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Machine learning surrogate models for prediction of point defect vibrational entropy
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The temperature variation of the defect densities in a crystal depends on vibrational entropy. This contribution
to the system thermodynamics remains computationally challenging as it requires a diagonalization of the
system’s Hessian which scales as O(N3) for a crystal made of N atoms. Here, to circumvent such a heavy
computational task and make it feasible even for systems containing millions of atoms, the harmonic vibrational
entropy of point defects is estimated directly from the relaxed atomic positions through a linear-in-descriptor
machine learning approach of order O(N ). With a size-independent descriptor dimension and fixed model
parameters, an excellent predictive power is demonstrated on a wide range of defect configurations, supercell
sizes, and external deformations well outside the training database. In particular, formation entropies in a range
of 250kB are predicted with less than 1.6kB error from a training database whose formation entropies span only
25kB (training error less than 1.0kB). This exceptional transferability is found to hold even when the training is
limited to a low-energy superbasin in the phase space while the tests are performed for a different liquid-like
superbasin at higher energies.
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I. INTRODUCTION

The aging of crystalline materials is heavily influenced
by the thermodynamic and kinetic properties of point de-
fects. Their evolution gives rise to an extraordinarily diverse
range of defect morphologies [1–8] whose distributions in
size, character, and density exhibit significant variations with
temperature.

The stability of defect populations changes in response
to temperature variation [9–11] according to the system en-
tropy in which one distinguishes three distinct contributions
associated with (i) various geometry configurations [12], (ii)
electronic thermal excitations [13], and (iii) lattice thermal
vibrations [14]. For an isolated vacancy close to melting
temperature, both electronic and vibrational entropies have
the same order of magnitude [13] around 3kB/2 while con-
figurational entropy reduces to the mixing entropy and thus is
negligible in dilute systems [14]. Below the melting tempera-
ture, the electronic entropy decreases linearly in temperature
as the width of the Fermi surface sharpens. The vibrational
contribution becomes thus dominant up to a few kelvins
where quantum effects yields an abrupt decrease, similar to
the phonon heat capacity. For more complex defects, the
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configurational entropy is augmented by a term kB ln(Nc),
where Nc is the number of different geometries corresponding
to the same internal energy. Since it does not vary with
temperature, this contribution does not affect the stability of
defect structures. We shall also leave aside the temperature
dependence of the internal energy which is inherent to the
thermal expansion of solids [14]. Our study is devoted to the
computation of the vibrational entropy as it represents surely
[15] an important contribution to the stability of defects in a
wide range of temperature.

For a solid containing N atoms, the standard harmonic
approximation of entropy [16] requires an O(N2) calculation
of the dynamical matrix and an O(N3) diagonalization to
find the vibrational spectrum. The procedure is schematically
represented in Fig. 1(a). For instance, the computational load
for such a task in a crystal made of 2 × 105 atoms requires
more than 20 TB of memory and 10 hours over thousands of
the most recent CPUs. Different methods have been developed
[17–25] to compute directly the free energy of defects includ-
ing the nonharmonic contributions from energy and entropy in
an indistinguishable manner. However these methods remain
computationally very heavy as they usually rely on sampling
the system phase space through the construction of random
or optimized trajectories. The essential problem arises from
the convergence of such methods, as to achieve a reliable
sampling the number of iterations needed scales as O(N2) or
O(N3), in the more favorable case. Furthermore we notice that
according to neutron scattering experiments, the nonharmonic
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FIG. 1. Two strategies to evaluate the harmonic formation en-
tropy of defects embedded into crystalline structure having N atoms:
(a) the traditional approach based on the phonon spectrum of Hessian
H (the second derivatives of the potential energy of the system);
(b) the machine learning surrogate model based on the M instances
of the database, fitted via regression in the descriptor space RD . The
descriptor or feature space is the representation of the atomic con-
figuration through the descriptor functions. Both scaling coefficients
of the regression n and p range between 0 and 2 depending on the
method used. For the linear fit, used in the present study, n = 1 and
p = 0.

contributions to the formation of defects are not essential to
the computation of vibrational entropy in a broad range of
temperature, i.e., up to 700 K for example in α-Fe [26] and
Al [27].

