potential
between the central iron 3d orbitals as

My = <¢e:2yz":2|V|¢z:zyz";z)

—mYa Y G

C,m

( 1)m+m

RV (R,
204+ 1 R e (i)

4
x / y;’"(f))ﬂ;’"’(f)%(qsz(r))zy;"”(f)dr, )
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where ¢,(r) is the radial function corresponding to the Fe
3d orbitals. The above expression contains a product of three
spherical harmonics and their integration, which can be sim-
plified using the Gaunt coefficients, which in terms of the
Wigner 3-j symbols are

6
, 4 2
_ . _1\ntm
My =5 g ) (1) ‘/2z+1(0
i=1

L,m'
( 2 2
g
m —m
1 Ri L+2 2
X\ =07 r 2 (o (r))dr
(Rf“ /o

00 2
+Rf/ (¢2(r)) dr), 3)

=1

\]
~

(e}
(=)

€N o
_m,) V'R

where (,f;‘l r{fz ,{i) are the Wigner 3-j symbols linked to the
Clebsch-Gordan coefficients as

; : — 1)/
(;l‘l ” ,{;) _errn \/h (j3» —m3ji, mys jo, ma).
“
The Wigner 3-j symbols are used for their symmetry prop-
erties, which allow us to restrict the summation over £, m’ in
Eq.3)to ¢ =0,2,4and m' = m" —m.

Equation (3) can be computed directly using the atomic
3d wave function ¢, of Fe as obtained by an all-electron
atomic program, however, in our case since the crystal field
is an empirical method used here only to understand our
ab initio calculations, we rewrote the matrix elements in
terms of the hydrogenlike radial function for the 3d orbitals,
corresponding to the 3d orbitals of Fe. Instead of using the
atomic number Z =26 we used an effective Z* = 6.25 as
suggested by the so-called Slater’s rules [56]. According to
Slater, electrons within the same group of 3d electrons shield
0.35 charge, whereas electrons with lower orbital groups
shield 1 charge. For iron the total shielding experienced by
a 3d electron is 19.75 charges, which led to Z* = 6.25. The
electrons in the higher 4s orbital do not contribute to the
shielding of the nucleus of iron. The use of the hydrogenoid
wave function led to the following matrix elements:

AR o
g Y Y (=" YE R

Mo =716
4 T 12004 w
o AT (22 (2 2 14
204+1\0 0 0)\m" —m —m'
1
X<_S?+' vy +7, Si)+Sf F(6—l,S,-)>, 5)
where S; = 2% and where ag = 22 is the Bohr radius.

Here, y(l, x) a({nd I'(l, x) are, respectively, the lower and
upper incomplete gamma functions. They can be calcu-
lated recursively as y (I, x) = —xtle 4 (1 — Dy —1,x)
and I'(l,x)=x"le*+({—1I'({ —1,x) starting from
y(l,x)=1—e and I'(1,x) = ™.

For the 3d orbitals, we have five m values and, thus, M
is a 5 x 5 matrix. Note that the spin degrees of freedom are
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FIG. 8. Point-charge model crystal-field splitting of the 3d states
of iron in the FeOg octahedron environment in GFO into e, and 1,,
states. The different colors represent the weight in percent for each
of the basis functions of the e, and #,, symmetries. The total weight
for each state adds to 100%.

not included. This is justified by the fact that Fe in GFO has
essentially a +3 ionic charge and a large band gap, where the
states of one spin interact mainly among themselves than with
the other spin states. However, if one wishes to include the
spin quantum number and the SOC, it can be done using a
10 x 10 matrix, where the off-diagonal 5 x 5 matrices would
contain the couplings (exchange, SOC) between the two spin
states.

Before diagonalizing the matrix M, we made a unitary
transformation from the spherical harmonics to cubic harmon-
ics, so that the ensuing eigenvectors are directly expressed
as a linear combination of e, and #,, states. We set the order
of the cubic harmonics basis as t,¢ (xy, yz, and zx) and then
e, (322 — %, x* — y?). The new matrix to diagonalize UTMU
is directly in the cubic harmonics basis set, where U is
the unitary transformation between the cubic and spherical
harmonics.

The results were calculated for the same Fel atom as
described in Fig. 6, and are plotted in Fig. 8 together with
the weight of each eigenvector. The figure shows that there
is very low mixing of the e, and 1, orbitals. We obtain a
similar behavior as obtained for the unoccupied spin-up states
using the ab initio splittings, with the #,, orbitals lower in
energy than the e, orbitals, but not for the occupied spin-down
states. Since the point-charge model is essentially based on
unscreened Coulomb interaction with pointlike ionic neigh-
bors without hybridization, the crystal-field splitting of each
Iy, or e, orbital arises only from the distorted octahedral
environment. There are at least two inferences we can draw
from the results obtained in this section:

(i) The conventional meaning of e, and #,, orbitals is valid
because the crystal-field splitting is in agreement with what
is expected (Fig. 5). However, even though it reproduces the
splitting of the spin-up DOSs, it does not agree with e, and
fh, splitting of the occupied spin down of the Fel atom (see
Fig. 6).

(i) Although the octahedral environment is so distorted, it
resulted only on slight splitting of the two e, and three #,, as
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seen in Fig. 8. However the crystal-field splitting between the
e, and tp, of 1.6 eV is in agreement with the ab initio results
for the empty states of 1 eV (for U = 4 eV) but less with the
DOSs for U = 8 eV.

While the first point seems right, it is possible to distin-
guish clearly the e, and t,, orbitals of the unoccupied states
of the ab initio calculation of 1 eV (for U = 4 eV) as well
as the point-charge model 1.6 eV, due to the low mixing of
the orbitals. However, for the occupied spin-down states, the
point-charge model failed completely, as it can not explain
how the e, states become lower than the #,,. One can not just
assume that the spin-up and spin-down DOSs are rigidly split
by 8 eV (for U =4 eV) and 11 eV (for U = 8 eV) by the
exchange interaction. The hybridization between the oxygen
p states and the iron e, and #,, is key for understanding the
physics of GFO beyond the point-charge model.

As indicated above, the second point is less intuitive.
Even though the Fe central atom is displaced away from the
center causing a high amount of distortion of the octahedral
environment, as was first shown in an earlier work [17], it
resulted only in small splitting and a small mixing of the e,
and #,, orbitals.

