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Controlling light propagation using artificial photonic crystals and electromagnetic metamaterials is an
important topic in the vibrant field of photonics. Notably, chiral edge states on the surface or at the interface of
photonic Chern insulators can be used to make reflection-free waveguides. Here, by both theoretical analysis and
electromagnetic simulations, we demonstrate that gyromagnetic hyperbolic metamaterials (GHM) are photonic
Chern insulators with superior properties. As a novel mechanism, the simultaneous occurrence of the hyperbolic
and gyromagnetic effects in these metamaterials is shown to open the large topological band gaps with a gap
Chern number of one. Importantly, the GHM Chern insulators possess nonradiative chiral edge modes on their
surfaces, and thus allow us to fabricate unidirectional waveguides without cladding metals which generally incur
considerable Ohmic loss. Furthermore, the photonic edge states in the proposed Chern insulators are robust
against disorder on a wide range of length scales, in strong contrast to crystalline topological insulators, and the
light flow direction on the surface of the Chern insulators can be easily flipped by switching the direction of
an applied magnetic field. Fascinatingly, we find that negative refraction of the topological surface wave occurs
at the boundary between the GHMs with the opposite signs of gyromagnetic parameters. Finally, we show that
compared with other photonic topological materials such as chiral hyperbolic materials, the present GHM Chern
insulators can be much easier to fabricate.
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I. INTRODUCTION

Control over the propagation of light using artificial pho-
tonic crystals [1,2] and electromagnetic metamaterials [3]
has received enormous attention in recent decades mainly
because of its importance for many applications in the vibrant
field of photonics. For example, metamaterials such as left-
handed media [4,5] have shown promising potential for novel
technologies [6,7]. In recent decades, great progress in this
field has been often made by taking advantages of analogies
with electronic systems in solid state physics. For example,
the concept of a photonic band gap material [1,2], a man-made
system with a periodic dielectric function, was inspired by the
electronic Bloch states in a crystalline semiconductor.

More recently, there have been growing interests in us-
ing topological photonic materials [8] to manipulate the
flow of light, again inspired by the recent developments
of electronic topological materials [9–11]. In particular, the
electronic quantum anomalous Hall (QAH) phase is a two-
dimensional (2D) bulk ferromagnetic insulator with a nonzero
Chern number in the presence of spin-orbit coupling (SOC)
but in the absence of applied magnetic fields [12,13]. The
associated metallic chiral edge states in this Chern insulator
carry dissipationless unidirectional electric current. Haldane
and Raghu recently proposed [14] to construct analogs of
this intriguing QAH phase in photonic crystals made of time-
reversal symmetry (TRS) breaking materials to realize unidi-
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rectional optical waveguides. Subsequently, these topological
electromagnetic states in a number of gyromagnetic photonic
crystals with broken TRS were further proposed [15–21] and
observed [22–25]. Interestingly, a photonic analog of elec-
tronic quantum spin Hall effect in 2D topological insulators
with TRS [9,10] were also observed in bianisotropic photonic
crystals [26–28].

Nevertheless, investigations of photonic unidirectional
edge modes have mostly been limited to topological photonic
crystals periodic on the scale of the operational wavelength,
and this considerably restricts the applications of topological
photonic materials. Very recently, Gao et al. [29] demon-
strated a theoretically topological photonic phase in chiral
hyperbolic metamaterials (CHM) made of continuous TRS
media with photonic edge states robust against disorder on all
length scales [29]. In hyperbolic metamaterials [30], which
are plasmonic metamaterials, equifrequency surfaces (EFSs)
of transverse electric-field (TE) and transverse magnetic-field
(TM) modes are degenerate on the high-symmetry points in
the momentum space [see Fig. 1(b)]. When the bianisotropic
property (chirality) is introduced in hyperbolic metamaterials
with TRS, which then become CHMs, the degeneracies are
broken due to the coupling between TE and TM modes [26]
and consequently, a nontrivial band gap is opened [29]. The
nontrivial topology of the CHM results from the nonzero
Berry curvature due to the chirality (equivalent to the SOC in
electronic topological insulators) and broken spatial inversion
symmetry in continuous medium [31].

