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Machine learning study of magnetism in uranium-based compounds
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Actinide and lanthanide-based materials display exotic properties that originate from the presence of itinerant
or localized f electrons and include unconventional superconductivity and magnetism, hidden order, and
heavy-fermion behavior. Due to the strongly correlated nature of the 5 f electrons, magnetic properties of
these compounds depend sensitively on applied magnetic field and pressure, as well as on chemical doping.
However, precise connection between the structure and magnetism in actinide-based materials is currently
unclear. In this investigation, we established such structure-property links by assembling and mining two
datasets that aggregate, respectively, the results of high-throughput density functional theory simulations and
experimental measurements for the families of uranium- and neptunium-based binary compounds. Various
regression algorithms were utilized to identify correlations among accessible attributes (features or descriptors)
of the material systems and predict their cation magnetic moments and general forms of magnetic ordering.
Descriptors representing compound structural parameters and cation f -subshell occupation numbers were
identified as most important for accurate predictions. The best machine learning model developed employs the
random forest regression algorithm. It can predict both spin and orbit moment size with root-mean-square error
of 0.17μB and 0.19μB, respectively. The random forest classification algorithm is used to predict the ordering
(paramagnetic, ferromagnetic, and antiferromagnetic) of such systems with 76% accuracy.
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I. INTRODUCTION

Big-data-driven approaches employing supervised,
semisupervised, or unsupervised machine learning algorithms
are becoming tools of choice in materials physics, chemistry,
and engineering for the task of establishing yet unknown
structure-property-performance relationships that may exist
within a given family or class of materials [1–5]. The
success of these tools in elucidating hidden connections
between the material or molecular structure and the resulting
behavior can be attributed to growing availability of databases
collating theoretical and experimental materials data across
disciplines. In particular, databases aggregating the results
of density functional theory (DFT) computations, which
provide a reasonable compromise between high accuracy
and computational costs and can also process fictitious
materials structures, are especially popular as components of
prediction-driven strategies for materials design and discovery
[6,7]. A nonexhaustive list of examples demonstrating
applications of machine learning algorithms in materials
science includes multiple investigations conducted for the
families of technologically critical (energy harvesting,
storage, and efficiency [8–16], catalysis [17], photovoltaics
[18], etc.) and pharmaceutical (drug design [19,20], reaction
mechanisms [21–24], etc.) compounds.
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In addition to more generic traits originating from their
general chemistry and radioactive behavior, lanthanide and
actinide-based materials exhibit a range of exciting properties
associated with the filling of the 4 f and 5 f electron subshells.
In particular, the interplay of the hybridization of 4 f and 5 f
electrons with itinerant conduction electrons and the onsite
Coulomb repulsions among those electrons are responsible
for the behavior exhibited by lanthanides and actinides. Their
properties of interest include an emergence of magnetism
[25–29], unconventional superconductivity [30–36], metal-
insulator transitions [37–43], hidden magnetic order [44–49],
and the presence of heavy fermions [50–60]. Due to strong
correlation effects involving 5 f electrons and their interac-
tions with itinerant conduction electrons, magnetic behavior
of actinide-based systems is sensitive to applied pressure,
magnetic field, and chemical doping. As a result, actinide-
based materials are not only useful in nuclear applications, but
also constitute a convenient playground to develop our funda-
mental understanding of correlated materials. So far, only the
4 f -electron magnetism has been studied with DFT-based ma-
chine learning (ML) tools in a general context of ternary oxide
compounds [61,62]. A focused study of magnetic properties in
5 f -electron materials has not yet been reported.

The main purpose of this work is a systematic investigation
of possible connections between the structure and magnetic
properties for a variety of different actinide-based compounds
in an attempt to establish a general prescription for construct-
ing families of ML models that incorporate computational and
experimental knowledge. Complementary utilization of data
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originating from both of these sources is necessary for accu-
rate assessment and prediction of the magnetic properties of
interest: average cation moment sizes (but not their ordering,
which is intricately complex for theoretical simulations) can
be easily extracted from DFT calculations, while magnetic
ordering can be straightforwardly characterized by experi-
ments. The 12 compounds chosen for compiling dataset I
(computational) exhibit either A-type or C-type antiferromag-
netism (AFM) or ferromagnetism (FM). As further explained
in Sec. II A and validated in Sec. III, we use only AFM
configurations for building this . Dataset II (experimental) is
assembled by extracting information on magnetic ordering in
uranium-based binary compounds from numerous literature
sources. The acquired information serves not only as a base
for constructing ML models capable of predicting magnetic
ordering, but in some instances can also provide the necessary
validation for the models utilizing only computational data.
We also note that there are caveats in the experimental data,
which naturally translate into limitations on the predictive
accuracy of ML models. In most cases, only the major forms
of magnetic ordering, i.e., paramagnetism (PM), FM, or AFM
(denoted as classes in classification models), are reported,
while information about the specific types of AFM or PM,
or the orientation of magnetic moments with respect to crys-
tallographic axes, is not given. The flowchart shown in Fig. 1
outlines the main stages involved in the development of the
ML models utilized in this study. These stages include com-
pilation and curation of appropriate datasets, performing data
analysis with standard data mining tools, construction of the
models and their following internal and external validation.