In the present study we thus propose a surrogate model
to evaluate the harmonic vibrational entropy using a linear-
in-descriptor machine learning (LDML) approach with O(N )
computational cost [28–37]. The method is applied to a wide
class of point defects using only the relaxed atomic positions
to determine directly the vibrational entropy. We chose to ex-
emplify our computational technique using empirical poten-
tial interactions in α-Fe. The accuracy of interatomic poten-
tials is currently undergoing a renaissance due to ever larger
databases and new potential formalisms employing machine
learning techniques [29,33–36,38–43], statistical on-the-fly
learning [44,45], and mixed elastic-atomic models [3,46],
among others. The empirical interatomic potential models
employed here were fitted on ab initio [47] or experimental
data [48]. Their relative simplicity allowed us to rapidly assess
a wide range of defect structures and to explore a large data
set in large crystals inaccessible via standard ab initio methods
[49–51].

Our main finding is that the LDML approach we pro-
pose exhibits an exceptional degree of transferability, giving
the ability to rapidly assess defect vibrational entropy at
realistic temperatures in different systems of body-centered
cubic (bcc) Fe containing defects. The same machine learning
parametrization allows us to predict the formation entropies of
different defects over a wide range of 250kB to within a root
mean square error (RMSE) inferior to 2kB, despite the rather
narrow training set having a total formation entropy range of
only 25kB.

In Sec. II we define the harmonic vibrational entropy and
emphasize the equivalence between the local and the eigen

descriptions for phonons in the harmonic approximation. In
Sec. III we describe the machine learning approach for vi-
brational entropy, by introducing the LDML model and the
descriptor functions. In Sec. IV the data set production and
model training are detailed before being applied to predict the
formation entropy of various defects in Sec. V. The excellent
transferability found in initial applications to point defects is
pushed further in Sec. V D, where our model trained on defect
structures is applied to predict the formation entropy of highly
defected structures generated by random displacements in bcc
iron supercells. The success of the present approach opens
many perspectives for high-throughput, multiscale materials
science calculations which are discussed in Sec. VI.

II. VIBRATIONAL ENTROPY IN THE HARMONIC
APPROXIMATION

To evaluate vibrational properties under the harmonic ap-
proximation we consider the normal modes of a system with
N atoms, obtained from the spectrum of the force constant
matrix φ ∈ R3N×3N through(

φ − Mω2
ν

)|ν〉 = |0〉, (1)

where M ∈ R3N×3N is a diagonal mass matrix. If we only
consider phonons in the Debye approximation, appropriate
for phonons near the center of the Brillouin zone, the force
constant matrix becomes the Hessian operator H, the matrix
of second derivatives of the potential energy U . As discussed
above, to obtain the eigenvalues ω2

ν and eigenvectors |ν〉 the
Hessian must be diagonalized. In the classical approximation,
i.e., when the temperature is larger than the crystal Debye tem-
perature such as h̄ων

kBT � 1 ∀|ν〉, the entropy becomes [52,53]

S(T, N ) = kB

∑
ν

[
ln

(
kBT

h̄ων

)
+ 1

]
, (2)

where kB and h̄ are the Boltzmann and Planck constants,
respectively. For finite crystalline systems containing Nb bulk
atoms and ±Nd point defects, the vibrational formation en-
tropy S f is defined as

S f (T, Nd ) = Sd (T, Nb ± Nd ) − Nb ± Nd

Nb
Sb(T, Nb), (3)

where the entropies Sb and Sd of the bulk and defective
systems are computed at the same volume V . With Hessian
eigenvalues ω2

νb
and ω2

νd
for the bulk and defect systems,

Eq. (2) yields a harmonic formation entropy:

S f (T, Nd ) = kB ln

⎛
⎝∏

νb

(
h̄ωνb

) Nb±Nd
Nb∏

νd
h̄ωνd

⎞
⎠. (4)