The point-charge model is not an exact model and can only
provide a qualitative understanding of the crystal-field split-
ting for systems which are mainly ionic and the hybridization
between the central atom orbitals and neighboring ligands
is low. As the amount of hybridization increases (lowering
of U), the model is less appropriate to study the orbital
splitting behavior since the neighboring ions can no longer
be considered as fully ionic or point-charge like. However,
the point-charge model remains useful and is often used for
estimating the splitting of the d or f orbitals.

IV. MAGNETOELECTRIC PROPERTIES

GFO has been known as a ferrimagnetic and ferroelectric
material, i.e., it contains a spontaneous magnetization and
a spontaneous electric polarization. Additionally, these two
ferroic orders have been known to be coupled to one another
[7,10-12,14,57]. However, a theoretical understanding of the
mechanism driving this coupling is missing and until recently,
even the electric polarization of the GFO system was not
computed using ab initio techniques [30,31]. With an aim of
understanding the coupling between the magnetic and electric
ferroic orders, we performed ab initio calculations for the
electric polarization and its dependence on the magnetization
direction as implemented in VASP [45-50].

A. Temperature dependence of electric polarization

To simulate a temperature dependence, we assume a lin-
ear interpolation of the atomic positions and lattice vectors
between those at 4 and 230 K. The initial (at 4 K) and final
(at 230 K) positions were measured with neutron diffraction
patterns by Arima et al. and are given in Table IV. It can be
observed from these data that there is very little change in the
atomic positions and the lattice vectors, for example, change
in volume is less than 0.2% and, thus, we can work in the
linear regime between these temperatures.

TABLE IV. Experimental positions in units of the lattice pa-
rameters of GFO ions at 4 and 230 K with a = 8.71932 A, b =
9.36838 A, and ¢ =5.06723 A at 4 K and a = 8.72569 A, b =
9.37209 A, and ¢ = 5.07082 A at 230 K [14].

4K 230 K

Site X y z X y z

Gal 0.1500 0.0000 0.1781 0.1501 0.0000 0.1761
Ga2 0.1593 0.3073 0.8106 0.1597 0.3067 0.8091
Fel 0.1538 0.5831 0.1886 0.1525 0.5827 0.1893
Fe2 0.0346 0.7998 0.6795 0.0351 0.7992 0.6787
(0} 0.3228 0.4262 0.9716 0.3223  0.4260 0.9740
02 0.4864 0.4311 0.5142 0.4877 0.4313 0.5168
03 0.9979 0.2022 0.6541 0.9963 0.2008 0.6521
04 0.1593 0.1974 0.1480 0.1593 0.1961 0.1475
05 0.1695 0.6717 0.8437 0.1715 0.6714 0.8410
06 0.1736  0.9383 0.5166 0.1725 0.9379 0.5153

To simplify work in the linear regime, we defined a param-
eter A between 0 and 1 defining the temperature and positions
at 4 and 230 K, respectively. For example, the temperature is
then defined as

T(A) =44 (230 —4)x. 6)

A was varied in steps of 0.1 and we calculated the electric
polarization for the atomic positions at these points. Since the
initial and final positions are obtained from experiment, the
ionic relaxation was not carried out. Additionally, the electric
polarization is multivalued differing by integral values of the
polarization quanta [48,58]. To resolve this, it is necessary to
calculate the polarization on a path connecting the nonpolar
structure (centrosymmetric) and the polar structure (noncen-
trosymmetric). As a result, the electric polarization values
were already manipulated based on the method developed by
Stoeffler [31], who had performed the calculation for the GFO
structure at 4 K along a polarization lattice branch connecting
the corresponding nonpolar and polar structures.

The absolute values of the electric polarization for the ideal
system as a function of temperature are shown in Fig. 9. The
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FIG. 9. Calculated electric polarization in GFO as a function of
temperature. The dashed line is a linear fit.
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FIG. 10. Electronic (black circles), ionic (red stars), and net (blue
pluses) electric polarizations in GFO as a function of temperature.

polarization vector is aligned along the negative y axis, with
a magnitude of about 23.5 MC/cmz, close to the value of
25 uC/cm? as reported by Stoeffler [31]. It is seen that as
the temperature increases, the magnitude of the polarization
decreases. This is expected since increase in temperature leads
to an increase of the interatomic distances, which causes
hybridization to decrease and electrons to be more localized
near the parent atom and the bonding becomes less ionic.
Since the electric polarization is a measure of how far apart the
charges are, a localization of electrons near the ions implies a
lowering of the magnitude of the electric polarization.

This can be understood with the help of Fig. 10, which
shows the electronic and ionic components of the electric
polarization in GFO. The polarization is plotted along the
positive y axis, which is why the net polarization is negative.
The ionic part of the polarization increases in magnitude with
temperature. Since the ionic part of the polarization is the sum
of the dipole moments per unit cell, an increase of temperature
would drive the atoms apart, thereby increasing the dipole
moments and, thus, the electric polarization.

The electronic part of the polarization also increases with
temperature, however, in the opposite direction, due to the
sign of the charge. If we consider that the Wannier centers
of the electrons are located at the positions of the ions, then
increasing the temperature would drive the ions apart and the
Wannier centers, hence increasing the polarization. However,
if this were the only factor, we would expect no change in
the net polarization since the ionic positions and the Wannier
centers would be driven apart by exactly the same amount.
The other factor is the electron hybridization, which decreases
with increase in the interatomic distances. As a result of
this, the electronic density becomes more localized and the
bonding becomes more ionic, which increases the electric
polarization. Since the electronic polarization and the ionic
polarization are in opposition, the net polarization, parallel to
the ionic polarization, reduces in magnitude with increase in
temperature.

B. Rotation of magnetization direction

The electric polarization obtained in the previous subsec-
tion are in good agreement with what was found by earlier

theoretical studies [31]. Recent experimental studies [59]
were performed on Ga,_,Fe, O3 with x = 1.1, which indicate
polarization values around 33 «£C/cm?, not very far from ours.
These confirmations support our calculations and allow us to
study magnetoelectric effects in GFO. Magnetoelectric effects
form a class of phenomena that arise due to the coupling
between the magnetic and electric ferroic orders, which are
the ferrimagnetic and ferroelectric orders in GFO. In our
work, we probe the effect of rotation of the magnetization axis
on the electric polarization.