In order to predict the magnetic moment sizes, we have
developed our ML-based framework focusing on regression-
type algorithms. Five different algorithms [63], including
linear regression (LR), least absolute shrinkage and selection
operator (LASSO), kernel ridge regression (KRR), random
forest regression (RFR), and support vector machine regres-
sion (SVMR) were chosen systematically to evaluate the per-
formance of the models. We have also utilized random forest
classification (RFC) algorithm to predict the probabilities
of each compound exhibiting PM, FM, or AFM ordering.
We note that the choice of these algorithms [64] is driven
by transferability, simplicity of implementation, as well as
compliance with the best practices in this area of research.

The main findings of our study are summarized as follows:
(a) ML frameworks employing regression and classification
algorithms can be utilized to predict magnetic moment size
and ordering in uranium-based binary compounds. (b) Various
descriptor sets, depending on the availability of data sources
(both computational and experimental), can be designed to
construct families of meaningful ML models. (c) While ML
models can identify the most important descriptors pertinent
to the end points, complementary data analysis can establish
quantitative structure-property relationships (e.g., cutoff val-
ues of lattice parameters for a compound to exhibit PM, FM,
or AFM ordering) present in such materials. (d) It is often
possible to identify physical phenomena underpinning the
results obtained from ML models (e.g., exchange interactions
that lead to particular types of magnetic behavior).

The rest of the paper is organized as follows: Section II
reviews the standard methodology utilized for dataset acqui-

FIG. 1. Flowchart outlining the main development stages in-
volved in construction and validation of ML models for predicting
cation magnetic moment size and magnetic ordering in actinide-
based binary systems. Primary stages are shown as gray rectangles,
while any necessary secondary stages are represented by white rect-
angles. Some of the diagram elements introduced here are analyzed
in further detail in Fig. 2(b) and accompanying text.

sition and curation, as well as for the ML model building.
Section III presents the results of the statistical analysis of
the contents of both datasets, followed by a discussion of
predictive capabilities of the developed ML models for eval-
uating cation magnetic moment size and magnetic ordering
in uranium- and neptunium-based compounds. In addition,
we compare the utility of regression- and classification-based
frameworks for predicting both moment size and ordering.
Finally, some concluding remarks are provided in Sec. IV.

II. METHODS

A. Datasets

First-principles calculations of average spin and orbital
moments were performed using the projector augmented
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FIG. 2. Structural models of 12 uranium-based binary compounds that were assumed in DFT computations for creating dataset I. The
AFM I configurations are shown using a vector representation, where directions of magnetic moments on U cations are alternating between
consecutive uranium layers and their orientation is along the crystal c axis. (b) Flowchart showing the stages of development of ML models to
predict both moment size and ordering.

plane-wave (PAW) method implemented in the Vienna ab
initio simulation package (VASP) [65,66]. The generalized
gradient approximation (GGA) was adopted to represent the
exchange and correlation interactions, with the GGA+Ueff

[67] approach utilized to capture the strongly correlated na-
ture of the 5 f electrons. All computations were carried out
with a 500-eV plane-wave cutoff energy using tetrahedron
method with Blochl corrections with appropriate Monkhorst-
Pack [68] k-point meshes, which produced well-converged
results.

For the construction of dataset I, which is built only on
the data extracted from the DFT simulations, the following
12 uranium-based binary compounds were utilized: UO2,
U3O8, UO3, UN, UC, UP, UP2, U3P4, UAs, UBi2, USb2,
and UCl3. The magnetic structures of these compounds are
well documented in the literature [69–72], which is the pri-
mary motivation behind choosing them to build dataset I.
Geometrical structures with AFM I configuration for all of
these compounds are shown in Fig. 2(a). For each compound,
initial lattice parameters and ionic positions were obtained