Figure 1 schematically summarizes the numerical treatment
required to compute entropy through the diagonalization of
the Hessian matrix, which has an O(N3) computational de-
mand that typically prohibits application to large systems. We
have to note that an O(N ) approach has been developed by
different authors [54], who treat the summation in Eq. (2)
as an expectation value over the eigenvalue distribution.
They approximated this distribution using a set of Chebyshev
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polynomials with a random basis set. While this stochastic
approach is indeed more efficient than O(N3) treatment for
large systems, a converged result requires a proper selection
of a large set of polynomials and basis vectors, requiring
a computational effort which is still impractically high for
the high-throughput evaluation desired in the present work,
motivating our use of LDML models.

A. Green’s function formalism for vibrational
entropy calculations

Within the harmonic approximation, evaluation of the
vibrational entropy requires knowledge of the full phonon
spectrum, which can be directly computed from the secular
equation (1). The Green’s function formalism is an alternative
and elegant way to iteratively solve this same eigenproblem.
Taking eigenmodes |ν〉, the Green’s function G ∈ C3×3 ⊗
CN×N is written [52]

G(ω) =
∑

ν

|ν〉 ⊗ 〈ν|
ω2

ν − ω2
. (5)

The total phonon density of states is then the imaginary part
of the trace of the Green’s function [52],

�(ω) = 2ω

π
Im[Tr {G(ω)}], (6)

where Im(·) is the imaginary part and Tr(·) is the trace
operator. It is straightforward to verify that the total degrees
of freedom are respected through

∫ ∞
0 �(ω)dω = 3N , while

the classical vibrational entropy of the system at a given
temperature T

S = −kB

∫ ∞

0

[
ln

(
h̄ω

kBT

)
− 1

]
�(ω)dω. (7)

While equations (6) and (7) provide a clear connection be-
tween the phonon Green’s function and the vibrational en-
tropy, the normal modes |ν〉 are typically delocalized across
many atoms, complicating an analysis based on a mapping to
localized atomic descriptors. As a result, we now emphasize
this same formalism using a local basis set to give the local
density of states [52].

B. Local basis for densities of states of phonons

The local density of states can be deduced directly in the
Green’s function formalism [52]. Our goal is to replace the
delocalized basis |ν〉 in the above results with a localized basis
|iα〉, where each basis vector is localized on a coordinate α of
an atom i. As both bases |ν〉 and |iα〉 are complete, they are
related by a rotation in R3N ,

|ν〉 =
∑

i

∑
α

ξ iα (ν)|iα〉; (8)

the square of the rotation matrix elements, |ξ iα (ν)|2, can be
seen as the probability of the phonon |ν〉 to be localized on
the atom i and along the α direction. By direct substitution
into Eq. (5) and using generic properties of rotation matrices

we obtain

�iα (ω) = 2ω

π
Im[Giα (ω)], (9)

�iα (ω) =
∑

ν

|ξ iα (ν)|2δ(ω − ων ), (10)

where �iα is the local DOS of the phonon projected on the
atom i following the α direction. The classical vibrational
entropy of the system from Eq. (7) can then be written as the
local entropy contribution of each atom:

S =
∑

i

{
−kB

∑
α

∑
ν

[
ln

(
h̄ων

kBT

)
− 1

]
|ξ iα (ν)|2

︸ ︷︷ ︸
Si, local information

}

=
∑

i

[∑
α

siα

]
, (11)

where siα accounts for the local entropy from the ith atom in
the α direction and Si = ∑

α siα represents the total contribu-
tion from the same atom. The above equation is a consequence
also of the fact that the total density of states of phonons is the
sum of the local contribution:

�(ω) =
∑

i

[∑
α

�iα (ω)

]
. (12)

The redistribution of the total entropy of the system into
local contribution, Eq. (11), is exact, as is the total density
of states, Eq. (12). As with the local density of states, the
local entropy is related to the local environment of the atom.
It should be noted that local entropies gather the full spectrum
of the dynamical matrix. The Green’s formalism allows us to
formulate the vibrational entropy problem as a linear problem
of sources in term of local geometric environments. This
formalism describes long-range interactions in term of source
as linear elasticity describes long-range interactions in term of
elastic dipoles.