There are two types of magnetoelectric effects: direct and
indirect. The direct magnetoelectric effect arises from the
SOC, that couples the spin and the lattice. When an external
magnetic field is applied, the electrons move to a different
ground state that causes the electronic polarization to change.
This effect does not require the ionic positions to change
and is a direct consequence of the external magnetic field,
hence, the term direct. On the other hand, the indirect mag-
netoelectric effect is a consequence of the external magnetic
field moving the ions and altering the volume of the cell,
thus changing the electric polarization. This effect is also
called the magnetostrictive magnetoelectric effect. Based on
experiments conducted in the 1960s, it was hypothesized that
the magnetoelectric effects observed in GFO are due to the
indirect mechanism [11]. However, in the 1990s, Popov et al.
indicated that the direct mechanism is responsible for the
observed magnetoelectric effects in GFO [60]. In spite of the
unresolved problem for over half a century, there has been no
systematic theoretical study trying to probe this phenomenon
to the best of our knowledge.

We begin by rotating the magnetization axis in the y-z
plane, starting from the +z axis, the original configuration, to
the —z axis through the +y axis. Rotation of the magnetization
axis is akin to rotation of the moments such that they remain
parallel (or antiparallel) to the magnetization axis. Since we
can not include external magnetic fields in our calculation, we
fix the moments along a rotated magnetization axis to simulate
a saturation external magnetic field in the y-z plane that will
rotate the moments in the same way. By maintaining an an-
tiferromagnetic system, we assume that the exchange energy,
i.e., the energy to overcome the antiferromagnetic coupling
between the Fe ions, is always higher than the energy of the
corresponding external magnetic field. To check whether the
direct mechanism is responsible for the observed magneto-
electric effects, the calculations were performed keeping the
ions fixed. As a result, any change in the electric polarization
is due to the change in the electronic polarization only.

Figure 11 shows the change of the electric polarization
along the y and z axes in GFO. While a clear pattern exists
in both curves, the change is less than 0.4 nC/ cm?, five orders
of magnitude lower than the spontaneous electric polarization
determined in the previous subsection at 23.5 «C/cm?. More-
over, it is very hard to measure these small values experimen-
tally. Thus, quantitatively speaking, the direct mechanism is
far from sufficient to explain the magnetoelectric effects in
GFO. The indirect mechanism on the other hand might be the
main cause for the observed magnetoelectric effects. This is
supported by the temperature dependence calculation results,
where the volume change of about 0.2% caused the electric
polarization to change by about 0.6 1C/cm? or 2.5%.
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FIG. 11. Change in the electric polarizations along the y and z
axes in GFO as a function of rotation of the magnetization axis.

To properly determine the main mechanism for the mag-
netoelectric effects, it is hence important to perform similar
calculations while allowing the unit-cell volume and ionic
positions to change, which might be very expensive since
GFO is a relatively large system. These calculations can be
done by performing only a volume relaxation to minimize the
computational effort, and have not yet been carried out to the
best of our knowledge.

V. CALCULATION OF XAS AND XMCD

X-ray absorption spectroscopy (XAS) and x-ray magnetic
circular dichroism (XMCD) are excellent methods for probing
the electronic and magnetic structure of materials. These
methods have been under intense study, both theoretically and
experimentally [61-70]. With XAS and XMCD, it is possible
to obtain element-specific structure and magnetization. The
chemical selectivity of each core orbital of any atomic species
in a material is what makes XAS and XMCD more capable
of characterizing magnetic systems than traditional magnetic
techniques. This property is used to study magnetism in three-,
two-, and one-dimensional systems. XMCD originates from
the coupling between the photon helicity (4-%) and the atomic
magnetic moments, thereby creating a difference between
the absorption cross sections measured with respect to the
magnetization axis for left and right circularly polarized light.
Under the PAW scheme, the x-ray absorption o at frequency
o for a given polarization u is given by [71]

3 0.m

oM (w) = 4rah CJ,M 1 pus8,m
mzw ,.m';1/2,s C[’,O

M,nk,s | p,t,m,m' 1,0;¢,0
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where p is the projector index, £, m are the angular momentum
and magnetic quantum numbers for the valence states, £, m’
are those for the core states, J, M is the core spin-orbit-split

Ji, M _ .
quantum numbers, and Cle.,le;Jz,Mz = (J1, MJ, My; J5, M3)

are the Clebsch-Gordan coefficients. I_’;’Lffn are the projectors
in the PAW method represented in the complex spherical har-
monics basis (see Ref. [71] for details of our implementation).

The calculated L, 3 XAS edges and XMCD for GFO with
disorder and for U = 8 EV are provided in Fig. 12. The the-
oretical and experimental spectra for the individual circularly
left and right polarized light were not discernible, indicating
that the system is essentially antiferromagnetic. Indeed, we
observe that the two curves are very close to each other. The
computed XAS was then averaged and then normalized to
match the experimental L3 highest peak, and the L, peak
was shifted by the 13-eV spin-orbit splitting of the 2p;
and 2p3/2 core states in agreement with the position of the
experimental counterpart.

Figure 12 shows that the experimental peaks exhibit mul-
tiplet splitting. This behavior occurs generally in 3d and 4 f
oxides and compounds because the 3d or 4f electrons are
strongly correlated and localized. DFT is a single-particle
picture and fails to correctly account for the splitting of
localized orbitals, but overall the calculated DFT spectra are
in good agreement with experiment. The multiplet splitting
can be described using atomic multiplet models [72].