064414-3



GHOSH, RONNING, NAKHMANSON, AND ZHU PHYSICAL REVIEW MATERIALS 4, 064414 (2020)

from inorganic crystal structure database (ICSD) [73], after
which eight individual variants were created by varying the
Hubbard parameter Ueff between 0 and 6 eV in 2-eV incre-
ments in the presence or absence of spin-orbit coupling. Ueff

values from the same range have been used previously in a
number of DFT-based investigations of actinide compounds.
Electronic and magnetic properties for each of the eight
variants were evaluated both for the ICSD-provided structural
parameters and after optimization, which included relaxing
the unit-cell shape and volume to stresses below 0.1 kbar and
all the ionic positions until the associated Hellman-Feynman
forces were below 10−3 eV/Å. Utilization of data generated
using structural parameters obtained from both ICSD and
DFT computations allowed us to incorporate information of
varying fidelity [74] levels into our ML models, which is
in turn helpful for consistent evaluation and improvement
of their predictive accuracy. We note that structural con-
figurations obtained from DFT computations belong to the
same space groups as those reported in ICSD. Although it
is possible to create multiple other structures by directly
varying lattice parameters and internal positions of atoms, the
descriptor space of dataset I will not be significantly altered.
Therefore, inclusion of such additional entries into dataset I
will not help improve predictive capabilities of the resulting
ML models.

For all computations involved in generating dataset I, we
considered a specific type of AFM ordering, namely AFM I,
where the directions of magnetic moments on U cations are
alternating between consecutive uranium layers and their ori-
entation is along the crystalline c axis, as shown in Fig. 2(a).
We restricted ourselves to studying just one magnetic con-
figuration type since our primary interest is in estimating
moment sizes only, and these do not change significantly if
other configurations (e.g., out-of-plane spin orientation) are
selected instead. The chosen initial AFM configurations for
all compounds except U3P4 are in accordance with those re-
ported in the literature [69–72]. For U3P4, a FM configuration
has lower energy, as compared to that in AFM I. This is
confirmed by DFT+Ueff (=4eV) computations showing the
energy difference of ∼3.26 eV between these two magnetic
configurations. The energy tradeoffs between choosing a-
axis versus c-axis orientation of the magnetization for all 12
compounds are listed in Table I.

We report nominal differences (<0.3μB) of the magnetic
moment between these two magnetization directions of the
same AFM I configuration as compared to average spin
(1.64μB) and orbital (2.82μB) moment sizes for all of the
chosen compounds. The energy is related to the magnetic
moment size. Hence, the resulting energy differences are not
significant either. We note that for the cubic systems, the
magnetization along a axis or c axis should be equivalent.
This implies that the energy differences as reported in Table I
are due to numerical uncertainty. Overall, dataset I was built
solely using DFT simulations and comprises 16 variants for
every compound, for a total of 192 entries.

Dataset II was constructed by curating the results of 737
experimental reports of standard quality on uranium-based
binary compounds, as found in the ICSD [73]. Only structures
stable at low temperature were considered, while data on any
metastable high-temperature configurations were discarded.

TABLE I. Differences in energy and average moment sizes be-
tween a-axis and c-axis moment orientations for all 12 compounds
present in dataset I. Spin-orbit coupling and Ueff = 4 eV were used
in these computations.

Compound �E (eV) �μspin(μB) �μorbit (μB)

UO2 0.032 0.001 −0.009
U3O8 0.044 0.071 −0.011
UO3 0.096 0 0
UN 0.007 0.015 −0.037
UC 0.069 0.054 −0.074
UP −0.003 −0.090 −0.068
UAs −0.002 −0.006 −0.02
UP2 −0.206 0.008 −0.036
UBi2 0.032 0.029 0.023
USb2 0.024 0.028 0.038
U3P4 0.067 −0.011 0.087
UCl3 0.279 −0.009 −0.011

After the removal of duplicate entries, 223 data points includ-
ing information on magnetic properties (cation moment size
and ordering) remained in the dataset. These compounds were
also categorized into three classes according to the nature of
the reported magnetic ordering: (1) PM, i.e., compounds with
local magnetic moment but no long-range order present, (2)
FM, i.e., compounds with magnetic spins aligned in the same
directions, and (3) AFM A type or C type.

The sizes of both datasets before and after curation, as well
as the filtering criteria for dataset II are shown in the top part
of the ML model development flowchart in Fig. 2(b). For each
dataset, 20 entries were kept aside for internal validations and
the rest (172 for dataset I and 203 for dataset II) were used for
training (90%) and testing (10%) of ML models.

B. Descriptors

For dataset I, the following eight primary
descriptors were considered: lattice parameters
( magnetic unit cell parameters

3√number of actinide elements
) alatt, blatt, and clatt (Å), atomic

volume ( magnetic unit cell lattice parameters
number of actinide elements ) volume (Å3), Hubbard

parameter Ueff (eV), spin-orbit-coupling strength SOC (eV),
cation 5 f -subshell occupation number (number of total
valence electrons of actinide element, valence of anion)
Nocc(5 f ), and system Fermi energy level EnF (eV). For each
primary descriptor x, additional compound descriptors were
generated using 10 prototypical functions, namely, x2, x3,
exp(x), sin(x), cos(x), tan(x), sinh(x), cosh(x), tanh(x), and
ln(x), to allow for possible nonlinearities in the connections
between the descriptor and end-point properties.