III. MACHINE LEARNING SURROGATE MODEL FOR
VIBRATIONAL ENTROPY

Prediction of the vibrational entropy S directly from the
relaxed atomic coordinates is impractical due to the high di-
mension of the input space and the highly nonlinear regression
required. In addition, physical constraints such as extensivity
in N and V or symmetry under exchange of identical atoms
are very hard to enforce.

In common with the majority of machine learning models
[28,33,38,40,42], we instead replace a highly complex non-
linear regression task on atomic coordinates q ∈ R3N with a
much simpler linear regression task on nonlinear descriptor
functions of the atomic coordinates, which we dub the linear-
in-descriptor machine learning (LDML) model. Often, the
effective dimension of the descriptor space is larger than the
dimension of the original input space [34–36,42,55], though
in the present work our mapping will achieve a significant
dimensional reduction. The precise choice of descriptor func-
tions is presented in Sec. III A.
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To build the LDML model, we first assume that the most
general model input is a set of N evaluations of D descriptor
functions, giving a descriptor vector Di ∈ RD for each atom
i. To build Di, the D descriptor functions take as input the
atomic environment around an atom i. The atomic environ-
ment around i can in principle be the entire system, a point we
return to in the next section. This procedure thus initially maps
an input space of R3N to a descriptor space of RD×N . We then
assume that these descriptor functions are sufficiently diverse
and well chosen such that the local entropy for an atom i can
be written as the linear relation[∑

α

siα

]
= wi · Di, (13)

where wi ∈ RD is a vector of D weights. In principle, the total
entropy S = ∑N

i=1 [
∑

α siα] then requires the determination
of DN parameters for the {wi}; however, while linearity in
the wi is sufficient to give a thermodynamically extensive
entropy [56], to respect symmetry under identical exchange
we further require that the weight vectors be identical among
indistinguishable atoms, implying that wi = w for the ele-
mental systems considered here; i.e., all weight vectors are
identical. This gives a total entropy of

S =
N∑

i=1

[∑
α

siα

]
= w ·

(
N∑

i=1

Di

)
= Nw · 〈D〉, (14)

where 〈D〉 = N−1 ∑N
i=1 Di ∈ RD is the average descriptor

vector, meaning that we map the original input q ∈ R3N to
a descriptor space of dimension D � 3N , which is system
size independent. The predicted entropy Eq. (14) is invariant
under identical exchange. Furthermore if one considers n
copies of the system then the average vector 〈D〉 over the n
copies is unchanged compared to the original system, thence
proving thermodynamic extensivity. The fixed dimensionality
of vector 〈D〉 allows the dimension of the input space (i.e.,
number of atoms) to vary, which is essential to compute
the LDML model formation entropy. Using Eq. (3) we find
the formation entropy for a defective system containing ±Nd

defects in a bulk lattice of Nb atoms:

S f = (Nb ± Nd ) w · [〈D〉d − 〈D〉b], (15)

where 〈D〉d and 〈D〉b are the average descriptor vectors for
the defect-containing and bulk systems, respectively. The
formation entropy is therefore the inner product between the
model weight vector w and the difference in the average
descriptor vectors 〈D〉d − 〈D〉b, multiplied by the total num-
ber of atoms. Equation (15) is a central result of this paper,
defining our LDML model. While many choices for machine-
learning-based surrogate models exist, including the popular
kernel methods and neural networks [29,55], the conceptually
simpler approach followed here offers many advantages in
transferability, overfitting control and analytic connection to
thermodynamic properties. In the next section we consider
candidate descriptor functions.