The XMCD signal was also computed after normalizing
the XAS and shows a dichroism indicating a net magnetic
moment in the system. The sum rules [66,67] were used to
compute the average orbital and spin moments per Fe atom
in the system and are shown in Table V. The number of
holes was set to 5 since Fe in GFO has an official ionic
charge of +3, which amounts to a half-filled 3d shell. The
computed spin moment agrees well with experiment, while
the orbital moment is underestimated by a factor of 2. Note,
however, that the sum rules should in principle provide the
same average magnetic moment per iron atom as the direct ab
initio calculation. However, the ab initio calculation for U =4
and 8 eV (see Table III) show that the spin magnetic moment
per iron atom are, respectively, 1.06up and 1.13up, and the
average orbital moment of 0.006u g and 0.0055x5. Thus, the
sum rules produced an error of —38% for the spin moment and
+45% increase for the orbital moment. These types of errors
due to the use of the XMCD sum rules are well documented
in the literature [68]. An additional source of errors could also
be due to the fact that the PAW 2p core state is frozen and the
basis set includes only the augmentation region contribution.
If the experimental errors forming the sum rules are the
same as for the calculated values, then the experimental spin
moment per atom should be 1.4up in agreement with the
experimental averaged moment per iron atom of 1.2up as
produced from Table III. As for the average experimental
orbital moment, taking into account the sum rule errors, it
is expected to be 0.011up, which is twice the theoretical
value. Note that, as indicated above, DFT underestimates the
orbital moment by a factor of 2 [52]. In conclusion, the overall
agreement with experiment is satisfactory, since without any
site disorder GFO will not exhibit any XMCD signal.

VI. DISCUSSION

In this work, we presented the results of our ab initio
calculations on GFO. To correctly account for the strongly
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FIG. 12. Calculated left and right circularly polarized L, 3 edges at the Fel site (left) and averaged (right) XAS and XMCD of Fe in
disordered GFO, calculated for U = 8 eV, compared to experiment [16].

correlated 3d electrons, the LDA+U model was used, where
we found that the value of U = 8 eV best reproduced the
experimental values of the energy band gap and the site mag-
netizations. We also found that the inclusion of the SOC did
not change the electronic properties drastically and allowed us
to obtain a nonzero orbital moment in GFO.

By performing site disorder studies based on cationic oc-
cupancies we confirmed earlier hypotheses attributing these
disorders to the cause of ferrimagnetism in the system. The
difference between the ground-state energies of the ideal and
disordered systems is below what was previously estimated
and much closer to the thermal energy available during syn-
thesis of the system. This indicates that site disorder can not
be completely controlled using current synthesis methods.
Further studies using excess Fe might provide clues to better
control the electronic and magnetic properties, in spite of the
site disorders, to help the development of practical devices.

To understand the magnetic ordering of the Fe sites, we
implemented the crystal-field analysis in VASP. For the oc-
tahedral Fe sites, we obtained the 1,, states below the e,
states as expected from an octahedral splitting. However, this
model calculation was found to be in contradiction with our ab
initio results as shown in Fig. 6 for the occupied states. This
shows that the ab initio interactions are more complex than

TABLE V. Calculated iron-site averaged orbital m, and spin my
moments (in units of xg) from the XMCD sum rules compared to the
experimental results [16].

Magnetic moment Theory Experiment [16]
my 0.777 0.870
Mo 0.008 0.017

these given by a point-charge model. As stated in crystal-field
section, the hybridization between the oxygen p states and
the iron e, and t,, states is key for understanding the physics
of GFO beyond the point-charge model. Indeed, when the
extended oxygen p state enters the Fe augmentation region it
is decomposed in the local spherical harmonics and looks like
a d state. This makes the interpretation of the Fe d states very
difficult as it is partly composed of oxygen states. We also
showed that the chemical bonding between Fe and oxygen is
partly covalent, thereby explaining the nonzero orbital mo-
ment and supporting earlier Bader charge calculations. This
does not say that iron is not in Fe*", it only claims that the
oxygen 0%~ Wannier function is very extended, i.e., the two
electrons gained by the oxygen are more spread contrary to
the assumed formal charge picture like, for example, in NaCl.

In addition, we presented our results for the linear temper-
ature dependence of the electric polarization. The polarization
has a monotonic decay which could be explained with the
simple model of reduction of hybridization due to increase of
interatomic distances. This was interpreted by separating the
electronic and ionic parts of the electric polarization.

We also presented the results of our direct magnetoelectric
studies, where we rotated the magnetization axis to simulate a
rotation of the moments due to an external field while keeping
the ions and cell volume fixed. The maximum change in the
electric polarization was under 0.4 nC/ cm?, and indicates that
the direct mechanism fails to explain the observed magneto-
electric effects in GFO. To truly find the cause of these effects,
one must perform similar studies of the electric polarization
by allowing the cell volume to change due to the change
of the magnetization axis, i.e., a magnetostriction-induced
polarization.

Finally, we presented the results for the calculation of
the XAS and XMCD for the Fe L,3; edges in GFO. The
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theoretical and experimental spectra match, indicating that
most of the features are captured by the calculations. The
lack of multiplets in the theoretical curves indicate the short-
coming of the single-particle picture, and further work needs
to be done to capture them using ab initio techniques. The
sum rules for the spin moments are in good agreement, and
similar studies can be carried out for GFO with different
site disorders for comparing theoretical calculations with
experiment.

VII. CONCLUSIONS AND PERSPECTIVES

In summary, the results for the ab initio calculations on
GFO performed under the LDA+U and GGA+U approxi-
mations with SOC were presented. The value of U = 8 eV
best reproduced the experimentally observed values of the
energy band gap and the site magnetizations. U was shown
to push the 3d electrons away from the Fermi level and thus
played an important role in the electron hybridization. The
inclusion of SOC did not affect the electronic structure of the
system. Cationic site disorder studies were then performed
using experimental cationic occupancies, which reproduced
the experimentally observed ferrimagnetism. The energy dif-
ference was shown to be closer to the thermal energy available
during synthesis, thereby indicating difficulty of site disorder
control.

We have implemented the crystal-field analysis in VASP and
used it to show that the tetrahedral-like splitting of the Fe
occupied e, and #,, DOS obtained in the ab initio calculation
can not be explained by a point-charge interaction. Indeed, the
interaction between the oxygen ligands and the Fe d states
is very complex and it is beyond the simple point-charge
model, as the hybridization plays a key role in the e, and #,,
splitting. This is in agreement with the partly covalent bonding
between Fe and O, and explains the origin of the nonzero
orbital moment.

We then presented the linear temperature dependence of
the electric polarization, which has a monotonic decay ex-
plained as separation of the ions with temperature. Then, we
rotated the magnetization axis of the system to simulate a
rotation of the magnetic moments under an external field. By
fixing the ions and cell volume, the direct magnetoelectric
effect was computed. The values obtained were very small,
indicating that the indirect mechanism (magnetostrictive in-
duced polarization) might be the main cause for the observed
magnetoelectric effects in GFO.