The descriptor space for dataset II contains all structural
parameters (as defined above), number of formula units, and
Nocc(5 f ), all extracted from the respective experimental re-
ports. Furthermore, for every entry in dataset II, a matrix
representation called orbital field matrix (OFM) [75,76], as
implemented in a Python library [77], was computed using
distances between coordinating atoms, valence shells, and
Voronoi polyhedra weights, which provided information on
the chemical environment of each atom in the unit cell. The
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FIG. 3. Correlation matrices representing Pearson correlation coefficients for primary descriptors applicable to dataset I for (a) spin
moment size and (b) orbital moment size end points. The primary descriptor space for dataset I consists of eight features: lattice parameters
alatt, blatt, and clatt, and volume, Hubbard parameter Ueff , spin-orbit coupling strength SOC, cation 5 f -subshell occupation number Nocc(5 f ),
and system Fermi energy level EnF . We note that the EnF descriptor was not used in the ML model construction, as described later in Sec. III.
Learning curves for two ML models predicting (c) spin moment size and (d) orbital moment size constructed using the RFR algorithm. ETrain

and ETest refer to average training and test set root-mean-square errors. The average % mean absolute test errors in predicting spin (c) and
orbital (d) moment sizes are 14% and 17%.

OFM elements are defined as following [75,76]:

X ′p
i j =

np∑

k=1

op
i ok

j

θ
p
k

θ
p
max

ζ (rpk ), (1)

where i, j ∈ D = (s1, s2, . . . , f 14) for central i and coordinat-
ing j orbitals, respectively; op

i and ok
j are elements of one-hot

basis vectors (i or j) of the electronic configuration with
central atom indexed by p and neighboring atom indexed by
k. Here, the one-hot basis vectors are understood in the sense
that we only consider the valence orbitals. The weight of the
atom k in the coordination of the central atom at site p is
given by θ

p
k /θ

p
max, where θ

p
k is the solid angle determined from

the respective Voronoi polyhedron. The number of nearest-
neighbor atoms surrounding atom site p is np. The size and
distance-dependent weight function is also included as ζ (rpk ).

C. Data analytics

Prior to the development of ML models, both datasets were
analyzed using standard data analytics techniques to deter-
mine the presence of any relationships between the structural

descriptors and the targeted magnetic properties. Any infer-
ences drawn from this analysis may provide useful insight
for choosing appropriate descriptor space and algorithms for
the ML model development. The primary descriptor sets for
dataset I were subjected to a Pearson correlation filter to
remove features that exhibit a high correlation with the other
descriptors within the same set, as shown in Fig. 3. The same
approach was also applied to the combined set of primary
and compound descriptors. Additionally, for dataset I we
employed a conditional inference procedure with Bonferroni-
corrected significance (p value < 0.05) value, used as the split-
ting criteria (stopping rules) for each node while constructing
trees as implemented in R version 3.4.2 via CTree algorithm
[78]. The splitting process was continued recursively through-
out the whole dataset I. The results of this analysis along with
correlation matrices for secondary features are presented in
the Supplemental Material [79].

We utilized all 223 entries in dataset II to perform median
analysis. The dataset was divided into two subsets (below
and above the median value) based on the median value for
each descriptor. For every descriptor, magnetic ordering class
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FIG. 4. Dataset II was divided into two sets: below median value (gray), above median value (orange). The difference between these two
sets for all experimental descriptors is represented by the blue bar. The considered features were (a)–(c) lattice parameters (Å) in all directions,
(d) cell volume (Å3), (e) formula units (FU). The grouping was done based on the respective medians and type of magnetic ordering reported.
The median values for these features are (a) 5.588 Å, (b) 5.5 Å, (c) 5.62 Å, (d) 191.85 Å3, and (e) 4. The ML-based prediction with 76%
average accuracy on the test set (20 entries) for dataset II is given by the confusion matrix in (f). Here, the highlighted boxes denote the number
of compounds for which the magnetic ordering class was predicted correctly.

was assigned to the respective entries belonging to the two
resultant subsets. Bar charts shown in Figs. 4(a)–4(e) report
the differences between the mean values of the descriptors.
Larger differences observed for any particular descriptor are
likely to produce an increased variance in the end point when
that descriptor is used for construction of ML models.

D. Algorithms

Five regression algorithms, including LR, LASSO, KRR,
RFR, SVMR as implemented in Scikit-learn Python [80]
version 3.5.2, were employed to construct ML models from
dataset I. Regression-based algorithms were chosen over
classification-based ones, as the end point of interest (mag-
netic moment size) was computed numerically for each en-
try in respective datasets. The RFC classification algorithm
was also utilized to construct ML models for predicting
the magnetic ordering end point. Optimized hyperparameters
used for all six algorithms are presented in the Supplemental
Material [79].