A. Choice of descriptor functions

We have seen that the input vector to our LDML model
is the total descriptor vector N〈D〉, which is symmetric under

identical exchange. However, the choice of descriptor func-
tions must also preserve the symmetries and the invariances
of the local atomic environment. The notion of descriptor
in material science was introduced by Behler and Parrinello
[28–30]. They proposed the G2 descriptor, defined below,
that underlines the radial distribution of neighboring atoms
weighted by a Gaussian. Since this pioneering work, many
descriptors have been developed by (i) introducing the explicit
angular description, as the G3 [28], (ii) using the spectral
decomposition in 3D or 4D spherical functions of the atomic
density [31,32], (iii) particular design for a given system
[44,57–60], (iv) using even machine/deep learning methods
in order to find the appropriate descriptors [61–64], and (v)
hybrid descriptors that can mix all others classes mentioned
above [33]. We note that there are also particular types of
descriptors that take the fingerprint of the whole system,
offering significant advantages when the observable targeted
by the surrogate model cannot be described as a sum of
local quantities. Within this particular formalism, the full
atomic density is decomposed through a multiscale convo-
luted wavelet network, giving a vector of atom-delocalized
scattering coefficients [34–37]. This method is particularly
relevant for coarse-graining systems where several scales
interact. The dimension of descriptors is flexible and is often
used to control the level of the accuracy necessary to represent
the local atomic environment in the descriptor space. There is
therefore always a trade-off between computational efficiency,
accuracy, and the sensitivity to overfitting which can arise for
large input space dimensions. This work compares three local
descriptors: the angular Fourier series (AFS) [32], the bis-
pectrum SO(4) [bSO(4)] [31,32], and a scattering transform
descriptor [34,35].

The AFS descriptor An,l combines the radial and angular
information of the local atomic environment. The n and l
components account for the radial and angular information of
the neighborhood structure centered on the i atom; defining as
Ri the set of indices for atoms less than rcut from i, we have

Ai
n,l =

∑
k,k′∈Ri

gn(rik )gn(rik′ ) cos(lθik,ik′ ) fi(rik ) fi(rik′ ),

where rik is the distance between atom i and atom k, and θik,ik′

is the angle formed by the triplet of atoms i, k, k′ centered on
i. The sum involves the pairs and the triplets of atoms formed
by the central ith atom and the neighboring atoms inside
the sphere with the radius rcut around atom i. f is a cutoff
function, which for the distances r � rcut gives fi(r) ≡ 0.
The radial functions gn are decreasing polynomials with the
distance r having the degree of α + 2 for 0 � α � n. The an-
gular functions are the Tchebyshev polynomials [32] with 0 �
l � lmax. As An,l is formed from a product of the radial and
angular functions, the descriptor has a total of nmax(lmax + 1)
components. The AFS descriptor enables wide-ranging levels
of accuracy on radial and angular information by imposing
nmax and lmax, respectively. Otherwise stated, in this paper we
have used nmax = 20, and lmax = 10, and the cutoff distance of
5 Å. The total number of components for the AFS descriptor
used here therefore is 220.

The bSO(4) descriptor bSO(4) jmax is a spectral descriptor
based on the decomposition of the atomic density in 4D
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hyperspherical harmonics [31,32]. The three components of
the vector r ∈ R3 can be recast into the three angles of the
unit sphere S4 ∈ R4. The local environment of the ith atom is
described as a density ρi(r), and can be decomposed on the
4D hyperspherical harmonics basis:

ρi(r) =
∑
k∈Ri

wkδ(r − rk) (16)

=
∑
k∈Ri

∞∑
j=0

j∑
m,m′=− j

cm,m′
i, j U m,m′

j , (17)

where wk is the species-dependent weight, and cm,m′
i, j are the

result of the scalar product between the density centered on
atom i and the hyperspherical harmonic U m,m′

j . From the

above equation and the cm,m′
i, j coefficients, the power and

the bispectrum of the atomic density can be deduced. The
bispectral components of bSO(4) are defined by the following
equation, where j � jmax and | j1 − j2| � j � j1 + j2:

Bi
j j1 j2 = (

cm,m′
i, j

)†
H j1 j2

(
cm1,m′

1
i, j1

⊗ cm2,m′
2

i, j2

)
, (18)

where H j1 j2 is related with the Clebsch-Gordan coefficient
of the SO(4) group. A detailed description can be found in
[31,32]. Following the analysis of the results of the first trial
regressions, presented in Sec. V, in this study we use the
jmax = 3.5 and select only the diagonal components j1 = j2
[31,32,65], yielding as the total number of components 26;
the cutoff distance is set to 5 Å.