In this work, as a novel mechanism for controlling light
flow, we introduce the photonic Chern insulators made of
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FIG. 1. EFS evolution from (a) an isotropic medium (εxx = εzz =
2 and γ = 0) to (d) a GHM (εxx = 2, εzz = −1, and γ = 0.8) via
either (b) a hyperbolic metamaterial (εxx = 2, εzz = −1, and γ = 0)
or (c) a gyromagnetic medium (εxx = εzz = 2 and γ = 0.8). TE (TM)
and RCP (LCP) denote TE (TM) polarization and right-handed (left-
handed) circular polarization, respectively.

continuous gyromagnetic hyperbolic metamaterials (GHM)
with the band gap opened by the TRS-breaking gyromag-
netic effect [Figs. 1(b) and 1(c)]. The nontrivial topology is
demonstrated by the calculated Berry curvature and nonzero
Chern number due to the broken TRS. The unidirectional
backscattering-immune nonradiative edge modes at the inter-
face between the GHM and vacuum are uncovered by the
finite-element electromagnetic simulations. As in the photonic
quantum spin Hall insulators (QSHI) made of the CHMs
[29], the photonic edge states in our Chern insulators are
robust against disorder on all length scales. In contrast to the
QSHIs [29], however, the light flow direction on the surface
of our Chern insulators can be easily flipped by switching the
direction of applied magnetic fields. Furthermore, our Chern
insulators made of the GHM can be easily fabricated.

II. GYROMAGNETIC HYPERBOLIC METAMATERIAL

We consider a GHM as a hyperbolic metamaterial [30]
with the gyromagnetic response which is described by the
constitutive relation(

D
B

)
=

(
ε0ε̂r 0

0 μ0μ̂r

)(
E
H

)
, (1)

where

ε̂r =
⎛
⎝εxx 0 0

0 εyy 0
0 0 εzz

⎞
⎠, μ̂r =

⎛
⎝μxx −iγ 0

iγ μyy 0
0 0 μzz

⎞
⎠ (2)

are the relative permittivity and permeability tensors, respec-
tively, and γ is the gyromagnetic parameter, representing
the degree of TRS breaking upon application of a magnetic
field in the z direction (gyromagnetic effect). For simplicity,
let us set μxx = μyy = μzz = 1 and εxx = εyy such that EFS
dispersions are isotropic in the xy plane. Note that small loss

would not affect the topology of such an effective medium
system (see Ref. [32] and references therein). As a result,
the surface states still match the lossless analytical solution
[33,34] and can be detected. This is also demonstrated in
Appendix A below. The propagation behavior of the gyromag-
netic hyperbolic metamaterials can be described by the wave
equation of the electric field E = (Ex, Ey, Ez )T as

k × μ̂−1
r k × E + k2

0 ε̂rE = 0, (3)

where k = (kx, kx, kz ) is the wave vector, and k0 = ω/c is the
wave number in vacuum. Equation (3) can be rewritten in the
matrix form as⎛
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where k2
x + k2

y = k2
t , A = μ

μ2−γ 2 , B = γ

μ2−γ 2 . The nontrivial

solutions of E = (Ex, Ey, Ez )T exist when the determinant of
the matrix on the left side of Eq. (4) equals zero, resulting in
the eigenequation of
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0

[
k2
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+ 2βAμk2
z

] + A
(
k2

t + k2
z

)(
αk2

t + βk2
z

)
= 0. (5)

Starting with an isotropic optical medium with εxx = εzz =
2 and γ = 0, one has two routes to arrive at a GHM, as illus-
trated in Fig. 1. The EFS dispersion of the isotropic medium
is a perfect sphere, as shown in Fig. 1(a). Furthermore,
the eigenstates consisting of transverse electric mode (TE)
(Ex = Ey = 0, Hz �= 0) and transverse magnetic modes (TM)
(Hx = Hy = 0, Ez �= 0), are degenerate and their dispersions
are identical and on the same sphere. When the isotropic
medium is transformed to a hyperbolic metamaterial (εxx = 2,
εzz = −1, and γ = 0) by varying εzz from 2 to −1, the EFS
sphere of the TE mode splits and becomes two parabola along
the kz axis while that of the TM mode remains spherical,
as depicted in Fig. 1(b) [see Figs. 2(a) and 2(b) for polar-
ization analysis]. This is because TM “sees” εxx = εyy = 2
only while, in contrast, TE sees εxx = εyy = 2 and εzz = −1.
Interestingly, the two TM parabola touch the TE sphere at
kz = ±1.0k0, respectively. When the gyromagnetic effect is
further introduced into the system by making γ nonzero (e.g.,
γ = 0.8), the system becomes a GHM. As a result, a band
gap is opened at both degenerate points kz = ±1.0k0 [see Fig.
1(d)]. Interestingly, since the gyromagnetic effect breaks TRS,
the eigenstates near ±1.0k0 become circularly (elliptically)
polarized, while eigenstates on the upper and lower hyperbolic
bands far away from the singular points remain TE polarized
[see Figs. 2(c) and 2(d)].