E. ML model development and validation

One of the main concerns of conventional ML model
development is selection of the dataset size. Here, for both
datasets, the number of entries was restricted to less than
230 entries, which may potentially limit the accuracy of the

resulting models. The standard deviations in the predicted
values for the test sets may be as large as 5%–10%, making
any comparisons originating from a single set of predictions
misleading (see Supplemental Material [79], where two such
cases are compared). In order to avoid any statistical bias, we
built learning curves, such as ones shown in Fig. 3, by varying
the training set size in order to estimate the performance of
all the developed models. For each point on the learning curve
[19], the average RMSE is calculated using 1000 randomly
generated (by sampling with replacement) training and test
set evaluations. The average RMSE for a training set size N
is denoted ETrain(N), whereas for the corresponding test set
it is denoted ETest(N), however, in this case the size of the
set is now the total number of points minus N . The test set
RMSE provides the expected error for a given model, while
the difference between ETest(N) and ETrain(N) is an estimation
of how much variance or overfitting the model contains.

We have used confusion (error) matrices [80] to evaluate
the performance of the RF classification models. For the three
classes, such as AFM, FM, and PM, these matrices show the
predicted class of each compound together with its true class.
Diagonal elements of a confusion matrix represent the number
of compounds for which the predicted classes match the true
classes.

Both models predicting the moment size and ordering were
tested using the internal validation sets, i.e., 20 entries that
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were kept aside on the model development stage [Fig. 2(b)].
Moreover, we also applied these models to three external sets
of actinide-based binary and ternary compounds, for which
information on either moment size or ordering is not widely
available in literature. Validations on datasets composed of
materials that are dissimilar to those used in model devel-
opment provided more stringent testing of robustness and
transferability of our ML models.

We note that the SOC descriptor (representing the strength
of such coupling determined by the DFT computations for
dataset I) was unavailable for the compounds present in the
validation set. As an alternative way to include this interaction
in our models, we considered SOC as being present (1) or ab-
sent (0) instead of including its strength value. The Ueff could
also be varied manually in the descriptor space depending on
its estimated value (eV) to capture the strong correlation effect
among the f -orbital electrons. In addition, valence electron
numbers for other atoms and OFM, as applicable to one of the
external validation sets consisting of uranium-based ternary
compounds, were also included in the feature space for testing
models built on datasets I and II.

III. RESULTS AND DISCUSSION

Here, we discuss the results obtained from the preliminary
data analysis and ML models applied to internal and external
validation sets of datasets I and II. The discussion proceeds
in a sequential order, with each primary step highlighted
throughout the section. Additional technical details are pro-
vided in the Supplemental Material [79].

From the results of the correlation analysis presented in
Fig. 3(a) for the set of primary features, it is evident that
volume, Nocc(5 f ), and EF descriptors have large Pearson
coefficients with respect to the spin moment size end point,
suggesting that these features should be included in the de-
scriptor space for building ML models to predict spin moment
size. However, since the Nocc(5 f ) and EF descriptors are
highly correlated to each other, we kept only the former as a
primary descriptor. We note that the EF descriptor obtained
from the DFT computations is relative and can be placed
anywhere in the energy band gap between the occupied and
unoccupied states. Therefore, the Nocc(5 f ) feature is more ap-
propriate as a descriptor containing information related to the
electron density of states, which is apparently important for
predicting magnetic moment sizes. The SOC descriptor has
the highest correlation coefficient with respect to the orbital
moment size end point in the matrix, as shown in Fig. 3(b).
This is expected for the primary feature that accounts for
strong SOC originating from 5 f shell electrons. This analysis,
extended to space of primary and secondary features, allowed
us to shortlist 61 features by excluding highly correlated
ones (correlation factor >0.85). Next, the conditional infer-
ence procedure applied to dataset I shows that alatt, volume,
Ueff , and SOC are the top features capable of grouping the
data well for spin and orbital moment size as end points,
respectively.

Median analysis. As explained in Sec. II C, we have used
a different approach to analyze dataset II by determining
medians and differences in average values of the features.
Based on the median values of the five features, dataset II was

divided into subgroups, which was followed by assignment
of the corresponding magnetic ordering and calculation of
the difference (variance) in average feature values for the
subgroups, as shown in Figs. 4(a)–4(e). The median values
for each of these experimental descriptors (lattice parameters,
volume, number of formula units) are 5.588 Å, 5.5 Å, 5.62
Å, 191.85 Å3, and 4, respectively. There are a total of 112
entries in the subgroup where alatt � median value of alatt,
out of which 24 are AFM, 44 are FM, and 44 are PM. For
the similar subgroups formed by other features, such as blatt,
clatt, volume, number of formula units, the number of entries
are (26, AFM; 50, FM; 36, PM), (30, AFM; 46, FM; 36, PM),
(24, AFM; 48, FM; 40, PM), and (42, AFM; 70, FM; 51, PM),
respectively.