Finally, we calculated the XAS and XMCD for the Fe L; 3
edges in GFO with site disorders and compared them with
experiment. We found good agreement with experiment for
the spectra as well as the sum rules.

As perspectives for the system, it would be fruitful to
study excess-Fe along with cationic site disorders to better
control the electronic and magnetic properties of GFO. The
crystal-field analysis can be redone on the Ga sites, both
octahedral and tetrahedral, to understand the magnetic or-
dering of disordered systems. Magnetoelectric effects of the
indirect nature can be studied to help understand the coupling
between the ferroic orders. The methods developed here can
also be applied to other multiferroic systems, such as Cr,O3
or BiFeO;.
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APPENDIX A: IMPLEMENTATION
OF CRYSTAL-FIELD ROTATION

Rotation of the real spherical harmonics can be done in
two ways: first, by rotating the spherical harmonics using
the Wigner D matrices and then rewriting them as the real
spherical harmonics, and second, by rotating the real spherical
harmonics directly by using the rotation matrix of the coordi-
nate system. The Wigner D matrices are well described by
Bradley and Cracknell and the interested reader is directed to
their work [73]. In our implementation, the second method is
used.

Our implementation involves rotation of the d orbitals
following a rotation R(«, 8, y) of the Cartesian coordinate
system. Thus, we have a 5 x 5 rotation matrix A(a, B.v)
corresponding to rotations about the z, x, and z axes by the
Euler angles «, §, and y, respectively. The matrix elements
a;j of A in terms of the matrix elements R; j of R are derived by
writing the rotated real spherical harmonics, Y, in terms of
the rotated Cartesian coordinates (x', ', 7’), and then rewriting
these in terms of a superposition of the original real spherical
harmonics Y,,. To demonstrate this, we provide one example
of obtaining the transformation for m = —2. The rest of the
rotated real spherical harmonics are derived in Appendix B.

Consider a generalized 3 x 3 Cartesian rotation matrix R
which then gives us

(AD)

/— P .
r; = E R;jr;.
J

We define the corresponding 5 x 5 rotation matrix A for the
real spherical harmonics with £ = 2, and by manipulating the
indexes a;;, we can write V(@) = > G Yewr (). If we
write out the full form of the real spherical harmonics with
r= Zj R;jrj and use |[r'| = |r|, we have

1 [15xy
R 2V 7 r?
W, o(F) 1[5y
W —1(F) 2y m
Vo) | = |1 /52y (A2)
2,0 =liyr ~»
W1 (F) 1 [5x
Voo (R) 2y 7
1 /15 2y
| 4 T r? _

The matrix elements a;; are derived in Appendix B. Two
solutions for matrix elements of the form a;; are obtained.
This is due to the fact that we have six quadratic terms
(xz,yz,zz,xy, vz, zx) and only five coefficients a,,, for a
given m. However, we have shown that these two solutions
are identical for rotations along each Cartesian axis and since
every general rotation can be represented as rotations along
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the different axes, these two solutions are also identical for
any general rotation.

The first step of our implementation is determination of the
crystal-field geometry since the final positions after rotation
depend on the geometry (see Fig. 5). To distinguish between
the octahedral and tetrahedral geometries, we first find the
nearest neighbors and sort them by their distances. If the
distance of the furthest away neighbor is over 35% of the
closest, the crystal-field geometry is most likely tetrahedral.
If this condition is not met, we determine the angles between
the “arms” of the octahedron. If these angles are within 35%
of /2, then the crystal field is most likely octahedral. The
reason we keep the relative angle and distance conditions to
35% is to include highly distorted octahedral configurations
like those in GFO.

Once the crystal-field geometries are determined, we per-
form appropriate rotations about the z, x, and z axes by the
Euler angles «, 8, and y by setting the z axis along along the
direction where the angle formed between the central cation
and its oxygen neighbors is the closest to . These angles are
obtained by using trigonometric relations between the final
and initial positions. The final positions are “known” since
the neighbors of the cation have an arrangement as shown
in Fig. 5. For an octahedral field, the six neighbors lie on
the arms of the new coordinate system with the cation at
the origin and their positions are along (£1, 0, 0), (0, £1, 0),
and (0,0, £1). In the case of a tetrahedral field, the four
neighbors lie at the four vertexes of the two long diagonals
in a cube with the cation at its center and the sides parallel
to the a)ies ({f thle new cloordlinate 1systern. The plositilons are
sone (5 73, vk (7 5 mak (7 Tn g and
( 7 f’ 7§)' For a distorted octahedron, once the z axis
is set, as indicated above, the x and y axes are set by choosing
the average angles between the cation and its 2 x 2 oxygen
neighbors that approach best 7 /2.

For rotating the locally site projected wave functions, only
the Euler angles to reach the final positions are required and
not the final positions themselves. However, the final positions
help us understand the amount of distortion in the geometry,
and are important while developing the point-charge model,
where the Coulomb potential due to the anions is expanded
as a series of spherical harmonics. The all-electron wave
function in the projector augmented wave basis (PAW) is
given as

|p. €, m))P"es

ptm>

nk.s) = Inkos)+ > (Ip. €.m) —

p.t.m

(A3)

where |n, k, s) is the pseudo-wave function for band n, wave
vector k, and spin s. |p, £, m) and |p, £, m) are the partial and
pseudopartial waves corresponding to projector type p, an-
gular momentum quantum number ¢, and magnetic quantum
number m. P”k are the projector coefficients. In this equation,
SOC is not 1ncluded which is why the spin quantum number
s appears explicitly. The inclusion of SOC is trivial and does
not affect the final results in our work. The local site pro-
jected DOS is defined within the augmentation region, where
the all-electron wave function is given only by the partial

waves as

|n, k, s) Z I’,’Zﬁlp,&m%

p.t,m,s

(A4)

When the Cartesian reference frame is rotated, the new real
spherical harmonics maintain their £ quantum number and the
total DOS for a given £ remains unchanged. Hence, we have