Alternatively, one can go from an isotropic medium first
to a gyromagnetic medium (e.g., εxx = εzz = 2 and γ = 0.8)
[see Fig. 1(c)] and then to the GHM. In a gyromagnetic
medium, because of broken TRS, TE and TM modes are cou-
pled, resulting in the separation of the degenerate EFS spheres
into two ellipsoids [Fig. 1(c)]. Also eigenstates become ellip-
tically polarized [see Figs. 2(e) and 2(f)]. In particular, the
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FIG. 2. Polarization analysis of eigenstates. Calculated polariza-
tion of EFS dispersion for (a) and (b) the hyperbolic metamaterial,
(c) and (d) the GHM, and (e) and (f) the gyromagnetic medium.
RCP (LCP) and TE (TM) denote right-handed (left-handed) circular
polarization and TE (TM) polarization, respectively.

eigenstates on the top and bottom surfaces of the ellipsoids
become nearly fully circularly polarized, while those in the
vicinity of the kz = 0 plane remain almost purely either (inner
ellipsoid) TE or (outer ellipsoid) TM polarization. Throughout
this paper we describe the polarizations of the eigenstates
on an EFS according to the Stoke parameters [35], where
the right circularly polarization (RCP) and left circularly
polarization (LCP) refer to the electric field vector rotate in
a right-hand and left-hand sense with respect to the direction
of propagation, respectively. Finally, when εzz is tuned to a
negative value (e.g., εzz = −1), the system becomes a GHM
and the outer ellipsoid splits to form two open parabolas, as
shown in Fig. 1(d).

III. TOPOLOGICAL PHASE TRANSITION

To investigate the topological property of the EFS disper-
sions of all four kinds of optical media and metamaterials
and also to examine the topological nature of the band gaps
near kz = ±k0, we calculate the Berry phase � and hence
also the Chern number C = 1

2π
� of all EFS surfaces [21,36].

FIG. 3. Berry curvature distribution on the EFSs of the gyromag-
netic hyperbolic metamaterials with (a) εxx = εzz = 2 and γ = 0.8
as well as (b) εxx = 2, εzz = −1, and γ = 1.2. The calculated Chern
number (C) for each EFS is also given.

The Berry phase of an EFS is given by a surface integral
over its whole surface � = ∫∫

F(k) · ds where the Berry
curvature F(k) = ∇ × 〈ψ (k)|i∇|ψ (k)〉, ds is the surface el-
ement vector, and ψ (k) is the eigenstate of Eq. (4). Following
our previous work [21], we adopt the efficient numerical
algorithm reported in Ref. [36] to evaluate the Berry curvature
F(k). That is, we divide an EFS into a large number (N) of
small quadrilateral surface elements. For element i, the Berry
phase ��i is given by the eigenstates at the four corner k
points (k00, k01, k10, k11) of the element, i.e.,

��i = 1

i
ln

〈ψ (k00)|ψ (k10)〉〈ψ (k10)|ψ (k11)〉
〈ψ (k00)|ψ (k01)〉〈ψ (k01)|ψ (k11)〉 . (6)

Therefore, the Berry phase of the EFS is given by � =∑N
i=1 ��i. Note that, in principle, the Berry phase and the

Chern number are well defined only for a closed surface. For-
tunately, our test calculations show that the Berry curvature
F(k) is negligibly small when the radial wave vector kρ =√

k2
x + k2

y > 15. Therefore, although the hyperbolic shaped

EFS surfaces are open (Figs. 1 and 2), we find that the
calculated Chern numbers would converge well to integers
as long as the surface integration is carried out from the k0

up to the radial wave vector kρ =
√

k2
x + k2

y being larger than

15. The Chern numbers calculated in this way are shown in
Fig. 1, and the Berry curvature distributions are displayed in
Fig. 3. We notice that the Berry curvature has the following
symmetry properties: (a) F(k) = F(−k) if the system has the
spatial inversion symmetry (IS) and (b) F(k) = −F(−k) if the
system has the TRS symmetry. Therefore, the Berry curvature
is identically zero and hence the Chern number is zero for
both isotropic medium and hyperbolic metamaterial because
they have both IS and TRS [see Figs. 1(a) and 1(b)].

In contrast, the Berry curvatures become nonzero in both
gyromagnetic medium and GHM since their TRS is bro-
ken, as shown in Fig. 3. Nevertheless, in the gyromagnetic
medium, the Berry curvatures on each EFS ellipsoid form an
odd function of kz [see Fig. 3(a)] because of the presence
of the IS symmetry. Consequently, the sum of the Berry
curvatures on the EFS surface of each ellipsoid (i.e., the
Berry phase and the Chern number) remains zero [Fig. 1(c)].
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This is also true for the inner ellipsoid in the GHM [Fig.
3(b)] and hence the Chern number of the inner EFS is zero
[Fig. 1(d)]. However, the outer ellipsoid in the GHM now
splits and hence transforms into two open parabolic surfaces
with Berry curvatures pointing to the positive z direction. Con-
sequently, the upper and lower open surfaces each acquires
a Chern number of +1 and −1, respectively. Therefore, the
phase transformation from the hyperbolic to gyromagnetic
hyperbolic due to the gyromagnetic effect is a topological
one, and the band gaps centered at ±k0 are topologically
nontrivial.