Both conditional inference-tree and median-variance meth-
ods suggest that the decision-tree type of algorithm may have
better performance compared to other regression algorithms,
if used to build ML models for predicting moment size.
Overall, these investigations performed using standard data
analytics techniques are useful for cultivating some advance
knowledge about the available data and identification of
features important to predicting end points, as well as any
inconsistencies present in the datasets.

The results produced by the ML models for predicting the
moment size are presented as learning curves in Figs. 3(c)
and 3(d). For both cases, the RFR algorithm outperforms the
other algorithms significantly, as shown in both Figs. 3(c)
and 3(d) and Table II. The average spin moment size of
compounds used for training these models is 1.64μB. For the
orbital moment size, the average is 2.82μB, counting only the
training data points computed by including the SOC. The total
moment size can be obtained using the vector sum of both
spin and orbital moments, pointed in the opposite direction to
each other due to Hund’s rule for f -electron shell that is less
than half-filled. The average ETest values in predicting spin
and orbital moment size are 0.17μB and 0.19μB, respectively,
as mentioned in Table II. In both cases, the RFR algorithm
overfits the data by approximately 4%. On the other hand,
the LASSO, KRR, and SVMR algorithms display minimal
overfitting but plateau at higher ETest(N), as shown by com-
parative learning curves. Furthermore, all of the ML models
are performance optimized based on bias-variance tradeoffs,
i.e., these models always yield the optimized moment size,
when used for any other material including those not present
in the training set.

The average accuracy in predicting magnetic ordering for
the test set of dataset II is 76%, as displayed in Fig. 4(f)
using a confusion matrix. The OFM representation plays a
key role in significantly improving the model performance
(accuracy improved by ∼15%) in predicting magnetic order-
ing by including information on the valence shells and local
coordination environment of the system. For both the moment
size and ordering end points, the most important features
(structural parameters and f -subshell occupation numbers)
identified by the ML models based on the RFR and RFC
algorithms are the same as those found earlier by the data
analytics techniques.

We have also compared the average nearest-neighbor dis-
tances (dU−U ) for every entry in dataset II to the Hill limit
[81] that provides restrictions, under which magnetic ordering
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TABLE II. Test set error ETest(N) and difference (overfitting) between the training ETrain(N) and test set errors for the training set size
N = 50 and the largest training test size Nmax, as obtained from the learning curves constructed with five different regression algorithms. The
predicted end points are magnitudes of spin and orbital magnetic moments in μB.

End point Algorithm ETest (50) ETest − ETrain(50) ETest (Nmax) ETest − ETrain(Nmax)

Spin moment LR 0.61 0.44 0.33 0.12
LASSO 0.44 0.24 0.30 0.05

KRR 0.30 0.08 0.28 0.03
SVMR 0.84 0.04 0.83 0.01
RFR 0.32 0.13 0.17 0.04

Orbital moment LR 1.46 0.88 0.96 0.24
LASSO 0.90 0.14 0.80 0.10

KRR 1.07 0.4 0.96 0.21
SVMR 1.01 0.06 0.94 0.05
RFR 0.41 0.22 0.19 0.03

occurs in actinide systems (see Supplemental Material [79] for
additional details). For dU−U < 3.4 Å, intermetallic uranium
compounds are PM at low temperatures. Such compounds still
have local magnetic moments but no magnetic long-range or-
der is present. Due to large overlap of 5f orbitals, compounds
with dU−U > 3.6 Å generally exhibit long-range FM or AFM
ordering, localized at uranium ions. On the other hand, for
smaller dU−U , itinerant f -electron behavior is more dominant
leading to temperature-independent PM ordering. Our results
are in reasonable agreement with the above-mentioned Hill
limit for uranium ions to exhibit specific type of ordering. This
observation is important to establish a physical significance of
lattice parameters, which are identified as features critical for
predicting both the moment size and ordering. The average
lattice parameters obtained from dataset I are comparable
within 15% to entries present in dataset II that reportedly
exhibit AFM ordering at low temperatures. This, along with
results from median-variance analysis performed on dataset
II, also provides quantitative measure for structural parame-
ters to observe a specific type of magnetic ordering in high
likelihood. For example, a uranium-based binary compound
with alatt � 5.58 Å, is more likely to exhibit AFM ordering
at low temperatures.