> Pilp,tmy =y Py lp &)

p,m,s p.m,s

|vi¥) = (AS)
where the “barred” objects are the rotated quantities. To find
how the new projector coefficients transform, we express the
rotated real spherical harmonics in terms of the original basis
set. This is trivial since the radial functions do not change, and
only the spherical harmonics are rotated. Thus,

|p7£ m Zamm“y’ﬁ m (A6)
When we substitute this in Eq. (AS), we get
|wi¥) = Z P:IE:nlp,Z m)
DPam,s
k
= Z PZZ:n Z amm’lp, e, m/)
p.m,s m
= 5 (St
p.m',s m
=D Prwlp.tom)
p.m',s
k. —rnks
P[?Znyl = Zam’mppgm/ or
'
—nks
pem Z amm’P;;lZ; (A7)

Thus, the rotation matrix for the new projector coefficients is
the complex conjugate of the A rotation matrix. However, we
are dealing with the real spherical harmonics, whose rotation
matrices are completely real (see Appendix B). This implies
that both the new projector coefficients and the real spherical
harmonics transform using the same rotation matrix A.

The implementation was done with the intention of study-
ing the splitting of the e, and t,, orbitals of a 3d cation
in an octahedral or a tetrahedral environment. It is capable
of handling distortions of up to 35% in terms of the arm
lengths or angles, as well as handling non-spin-polarized,
spin-polarized, and relativistic-spin-polarized electron wave
functions. Our implementation is available as a Fortran90
module for VASP users.

APPENDIX B: DERIVATION OF ROTATION
MATRICES FOR d STATES

Rotation causes a change of the Cartesian coordinates as
r = Rr. (B1)

The prime and bar indicate rotated variables, observables,
basis, etc., r = (x, y, z) and R is any general rotation matrix
along a given axis. Let us assume that the real spherical
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harmonics for a given £ can be expressed in terms of a rotated
real spherical harmonics set for the same £. That is,

yem(f/) = Ayém(f.)v

where we denote the rotation matrix as A = (a;;), we have
a 5 x 5 matrix for £ = 2. If we write out the full form of
the spherical harmonics using Eq. (A2) and using (r')* = r2,
by multiplying out this matrix and expanding the primed
coordinates in terms of unprimed [i.e., by using Eq. (B1)],
we can compare the coefficients on the right and left sides
of the equation to represent a;; in terms of R,,,. Note that
we have six polynomials (x%, y2, z2, xy, yz, zx) but we wish
to represent only five coefficients. This implies that we have
a double solution for one coefficient. Indeed, if we follow
through the calculation, we get two solutions for every a;3.
Below is the list of all the elements of matrix A:
1) m =-2:

an = RiRyn + RiaRa,
apx = RiaRy3 + RizRa,
ais = V3Ri3Rys = —V/3(Ri 1Ry + RiaRn),
aja = R11Ry3 + RizRay,
ais = RuRy — RiaRop.
Q) m = —1:
az = RaR3 + RnRs,
ax» = RyR33 + Ro3R3,
ars = V3Ry3R33 = —V/3(Ra1R31 + RoaR3),
a4 = Ro3R31 + Ry Rs3,

(B2)

azs = Ry1R31 — RypR3.

3) m' =0:

1
a31 = —=(2R31R3 — R 1R12 — Ro1R»),

@) m =1:
asy = R31R1i2 + RxRyy,
agp = R3Ri3 + Ri3R2,
ass = V3R3Ri3 = —V/3(R31Ry1 + RaR12),
ass = R33R11 + R31Ry3,

ass = R31R11 — RyRyp.
B) m' =2:

as1 = Ri1R12 — RnRy,
asy = RpRi3 — Ro3Ry3,

NG V3
as3 = T(Rﬁ - R%z) = _T(R%I - Rgl + R%2 N R%Z)’

ass = Ri3R11 — Ro3Ryy,

ass = 5 (RS — Ry — Ry + R,

‘We now derive the form of A for rotations about each of the
Cartesian axes. Since any rotation can always be represented
in terms of rotations about the Cartesian axes R;, R, and R,,
the A matrices can be used for all cases. As is shown, the
double solutions obtained for a;3 are always identical and,
thus, all rotations of the spherical harmonics can also be
represented in terms of A, Ay, and A,.

We begin by considering a rotation about the z axis. In the
real spherical harmonics basis, R.(6) — A.(9). The R matrix
in Cartesian basis is

cosfd —sinf O
R.(0)=|sin6 cosf O]. (B3)
0 0 1

It can be easily verified that the double solutions for a;3 are in
fact identical for this case (and for the following two cases as
well). Thus, the A,(6) matrix is

3 cos 20 0 0 0 sin 26
{ 0 cosf 0 sin6 0
az» = —=(2R3R33 — RiaR13 — RnaRo3), A:(9) = 0 0 10 0 1. (B4
V3 0 —sinf 0 cos® O
1 5 5 ) —sin 20 0 0 0 cos 26
azy = (2R3 — R — st) . . .
2 We now consider a general rotation about the y axis. In the
1, , 5 5 5 " 5 real spherical harmonics basis, R,(6) — A,(8). The R matrix
- _E(ZR” — Riy — Ry + 2R3 — Riy — Ry)), in Cartesian basis is
1 cos 0 sind
as = ﬁ(2R31R33 — RuRi3 — RaiR23), R,(6) = 0 1 0 (BS)
1 —sinf 0 cos6
_ L op2 _p2 _p2 _ap2 2 2
43 = ﬁ(2R31 Riy = Ry = 2R3, + Ry + Ryy). The A,(6) matrix is
|
[ cos®  sin@ 0 0 0 ]
—sinf cosé 0 0 0
A =] 0 0 1Bcos?0-1) —Lsin20  Lsin’o (B6)
0 0 22 sin 26 c0s 26 —1Lsin26
L0 0 B sin2 g Isin20  1(1+cos?)
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Just like with the R matrices, the A matrices can be
multiplied in the order of rotations. This is a faster way to
generate the net rotation matrix since the individual matrices
are simpler. One can, of course, first create a net R matrix
by multiplying the individual R matrices and then using the

A matrix element definitions to create the A matrix, i.e.,
Azyz(a, B,y) =A(y)A,(B)A (). The order is important
since matrix multiplication is not commutative. In our im-
plementation, we use the Az.y_z(«, 8, y) matrix directly after
computing the Euler angles «, 8, and y of each octahedron.