IV. NONRADIATIVE ONE-WAY PHOTONIC EDGE MODE

According to the bulk-edge correspondence, the gap Chern
number of �C = −1 implies that there is one propagating
edge mode in each band gap for each air-GHM interface.

Furthermore, these edge modes are chiral and topology pro-
tected, i.e., they are reflection-free one-way edge states. To
verify these amazing predictions, we first follow the method
proposed in Ref. [37] to calculate analytically the surface
bands between the air and GHM material. Let us consider
the interface between air (y > 0) and GHM (y < 0) on the
xz plane (y = 0) [see Fig. 4(a)]. The effect of the finite size
of the CHM on the topological edge states have been recently
discussed in Ref. [38]. Here we also examine the finite size
effect on the edge modes of the GHM in Appendix B. As
a result, in this work we assume that the thickness (d) of
the GHM along the y direction is larger than the wavelength
(λ) so that there would be negligible interaction between the
edge modes on the top and bottom surfaces of the GHM slab.
The wave vector in the GHM normal to the interface can be
obtained by solving Eq. (5):

kGHM
y = ±

(
αk2

0[αμ2 + β(μ2 − γ 2)] − 2αμk2
x − αμk2

z − βμk2
z ± Y

2αμ

)1/2

, (7)

where

Y ≡
√

α2k4
0[αμ2 + β(γ 2 − μ2)]2 + 2αk2

0μk2
z [−α2μ2 + αβ(γ 2 + 2μ2) + β2(γ 2 − μ2)] + μ2(α − β )2k4

z . (8)

Then the two linear independent eigenfields in the GHM, Ei(kx, ky, kz ) (i = 3, 4), can be obtained by solving the null space of
Eq. (4) with ky = ky(kx, kz ) from Eq. (4). Note that we need to choose two out of four roots of ky in Eq. (4) such that Im(ky)
would be smaller than zero due to the assumption of the decay wave normal to the interface. Once Ei are obtained, Hi can also
be obtained via Faraday’s law Hi = 1

Z0
k × Ei. Similarly, two orthogonal eigenfields in the air can be expressed as

E1 =
⎛
⎝−kz

0
kx

⎞
⎠, E2 =

⎛
⎝−ky

kx

0

⎞
⎠, H1 = 1

Z0

⎛
⎝ kxky

−k2
x − k2

z
kykz

⎞
⎠, H2 = 1

Z0

⎛
⎝ −kxkz

−kykz

k2
x + k2

y

⎞
⎠, (9)

where Z0 = √
μ0/ε0 is the vacuum impedance, and ky =

i
√

k2
x + k2

z − k2
0 . Since the tangential components of the elec-

tromagnetic fields should be continuous across the interface,
we arrive at Det(D) = 0 with

D(kx, kz ) =

⎛
⎜⎜⎝

−kz −ky E3x E4x

kx 0 E3z E4z

kxky −kxkz H3x H4x

kykz k2
x + k2

y H3z H4z

⎞
⎟⎟⎠. (10)

One can then obtain the surface mode, of which the fields
in air and GHM must decay exponentially along the vertical
direction of the interface, by solving det(D) = 0. To do this,
it is important to choose the range of the imaginary part of
ky (kGHM

y ) in the vacuum (GHM) to be positive (negative).
In other words, the fields in the air and GHM must decay
exponentially along the vertical direction of the interface. The
obtained dispersions of the surface modes are displayed in
Fig. 4(b) (blue and red lines), together the bulk bands (black
curves). Figure 4(b) shows that within the bulk band gaps,
there is indeed one edge state for both top (red curve) and
bottom (blue curve) interfaces between air and the GHM
slab in each bulk band gap. It should be noted that the
chiral edge states have mirror symmetry with respect to the

kz = 0 plane, i.e., the chiralities of the edge states above and
below the kz = 0 plane, are different, in contrast to that in
the CHM [29].