Three of the models were tested first on the internal valida-
tion sets kept aside within datasets I and II. We employed an
approach comparable to the learning curves by reporting the
average moment size and ordering for each entry, as obtained
by averaging over 1000 ML model predictions. Figures 5(a)
and 5(b) show predictions made on the internal validation
set acquired using dataset I. The average RMSEs for the spin
and orbital moment size predictions on the internal validation
sets (for Ueff = 4 eV) are 0.20μB and 0.25μB, respectively.
For compounds, such as UN, USb2, UO2, UBi2 and UP, total
moment sizes are available in the literature, and can be used
to compare the ML model predictions for Ueff = 4 and 6 eV,
as shown in Fig. 5(c). The average RMSEs for the prediction
of the total moment size for these compounds are 0.32μB

and 0.35μB for Ueff = 4 and 6 eV, respectively. This analysis
also highlights the dependence of moment size on Ueff that is
captured by the ML models. The average prediction accuracy
obtained using RFC for the internal validation set of dataset II
is 70.2%. The numbers of entries belonging to the PM, FM,
and AFM classes, for which the predictions have matched

with the observed orderings, are 9, 2, and 2, respectively, as
shown in Fig. 5(d).

Finally, to assess the performance and transferability
of these models to other actinide systems, we have com-
piled three external validation sets, the first two containing
uranium-based and neptunium-based binary and the third one
containing uranium-based ternary compounds [82]. The re-
sults of these predictions using the same averaging technique
as applied before to the internal validation sets are shown in
Fig. 6. We note that although predictions of the moment size
cannot be verified for these compounds due to the scarcity
of experimental information, predictions of magnetic ordering
that classify them as AFM, FM, or PM are comparable with
those reported in the literature [82] without accounting for the
exact spin textures.

External set I of binary compounds includes 34 different
uranium-based crystals: U2C3, U3As4, U3Bi4, U3Sb4, UAl2,
UAl3, UAs2, UB2, UB4, UBi, UCo2, UFe2, UGa3, UGe2,
UGe3, UIn3, UIr2, UIr3, UIr, UMn2, UNi2, UPb3, UPd3, UPt2,
UPt5, UPt, URh3, US, USb, USe, USi3, USn3, UTe, and UTl3.
These are not present in either of the datasets (I and II) used
in model development reported above. The top five most com-
mon structure types in this list belong to cubic crystal family
with space-group numbers 221, 220, 225, 227, and 191. There
are 8 compounds that exhibit AFM, 10 with FM, and the rest
have PM ordering at low temperatures. For ordering, the av-
erage (based on the ML model built on dataset II) accuracy is
70.1% as predicted for all 34 compounds, shown in Figs. 6(a)
and 6(b). While the confusion matrix provides the number of
entries with respective true and predicted classes, the bar chart
reports the probability of each compound belonging to either
PM, FM, or AFM, summing up to 1% or 100%.

External set II has a total of 43 entries of 35 unique
neptunium-based compounds: NpAl2, NpAl3, NpAl4, NpGa2,
NpGa3, NpIn3, NpIr2, Np2N3, NpNi2, Np2O5, Np2Se5,
Np3S5, Np3Se5 NpAs, NpAs2, NpB2, NpC, NpCo, NpFe2,
NpGe3, NpIn3, NpMn2, NpN, NpN2, NpNi2, NpO2, NpOs2,
NpP, NpPd3, NpS, NpSb, NpSb2, NpSi2, NpSi3, and NpSn3.
All 43 entries are considered for predictions of magnetic
ordering using the ML model built on dataset II. As shown
in Fig. 6(c), there are total of 18 AFM, 23 FM, and 2 PM
compounds present in this set. Out of all AFM compounds,
14 are predicted with the highest probability belonging to
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FIG. 5. ML model predictions of (a) spin and (b) orbital moment size for the internal validation set from dataset I. A comparison between
experimentally reported and predicted total moment size is presented in (c) for compounds in the validation set for which the moment sizes are
reported in the literature. The average RMSEs for the prediction of total moment size for these compounds are 0.32μB and 0.35μB for Ueff =
4 and 6 eV, respectively. Magnetic ordering of compounds present in the internal validation set was predicted utilizing a classification model
constructed on dataset II. The confusion matrix shown in (d) aggregates the true and predicted ordering classes for each entry with 70.2%
average accuracy.

the true class, whereas for FM and PM, there are total of 16
compounds with correct classification of ordering prediction
with average accuracy of 67.5%. The most common structure
type among these compounds is rocksalt cubic, followed by
Laves phase cubic and auricupride. These three structure types
are also common among compounds in datasets I and II.
Hence, this suggests that the developed ML models may be
capable of predicting the end points with similar accuracy as
reported earlier in the section.