[1] P. Curie, J. Phys. Theor. Appl. 3, 393 (1894).
[2] S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 1 (2007).
[3] L. E. Dzyaloshinskii, Zh. Eksp. Teor. Fiz. 37, 881 (1959) [Sov.
Phys. JETP 10, 628 (1960)].
[4] D. N. Astrov, Zh. Eksp. Teor. Fiz 40, 1035 (1960) [Sov. Phys.
JETP 13, 729 (1961)].
[5] C. A.F. Vaz, J. Phys.: Condens. Matter 24, 333201 (2012).
[6] T. Jin, Z. Cheng, and H. Kimara, Appl. Phys. Rev. 5, 021102
(2018).
[7] J. P. Remeika, J. Appl. Phys. 31, S263 (1960).
[8] E. A. Wood, Acta Crystallogr. 13, 682 (1960).
[9] S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, J. Chem.
Phys. 42, 3957 (1965).
[10] C. H. Nowlin and R. V. Jones, J. Appl. Phys. 34, 1262 (1963).
[11] G. T. Rado, Phys. Rev. Lett. 13, 335 (1964).
[12] S. C. Abrahams and J. M. Reddy, Phys. Rev. Lett. 13, 688
(1964).
[13] R. B. Frankel, N. A. Blum, S. Foner, A. J. Freeman, and M.
Schieber, Phys. Rev. Lett. 15, 958 (1965).
[14] T. Arima, D. Higashiyama, Y. Kaneko, J. P. He, T. Goto, S.
Miyasaka, T. Kimura, K. Oikawa, T. Kamiyama, R. Kumai, and
Y. Tokura, Phys. Rev. B 70, 064426 (2004).
[15] J. Atanelov and P. Mohn, Phys. Rev. B 92, 104408 (2015).
[16] J.-Y. Kim, T. Y. Koo, and J.-H. Park, Phys. Rev. Lett. 96, 047205
(2006).
[17] E. Ibrahim and M. Alouani, Phys. Rev. B 85, 174411 (2012).
[18] A. Roy, R. Prasad, S. Auluck, and A. Garg, J. Appl. Phys. 111,
043915 (2012).
[19] J. Atanelov and P. Mohn, Comput. Mater. Sci. 117, 380 (2016).
[20] C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, and X. Zhao,
RSC Adv. 6, 78322 (2016).
[21] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev.
Mod. Phys. 68, 13 (1996).
[22] S. Biermann, F. Aryasetiawan, and A. Georges, Phys. Rev. Lett.
90, 086402 (2003).
[23] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B
44, 943 (1991).
[24] V. L. Anisimov, 1. V. Solovyev, M. A. Korotin, M. T. Czyzyk,
and G. A. Sawatzky, Phys. Rev. B 48, 16929 (1993).
[25] V. I. Anisimov, P. Kuiper, and J. Nordgren, Phys. Rev. B 50,
8257 (1994).
[26] A. Boussendel, N. Baadji, A. Haroun, H. Dreyssé, and M.
Alouani, Phys. Rev. B 81, 184432 (2010).
[27] C. Rodl, F. Fuchs, J. Furthmiiller, and F. Bechstedt, Phys. Rev.
B 79, 235114 (2009).
[28] M. J. Han, T. Ozaki, and J. Yu, Phys. Rev. B 75, 060404(R)
(2007).
[29] A. Roy, A. Garg, R. Prasad, and S. Auluck, Adv. Mater. Phys.
Chem. 2, 1 (2012).
[30] A. Roy, S. Mukherjee, R. Gupta, S. Auluck, R. Prasad, and A.
Garg, J. Phys.: Condens. Matter 23, 325902 (2011).

[31] D. Stoeffler, J. Phys.: Condens. Matter 24, 185502 (2012).

[32] M. Hatnean, J. Robert, M. F. Diaz, E. Ressouche, A. Cousson,
L. Pinsard-Gaudart, and S. Petit, Eur. Phys. J. Special Topics
213, 69 (2012).

[33] G. Kresse and J. Furthmiiller, Phys. Rev. B 54, 11169 (1996).

[34] The VASP manual, https://www.vasp.at/index.php/
documentation.

[35] P. E. Blochl, Phys. Rev. B 50, 17953 (1994).

[36] G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

[37] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

[38] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[39] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78,
1396 (1997).

[40] W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

[41] W. E. Pickett, Rev. Mod. Phys. 61, 749 (1989).

[42] V.1. Anisimov, F. Aryasetiawan, and A. L. Lichtenstein, J. Phys.:
Condens. Matter 9, 767 (1997).

[43] A. L Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B
52, R5467 (1995).

[44] D. Hobbs, G. Kresse, and J. Hafner, Phys. Rev. B 62, 11556
(2000).

[45] R. Resta, Ferroelectrics 136, 51 (1992).

[46] R. D. King-Smith and D. Vanderbilt, Phys. Rev. B 47, 1651
(1993).

[47] D. Vanderbilt and R. D. King-Smith, Phys. Rev. B 48, 4442
(1993).

[48] R. Resta, Rev. Mod. Phys. 66, 899 (1994).

[49] R. Resta, Berry Phase in Electronic Wave functions, Lecture
Notes, Troisieme Cycle de la Physique en Suisse Romande,
Année Académique, 1995-96.

[50] D. Vanderbilt and R. D. King-Smith, arXiv:cond-mat/9801177.

[51] A. M. Kalashnikova, R. V. Pisarev, L. N. Bezmaternykh, V. L.
Temerov, A. Kirilyuk, and T. Rasing, JETP Lett. 81, 452 (2005).

[52] O. Eriksson, B. Johansson, R. C. Albers, A. M. Boring, and M.
S. S. Brooks, Phys. Rev. B 42, 2707(R) (1990).

[53] R. Masrour, E. K. Hlil, M. Hamedoun, A. Benyoussef, O.
Mounkachi, and H. E. Moussaoui, J. Magn. Magn. Mater. 378,
37 (2015).

[54] S. Gueddida and M. Alouani, Phys. Rev. B 87, 144413 (2013).

[55] J. D. Jackson, Classical Electrodynamics (Wiley, New York,
1962).