To demonstrate the unidirectional nature of the edge states,
we further simulate light propagation in the air-GHM interface
by putting a line source along the z axis at x = 0. The
results are displayed in Figs. 4(c)–4(f). Our simulations show
clearly that light on each interface runs without attenuation
in either +x or −x direction but not both directions, i.e.,
light propagation on the edges is unidirectional. Surprisingly,
Fig. 4(c) [Fig. 4(d)] shows that both edge modes of kz =
±1.6k0 carry light towards −x [+x] direction. Intuitively,
light beams with opposite signs of kz would propagate along
the oppositive directions of the x axis. This counterintuitive
phenomenon results from the fact that the chiralities of the
edge modes above and below the kz = 0 plane are opposite, as
mentioned in the proceeding paragraph. Moreover, Figs. 4(c)
and 4(d) show that the direction of light propagation depends
on the sign of gyromagnetic parameter γ , demonstrating that
one can control light transmission direction by switching the
magnetization direction of the GHM slab. It is also evident
from Figs. 4(d) and 4(e) that the light propagates along the
opposite directions at top and bottom surface. Figure 4(f)
shows that the light beam can also overcome the obstacles on

065202-4



PHOTONIC CHERN INSULATORS MADE OF … PHYSICAL REVIEW MATERIALS 4, 065202 (2020)

FIG. 4. One-way propagating edge states. (a) A GHM slab in air.
(b) Calculated EFS dispersions for the GHM slab in air (a). Black,
red, and blue lines denote dispersions of bulk state, top, and bottom
edge states, respectively. The dashed green circle denotes light cone.
(c) and (d) Simulated propagations of light emitted by a line source at
x = 0 on the top surface at kz = ±1.6k0 with γ = 0.8 and γ = −0.8,
respectively. (e) The same as in (d) but on the bottom surface. (f) The
same as in (c) except that the surface is now uneven, which does
not stop light from propagating along the negative x direction. (g)
and (h) 3D stimulated propagation of the chiral edge mode on the
surface of a lossy cuboid-shaped GHM with (g) γ = 0.8 + 0.01i
and (h) γ = −0.8 − 0.01i, emitted by a radiation source at kz =
1.6k0. Note that here the wave propagates along the z direction
with the decreasing amplitude because of the small added loss (see
Appendix B for more discussion on the effect of the dissipation
loss).

the surface, indicating light propagation is reflection-free due
to the topological protection. Finally, we have also performed
the 3D simulations for the cuboid-shaped GHMs with a small
loss surrounded by air. The results are displayed in Figs. 4(g)
and 4(h) for gyromagnetic parameters of ±γ . We consider
the loss by taking the gyromagnetic parameter as a complex
number with a small imaginary part. A small port is positioned
at the interface as the radiation source. Both Figs. 4(g) and
4(h) show the backscattering immune transportation of the
edge states bending around the z-invariant sharp corners,
thereby demonstrating the robustness of the one-way edge
states.

Finally, let us discuss the nonradiative property [39,40] of
the edge states of the GHM. A GHM is based on a hyper-
bolic metamaterial, which is generally a bilayer superlattice
consisting of a metal layer and a dielectric layer stacked along
the normal direction (see the next section for details). Thus,
the GHMs possess the property of surface plasmon polaritons
(SPPs). Compared with the electromagnetic waves in the air,

FIG. 5. (a) EFS dispersions and (b) decay rate of the electromag-
netic waves for the GHM slab in the air. In (a), the solid black and
dashed blue curves denote the dispersions of the bulk states and the
air, respectively. In (a) and (b), the yellow regions denote the overlap
regions of the air dispersion and bulk gap regions, while the gray
regions denote the complete gap regions. (c) and (d) Electric field
distributions of the edge states with (c) kz = 1.06k0 and (d) kz =
0.88k0, respectively. Note that in (c), the electric field is completely
confined to the edge of the GHM slab and hence there is no radiative
energy loss, because the kz is outside the light EFS sphere. In
contrast, in (d), because the kz is within the light EFS sphere, the
electromagnetic wave of the edge state propagates strongly into the
air, resulting in a large radiative energy loss.

the SPPs are slower waves and hence have larger wave vectors
than that of light in the air. As a result, the edge states on
a GHM may inherit this larger wave vector propagation, as
shown in Fig. 4(b). Therefore, there may be no intersection be-
tween the air light line and edge states, i.e., the edge states are
out of the light line. Consequently, the edge state would prop-
agate on the interface without radiation [Fig. 5(c)] because the
edge states cannot couple to the electromagnetic waves in the
air. In strong contrast, most of photonic topological insulators
are made of photonic crystals and consequently, the one way
edge states on the interfaces of these insulators suffer from
severe radiation loss and a metal wall serving as a cladding
perfect electric conductor or a perfect magnetic conductor
has to be added to the surrounding edges to stop radiation
loss into the air [15,22,23]. In practice, there is no lossless
perfect conductor and even good metals such as copper used
as the cladding walls absorb the radiation significantly. This
certainly hinders their applications. In contrast, in a GHM,
the air serves as the good insulator for stopping the radiation
of the edge states into the air [Fig. 5(c)]. To further understand
this intriguing property, let us divide the kz range in Fig. 5(a)
into two regions. The yellow region refers to the kz region that
supports both edge state and air mode, while the gray region
refers to the kz region that supports the edge state only. To
characterize the nonradiative property of the edge state, we
introduce the radiative decay rate as the ratio of the radiation
power harvested in the air to the radiation power of the source
[41]. As shown in Fig. 5(b), the decay rate is zero in the
gray region, indicating that the edge state propagates without
radiating into the air [see Fig. 5(c) for kz = 1.06k0]. In other
words, here the air serves as a good insulator for the edge
states of the GHM. In contrast, the decay rate grows sharply to
1.0 as kz enters the yellow region because the edge states now
couple to the wave in the air [see Fig. 5(d) with kz = 0.88k0].
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FIG. 6. Negative refraction of the topological surface states at the
interface between two different GHMs. (a) Schematic of the GHM
system consisting of a slab made of two GHMs with negative and
positive gyromagnetic ratio. (b) Illustration of the negative refraction
through an EFS analysis, where vg,x and vph,x denote the x compo-
nents of the group and phase velocities, respectively. (c) Stimulated
negative refraction, where the incident, reflected, and transmitted
waves at the interface between the two different GHMs are denoted
as 1, 2, and 3, respectively.