The solid harmonic wavelet scattering transform [34,35]
is a multiscale translation-rotation invariant descriptor. First a
global density ρ is computed as a sum of Gaussian functions
g centered at the atomic positions:

ρ(r) =
∑

i

g(r − ri ). (19)

Scattering coefficients SJ ,Lρ[ j, �], j ∈ J , 0 � � � L, are
then computed with convolutions of this density ρ with solid
harmonic wavelets ψm

j,� of scale j ∈ J , followed by an inte-
gral to have the rotation-translation invariance:

SJ ,Lρ[ j, �] =
∫
R3

[
�∑

m=−�

∣∣ρ ∗ ψm
j,�(r)

∣∣2

]1/2

dr, (20)

ψm
j,�(r) = 1

(
√

2π )3
e− 1

2 | r
2 j |2

∣∣∣ r
2 j

∣∣∣� Y m
�

(
r
|r|

)
. (21)

In this paper, we have used L = 9 and 9 scales J =
{0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}, yielding a descriptor of di-
mension 90.

IV. TRAINING LDML MODEL

A. Production of the configuration database

Any surrogate model is clearly heavily reliant on the
database used for training. In this work, we used the ART
method [66–69], following the methodology of previous stud-
ies [2], to generate a large number of configurations for small
vacancy and interstitial clusters in bcc Fe. All clusters con-
tained between 1 and 4 removed or additional atoms, which
we label as Vn and In respectively, with n = 1, 2, 3, 4. Despite

TABLE I. Database used for training the present regression
model. N is the number of atom in the perfect system, Nc f the number
of distinct instances for a point defect class. I2−4 and V4 denote
the interstitial clusters with 2 up to 4 self-interstitial atoms and the
quadrivacancy, respectively. The sizes of these systems with defects
are N + (2 . . . 4) and N − 4 for I2−4 and V4, respectively. ε is the
isotropic and homogeneous rate of deformation for the system.

Type of point defects (Nc f )

System (N, ε) I2 I3 I4 V4 Total

1024, ε = +0% 434 1105 1280 1701 4520
1024, ε = −1% 434 1105 1280 1701 4520
1024, ε = +1% 434 1105 1280 1701 4520
1024, ε = +2% 434 1105 1280 1701 4520
1024, ε = +3% 434 1105 1280 1701 4520
2000, ε = +0% 434 1105 1280 1701 4520
3456, ε = +0% 434 1105 1280 1701 4520
Total 3038 7735 8960 11907 31640

their apparent simplicity, the energy landscape of such defect
configurations is known to have many thousands of binding
configurations [2,4,11]. To test the sensitivity of our surrogate
model to the underlying energy model, all calculations were
performed in duplicate using two interatomic potentials for
bcc Fe, the embedded atom model (EAM) potential developed
by Ackland et al. [47] and the modified embedded atom model
(MEAM) potential introduced by Alireza and Asadi [48].

After an initial period of structure generation, all configu-
rations were pairwise compared to ensure the final database
only contained nonequivalent structures. Two configurations
are considered as nonequivalent provided that two conditions
are verified: (i) their energies differ by more than 10−2 eV;
(ii) in the case of interstitial defects the sum of squares of the
principal components of inertia tensor are different. Interstitial
atoms are localized using the Wigner-Seitz method [70].

The resulting database is one order of magnitude larger
than that obtained in our previous work [2], due to a wider
exploration of phase space with ARTn. The resulting database
is summarized in Table I.