[56] D. Tudela, J. Chem. Educ. 70, 956 (1993).

[57] S. Mukherjee, A. Garg, and R. Gupta, J. Phys.: Condens. Matter
23, 445403 (2011).

[58] N. A. Spaldin, J. Solid State Chem. 195, 2 (2012).

[59] B. Kundys, F. Roulland, C. Lefevre, C. Mény, A. Thomasson,
and N. Viart, J. Eur. Ceram. Soc. 35, 2277 (2015).

[60] Y. F. Popov, A. M. Kadomtseva, G. P. Vorob’ev, V. A.
Timofeeva, and D. M. Ustinin, J. Exp. Theor. Phys. 87, 146
(1998).

074406-16


https://doi.org/10.1051/jphystap:018940030039300
https://doi.org/10.1038/nmat1811
https://doi.org/10.1088/0953-8984/24/33/333201
https://doi.org/10.1063/1.5018872
https://doi.org/10.1063/1.1984690
https://doi.org/10.1107/S0365110X6000162X
https://doi.org/10.1063/1.1695868
https://doi.org/10.1063/1.1729462
https://doi.org/10.1103/PhysRevLett.13.335
https://doi.org/10.1103/PhysRevLett.13.688
https://doi.org/10.1103/PhysRevLett.15.958
https://doi.org/10.1103/PhysRevB.70.064426
https://doi.org/10.1103/PhysRevB.92.104408
https://doi.org/10.1103/PhysRevLett.96.047205
https://doi.org/10.1103/PhysRevB.85.174411
https://doi.org/10.1063/1.3688852
https://doi.org/10.1016/j.commatsci.2016.02.017
https://doi.org/10.1039/C6RA14010F
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevLett.90.086402
https://doi.org/10.1103/PhysRevB.44.943
https://doi.org/10.1103/PhysRevB.48.16929
https://doi.org/10.1103/PhysRevB.50.8257
https://doi.org/10.1103/PhysRevB.81.184432
https://doi.org/10.1103/PhysRevB.79.235114
https://doi.org/10.1103/PhysRevB.75.060404
https://doi.org/10.1088/0953-8984/23/32/325902
https://doi.org/10.1088/0953-8984/24/18/185502
https://doi.org/10.1140/epjst/e2012-01664-5
https://doi.org/10.1103/PhysRevB.54.11169
https://www.vasp.at/index.php/documentation
https://doi.org/10.1103/PhysRevB.50.17953
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1103/PhysRevB.23.5048
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.78.1396
https://doi.org/10.1103/RevModPhys.61.433
https://doi.org/10.1103/RevModPhys.61.749
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1103/PhysRevB.52.R5467
https://doi.org/10.1103/PhysRevB.62.11556
https://doi.org/10.1080/00150199208016065
https://doi.org/10.1103/PhysRevB.47.1651
https://doi.org/10.1103/PhysRevB.48.4442
https://doi.org/10.1103/RevModPhys.66.899
http://arxiv.org/abs/arXiv:cond-mat/9801177
https://doi.org/10.1134/1.1984028
https://doi.org/10.1103/PhysRevB.42.2707
https://doi.org/10.1016/j.jmmm.2014.10.135
https://doi.org/10.1103/PhysRevB.87.144413
https://doi.org/10.1021/ed070p956
https://doi.org/10.1088/0953-8984/23/44/445403
https://doi.org/10.1016/j.jssc.2012.05.010
https://doi.org/10.1016/j.jeurceramsoc.2015.02.029
https://doi.org/10.1134/1.558635

EFFECT OF SITE DISORDER ON THE ELECTRONIC, ...

PHYSICAL REVIEW MATERIALS 4, 074406 (2020)

[61] H. Ebert, in Electronic Structure and Physical Properties of
Solids, Lecture Notes in Physics, Vol. 535, edited by H. Dreyssé
(Springer, Berlin, 2000), p. 191.

[62] J. Minart and H. Ebert,
(2004).

[63] M. Alouani, J. M. Wills, and J. W. Wilkins, Phys. Rev. B 57,
9502 (1998).

[64] V. Kanchana, G. Vaitheeswaran, and M. Alouani, J. Phys.:
Condens. Matter 18, 5155 (20006).

[65] M. Altarelli, Phys. Rev. B 47, 597 (1993).

[66] B. T. Thole, P. Carra, F. Sette, and G. van der Laan, Phys. Rev.
Lett. 68, 1943 (1992); P. Carra, B. T. Thole, M. Altarelli, and X.
Wang, ibid. 70, 694 (1993).

Appl. Phys. A 78, 847

[67] A. Ankudinov and J. J. Rehr, Phys. Rev. B 51, 1282 (1995).

[68] R. Wu and A. J. Freeman, Phys. Rev. Lett. 73, 1994 (1994).

[69] G. van der Laan, in Magnetism and Synchrotron Radiation:
Towards the Fourth Generation Light Sources, Springer Pro-
ceedings in Physics, Vol. 151, edited by E. Beaurepaire, H.
Bulou, L. Joly, and E. Scheurer (Springer, Cham, 2013), p. 257.

[70] N. V. Smith, C. T. Chen, F. Sette, and L. F. Mattheiss, Phys. Rev.
B 46, 1023 (1992).

[71] A. Dixit and M. Alouani, Comput. Phys. Commun. 207, 136
(2016).

[72] F. de Groot, Coord. Chem. Rev. 249, 31 (2005).

[73] C. Bradley and A. Cracknell, The Mathematical Theory of
Symmetry in Solids (Oxford University Press, Oxford, 2010).

074406-17


https://doi.org/10.1007/s00339-003-2441-9
https://doi.org/10.1103/PhysRevB.57.9502
https://doi.org/10.1088/0953-8984/18/22/015
https://doi.org/10.1103/PhysRevB.47.597
https://doi.org/10.1103/PhysRevLett.68.1943
https://doi.org/10.1103/PhysRevLett.70.694
https://doi.org/10.1103/PhysRevB.51.1282
https://doi.org/10.1103/PhysRevLett.73.1994
https://doi.org/10.1103/PhysRevB.46.1023
https://doi.org/10.1016/j.cpc.2016.05.022
https://doi.org/10.1016/j.ccr.2004.03.018