V. NEGATIVE REFRACTION OF EDGE MODE

Another interesting property of the topological surface
states of the GHM is negative refraction, similar to that of
the CHM reported recently in Ref. [38]. Specifically, let
us consider a slab consisting of two GHMs with positive
and negative gyromagnetic ratio, respectively [see Fig. 6(a)].
Clearly the two interfaces between the two GHMs and air
would support edge states with opposite chiralities, as dis-
cussed in the proceeding section. As shown in Fig. 6(b),
the x component of the group velocity (energy flow) of all
the surface states of the GHM with γ = −0.8 (the blue line in
the upper panel) is positive (vg,x > 0), while the phase velocity
(vph,x = ω/kx) changes sign across kz = 0. As a result, in the
kx < 0 region the x components of the group velocity and
phase velocity have opposite signs (vg,x > 0 and vph,x < 0)
[see Fig. 4(b)]. This is the signature of negative refraction
[38]. On the contrary, the surface states on the GHM with
γ = 0.8 in the kx < 0 region have vg,x < 0 and vph,x < 0
[see lower panel of Fig. 6(b)]. According to the principle of
conservation of the momentum parallel to the interface [42],
the group velocities of the three points intersecting the surface
modes will give the propagation directions of the surface
waves [Fig. 6(b)]. Consequently, as shown in Fig. 6(c), the
incident (wave 1) and refracted (wave 3) surface waves lie
on the same side of the normal line, indicating a negative
refraction.

To verify this interesting finding, we perform a numeri-
cal simulation in which a surface wave with kx = 0.25k0 is
excited. The result, displayed in Fig. 6(c), indeed shows that
the incident (wave 1) and refracted (wave 3) edge modes lie
on the same side of the normal line, thus indicating negative
refraction. The existence of negative refraction of the topo-
logical surface states would lead to many interesting effects
[4–6,42–46] such as superlens effect [6,43–45] and suppres-
sion of reflected waves [42].

FIG. 7. Proposed gyromagnetic hyperbolic metamaterial as a
bilayer superlattice composed of a gyromagnetic slab and a metal
slab.

VI. REALIZATION OF THE PROPOSED GYROMAGNETIC
HYPERBOLIC METAMATERIALS

The hyperbolic metamaterials are a highly anisotropic
material with real parts of the principal components of its
permittivity tensor having opposite signs [30] and have been
intensively investigated because of this unique property. Here
we consider a bilayer superlattice composed of a metal layer
with relative permittivity εm and thickness dm and a dielectric
layer with relative permittivityεd and thickness dd stacked
along the z direction [47]. The effective dielectric constant of
this metamaterial is given by

εeff =
⎡
⎣εxx 0 0

0 εyy 0
0 0 εzz

⎤
⎦, (11)

where

εxx = εyy = εmdm + εd dd

dm + dd
, (12a)

1

εzz
= dm/εm + dd/εd

dm + dd
. (12b)

If the dielectric layer is replaced by a gyromagnetic
medium layer, the superlattice becomes a gyromagnetic hy-
perbolic metamaterial with its relative permeability tensors[

μg −iγ 0
iγ μg 0
0 0 μg

]
and

[
1 0 0
0 1 0
0 0 1

]
for the gyromagnetic and

metal layers, respectively. The bilayer superlattice with rel-
ative permittivity εg = εd and thickness dg = dd for the gyro-
magnetic layer, is schematically shown in Fig. 7.