External set III containing ternary compounds has 136
different entries, out of which 57 exhibit AFM ordering, 39
show FM ordering, and the rest are paramagnetic at low
temperatures. These compounds commonly belong to families
of orthorhombic, tetragonal, hexagonal, and cubic crystal
systems, with the five most common space groups being 62,
139, 123, 127, and 189. For the determination of ordering,
the average (based on the ML model built on dataset II)
accuracy is 68.9% as predicted for all 136 compounds, shown
in Figs. 6(e) and 6(f).

The list of compounds present in the external set III and
dataset II is given in the Supplemental Material [79]. Overall,
the ML-based models built on datasets I and II are capable of
delivering reasonable predictions of moment size and ordering
for actinide-based binary and ternary compounds.

The following observation is in order: We note that a
regression-based ML framework (such as models based on
the RFR algorithm) is equally suited to predict magnetic or-
dering as the classification-based one discussed above. From
Figs. 4(a)–4(e), it is evident that the experimental descriptors

are capable of dividing dataset II according to each class of
ordering and moment size. The difference in the number of
compounds exhibiting a specific type of ordering is varied
according to median of the descriptor values, meaning larger
difference for a particular descriptor should lead to a greater
variance when used in decision-tree-type algorithms (such as
RFR). This was one of the primary reasons for evaluating
such framework for ordering predictions, as detailed in the
Supplemental Material [79]. Instead of partitioning the com-
pounds into three classes and predicting those, dataset II can
utilize labels 1, 2, and 3 to represent PM, FM, and AFM
ordering. In that case, a score corresponding to each entry
can be predicted with a certain RMSE. Later, a clustering
algorithm can be employed to partition these compounds into
PM, FM, or AFM classes. The average RMSE for predicting
the ordering with this scheme is 0.12, which is comparable
to the accuracy achieved using the RFC algorithm. The OFM
representation plays a key role in significantly improving the
model performance (RMSE reduced by ∼30%) in predicting
magnetic ordering, in the same fashion as already discussed
above. Our regression-algorithm-based ML framework can
predict numerical scores for partitioning compounds into
AFM, FM, and PM ordering classes with an average RMSE
of 0.15 for structures in the internal validation set of dataset
II. The average RMSEs are 0.23 (based on the ML model built
on dataset II), 0.14, and 0.24, respectively, as predicted for all
compounds listed in external validation sets I, II, and III.

These prediction accuracies are comparable with those
obtained using the classification approach. Moreover, since
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FIG. 6. ML model predictions of magnetic ordering for three external validation sets including uranium-based binary (row 1), neptunium-
based binary (row 2), and uranium-based ternary compounds (row 3) represented by confusion matrices (a), (c), (e) and charts (b), (d), (f)
showing probabilities for each compound to belong to a specific ordering class. The average prediction accuracies of these models are 70.1%,
67.5%, and 68.9%, respectively.

classification algorithms treat separate classes as discrete
rather than continuous entities, they cannot provide further in-
formation on possible phase transitions occurring at low tem-
peratures. Instead, regression-algorithm-based predictions can
deliver noninteger scores (e.g., an ordering of 1.5), suggesting
that the compound of interest may be near the boundary be-
tween the PM and FM phases. UTe2 compound, present in the
internal validation set of dataset II, may serve as an example.
The classification model assigns it to the PM class. However,
the regression algorithm gives it an ordering score of 1.46,
which falls between PM and FM, indicating of the existence of
FM fluctuations at low temperatures. Recently, this compound
has been indeed proposed to be at the verge of a FM phase
and have a conventional spin-triplet superconducting pairing
[83,84]. In addition, as inferred from the classification model,
a representative heavy-fermion magnet UCu5 with a Neél
temperature of ∼12 K [85] belongs to the AFM class, while
the regression approach gives it a score of 2.63, which may
be indicative of possible phase transitions between multiple
ordering phases. Given that the temperature dependence of
magnetic properties in heavy-fermion compounds is a known

fact, additional physical significance can be attributed to the
fractional scores obtained from such ML models.

IV. CONCLUSIONS

In conclusion, we have compiled two datasets containing
both computational and experimental reports on magnetic
properties of uranium-based binary compounds. Through var-
ious data analytics techniques, we have identified several
descriptors that are critical for understanding magnetic prop-
erties of such systems, even before building any predictive
models. These insights were then used in developing families
of machine learning models to predict the magnetic moment
size and ordering. We have also extended this approach to
other actinides and assessed the performance of the models.
Currently, the models trained on dataset I can only predict
moment size for AFM ordered structures. Predicting magnetic
spin texture based on the strength of nearest- and next-
nearest-neighbor exchange interactions requires additional
DFT computations for other magnetic configurations, which
is beyond the scope of this work but nonetheless could be
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accomplished. Overall, this general prescription, employing
both computational and experimental results to construct ma-
chine learning models describing magnetism in actinide-based
materials, helps us develop better understanding of structure-
property relationships that may exist in such complicated
structures.
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