For simplicity, let us write the fields in the metal as
(Em, Hm) = (Em

x , Em
y , Em

z , Hm
x , Hm

y , Hm
z ) and in the gyromag-

netic medium as (Eg, Hg) = (Eg
x , Eg

y , Eg
z , Hg

x , Hg
y , Hg

z ). We
assume that the wavelength is much larger than the thick-
ness. Using the boundary conditions that Dz, Ex, Ey, Bz, Hx,
and Hy must be continuous across an interface, we obtain
εmEm

z = εgEg
z , Em

x = Eg
x = Ex, Em

y = Eg
y = Ey, Hm

z = μgHg
z ,
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Hm
x = Hg

x = Hx, Hm
y = Hg

y = Hy. Consequently, the average
D field and B field are

Deff
x = dgεg + dmεm

dg + dm
Ex, (13a)

Deff
y = dgεg + dmεm

dg + dm
Ey, (13b)

Deff
z = εmEm

z = εgEm
z , (13c)

Beff
x = dgμg + dm

dg + dm
Hx − idgγ

dg + dm
Hy, (13d)

Beff
y = dgμg + dm

dg + dm
Hy + idgγ

dg + dm
Hx, (13e)

Beff
z = μ0Hm

z = μgHm
z . (13f)

Therefore, the effective relative permittivity and perme-
ability tensors are given by

εeff =

⎡
⎢⎢⎣

dgεg+dmεm

dg+dm
0 0

0 dgεg+dmεm

dg+dm
0

0 0 (dg+dm )εgεm

dgεm+dmεg

⎤
⎥⎥⎦, (14a)

μeff =

⎡
⎢⎢⎣

dgμg+dm

dg+dm

−idgγ

dg+dm
0

idgγ

dg+dm

dgμg+dm

dg+dm
0

0 0 (dg+dm )μg

dgεm+dmμg

⎤
⎥⎥⎦. (14b)

We can easily find suitable materials as the gyromagnetic
medium and the metal slab to construct a GHM described
above. For example, yttrium iron garnet (YIG) under an
applied magnetic field of 1600 G has the effective relative
permittivity εg = 15 and permeability μg = 1.12 and γ =
0.124 at 1.94 THz [15], and thus can be used as the gyro-
magnetic medium. InSb has the effective relative permittivity
εm = −10.78 at 1.94 THz [48] and thus can serve as the
metal slab. In the bilayer multilayer, the thicknesses of the
gyromagnetic medium and metal layers are taken to be the
same and much less than 1.546 × 10−4 m (wavelength of
1.94 THz). In this case, the effective relative permittivity and
permeability tensors can be written as

εeff =
⎡
⎣2.11 0 0

0 2.11 0
0 0 −76.73

⎤
⎦, (15a)

μeff =
⎡
⎣ 1.06 0.062i 0

−0.062i 1.06 0
0 0 1.06

⎤
⎦. (15b)

The EFS dispersions obtained using the effective param-
eters are displayed in Fig. 8. Clearly the shape of the EFS
dispersions is similar to that of the EFS presented in the last
section, and furthermore, the topological properties such as
the Chern numbers of the bands and the topological nature of
the band gaps are identical to those shown in the last section.

To see the robustness of the topological band gap against
the variations of the material parameters, we show the calcu-
lated band gap as a function of both γ and εzz/εxx in Fig. 9.
Clearly the band gap is significant (>0.5) in a wide range of
the parameters. For example, when εzz/εxx is in between −0.1

FIG. 8. Calculated EFS of the bilayer superlattice shown in Fig. 7
made of a YIG slab as the gyromagnetic medium and an InSb layer
as the metal slab.

and −1.0, the band gap is significant for γ being from 0.4 to
2.0. Interestingly, Fig. 9 shows that for εzz/εxx is in between
−1.0 and −2.0, one tunes the system from the gapless to the
Chern insulating state and then back to gapless state. Finally, it
should be pointed out that the present photonic Chern insula-
tor would be much simpler to design and fabricate than many
other photonic insulators. For example, the chiral hyperbolic
photonic topological insulator reported in Ref. [49] is com-
posed of an array of micrometer-scale helical waveguides. The
photonic chiral hyperbolic topological insulators proposed in
Ref. [29] would be based on an array of hyperbolic coils
which serve as chiral resonators. In contrast, as discussed
above, the photonic Chern insulators would consist of a simple
YIG/InSb bilayer superlattice, and thus would be much easier
to fabricate.

VII. DISCUSSION AND CONCLUSIONS

In the QAH effect, vacuum is an insulator for electrons and
thus the chiral edge states are localized at the surface of the
Chern insulator. In contrast, vacuum to photons is often like a
free electron metal and thus light propagation on the unidirec-
tional edge modes would generally suffer from radiation loss.

FIG. 9. Calculated band gap map on the γ − (εzz/εxx ) plane of
the bilayer superlattice shown in Fig. 7, which is made of a YIG slab
as the gyromagnetic medium and an InSb layer as the metal slab.
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FIG. 10. Bulk EFS (cyan) of lossy GHMs with (a) γ = −1 +
0.1i and (b) γ = −1 + 1i. Here the yellow spheres indicate the EFS
of air.

Consequently, a metal film such as copper is usually inserted
between air and the topological photonic insulator to suppress
the radiation leakage [22–24]. However, metals like copper
could incur significant Ohmic loss. In strong contrast, the
chiral edge modes in our GMHs are not only reflection-free
but also nonradiative, as demonstrated by our finite element
electromagnetic simulations (see Figs. 4 and 5). This is simply
because the chiral edge dispersions are located outside light
cone [see Fig. 4(b)]. This is an important advantage of the
GMHs over the gyromagnetic photonic crystals [22,23].

In conclusion, by both theoretical analysis and electro-
magnetic simulations, we have demonstrated that gyromag-
netic hyperbolic metamaterials (GHM) are photonic Chern
insulators with fascinating properties. We further show that
the large topological band gaps with a gap Chern number
of one in these metamaterials, result from the simultaneous
presence of the hyperbolicity and also the gyromagnetic
effect, which breaks the time-reversal symmetry and thus
gives rise to nonzero Berry curvatures on the EFSs. Remark-
ably, unlike many other photonic Chern insulators, the GHM
Chern insulators possess nonradiative chiral edge modes on
their surfaces, and thus allow us to fabricate unidirectional
waveguides without cladding metals which generally incur
considerable Ohmic loss. Furthermore, the photonic edge
states in the proposed Chern insulators are robust against
disorder on a wide range of length scales, in strong contrast to
crystalline topological insulators, and the light flow direction
on the surface of the Chern insulators can be easily flipped by
switching the direction of an applied magnetic field. We also
uncover a negative refraction of the topological surface wave
at the boundary between the GHMs with the opposite signs
of gyromagnetic parameters. Finally, we show that compared
with other photonic topological materials such as chiral hyper-
bolic materials [29], the present GHM Chern insulators can be
much easier to fabricate.
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FIG. 11. (a) The eigenmode distribution of a 2D slab of the GHM
with d = λ, (b) the electric field distribution of a bulk mode of kz =
1.89k0, and (c) the electric field distribution of the edge mode with
kz = 1.53k0. (d) The eigenmode distribution of a 2D slab of the GHM
with d = 0.25λ, (e) the electric field distribution of a bulk mode of
kz = 1.63k0, and (f) the electric field distribution of the edge mode
with kz = 0.99k0.

APPENDIX A: EFFECT OF DISSIPATION

Here we consider two cases with different dissipative
losses. In the case of small loss, we set γ = −1 + 0.1i in
Eq. (2) and also rewrite Eq. (4) as HE = 0. Then the bulk
bands are the solutions of eigenequation Re[det(H )] = 0, as
displayed in Fig. 10(a). Clearly the EFS shown in Fig. 10(a)
has the same topology as that shown in Fig. 1(d). For the case
with large loss, let us set γ = −1 + 1i in Eq. (2), and the
obtained EFS is plotted in Fig. 10(b). Clearly the EFS now
has a distinctly different topology compared with the EFS
displayed in Figs. 1(d) and 10(a). In fact, this case belongs
to the realm of non-Hermitian optics [50] and thus is beyond
the scope of the present paper.

APPENDIX B: FINITE SIZE EFFECT

To examine the finite size effect, we consider a 2D slab of
the GHM with varying thickness d . Specifically, we numer-
ically obtain the eigenmodes of the 2D slab with both d =
λ and d = 0.25λ by using COMSOL Multiphysics program,
and the main results are displayed in Fig. 11. As shown in
Fig. 11(a), the eigenmode distribution is continuous when
d = λ, thereby indicating that there is no significant coupling
between the top and bottom edge states and thus the finite
size effect can be ignored. The electric field distributions of
the bulk mode at kz = 1.63k0 and the edge mode at kz =
1.53k0 are displayed in Figs. 11(b) and 11(c), respectively.
This supports the statement in Sec. VI that only the modes
with kz < 1.88k0 are the edge modes according to the edge
mode dispersion shown in Fig. 4(b). In contrast, Fig. 11(d)
shows that there is a forbidden range of kz when thickness
d = 0.25λ and smaller, indicating that there exists significant
interaction between the top and bottom edge states in this
case. Figures 11(e) and 11(f) further display the electric field
distributions for the bulk modes with kz = 1.63k0 and kz =
0.99k0, respectively. Note that the disappearance of the edge
mode here is a finite size effect, as discussed in Ref. [38],
rather than a topological effect. Since we focus on only the
properties of the bulk and chiral edges of the GHM in this
paper, we use the large thickness (d > λ) of the GHM to avoid
the finite size effect.
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