The local descriptors of the retained configurations were
computed using the MiLaDy package [33,71] and the scatter-
ing coefficients using the PyScatHarm package [35]. To com-
pute the harmonic entropy for each configuration, the Hessian
was computed from 3N force evaluations using the standard
finite-difference formula with a displacement of 10−3 Å. Each
configuration was tested to be a minimum by checking that the
eigenfrequencies are real. For each configuration, we perform
an energy relaxation by using LAMMPS [72]. Then, the
phonon spectrum and vibrational entropy are computed using
the PHONDY package [73–76].

B. Regression procedure

We wish to choose a parametrization w for the LDML
model Eq. (14) which is able to approximate the M calcu-
lated entropies S ∈ RM from the M total descriptor vectors
D ∈ RD×M . The general training procedure takes a random
subset of Mt < M entropies St ∈ RMt and descriptor vectors
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D
t
∈ RD×Mt , performs a multilinear regression to determine

w, then tests the prediction against the remaining Mr = M −
Mt entropies Sr ∈ RMr and descriptor vectors D

r
∈ RD×Mr

by taking statistical measures of the vector-valued training
error St − w · D

t
and test error Sr − w · D

r
. As is standard

in machine learning development, we compare both the root
mean square (RMSE) and mean absolute (MAE) errors. By
defining the Lp magnitude ‖v‖p of a vector v ∈ RM as ‖v‖p ≡∑M

l=1 |vl |p, the RMSE and MAE errors for the vector-valued
error Ss − w · D

s
∈ RMs read√

M−1
s ‖Ss − w · D

s
‖2 (RMSE), (22)

M−1
s ‖Ss − w · D

s
‖1 (MAE), (23)

where s = t gives the training error and s = r the test error.
While multilinear regression is conceptually simple, in

practice the optimal parametrization can be difficult to obtain
when the number of parameters (here the descriptor vector
dimension D) is large. The purpose of standard regression
is to minimize the L2 error: ‖St − w · D

t
‖2 with respect to

w. However this can lead to overfitting or highly heteroge-
neous parametrization. In order to avoid such difficulties we
used a ridge regression where a penalty term is added in
the minimization: ‖St − w · D

t
‖2 + λ‖w‖2. To optimize the

parameter λ we use Bayesian ridge regression, a probabilistic
generalization of multilinear ridge regression that was applied
commonly in machine learning [55].

Briefly, in the Bayesian approach one models the error
St − w · D

t
∈ RMt as a multidimensional Gaussian random

variable with a diagonal covariance matrix σ 2IMt . In the
language of Bayesian estimation, σ is a hyperparameter
of our estimation procedure, to be distinguished from the
model parameters w which we want to estimate. This gives a
Gaussian likelihood of observing output data St given model
parameters w, input data D

t
, and error variance σ 2 of

L(St |w, D, σ ) ∝ exp(−‖St − w · D
t
‖2/2σ 2), (24)

which is clearly a Gaussian of the L2 loss function ‖St − w ·
D

t
‖ with variance σ 2. A prior distribution of the model param-

eters w is required and as is standard in a Bayesian approach,
we chose another multidimensional Gaussian p0(w|σw ) =
exp(−‖w‖2/2σ 2

w ) with σw as the second and final hyperpa-
rameter. The product of the prior distribution with the like-
lihood L(St |w, D, σ )p0(w|σw ) gives a Gaussian of the ridge
regularized L2 loss function with λ = σ 2/σ 2

w. The prior dis-
tributions p0(σ ), p0(σw ) for the hyperparameters are chosen
as Gamma distributions, which can be shown to facilitate the
analytical derivations when using Gaussian likelihoods [55].
In practice, the hyperparameters reflect the confidence in the
final parametrization.

Defining integrals over the joint hyperparameter prior
p0(σ )p0(σw ) as

∫
σ,σw

. . . , the posterior distribution for w

given training data St , D
t

reads

p(w|St , D
t
) = N

∫
σ,σw

L(St |w, D
t
, σ )p0(w|σw ), (25)

where N−1 = ∫
dDw

∫
σ,σw

〈L(St |w, D
t
, σ )p0(w|σw )〉σ,σw

en-
sures normalization. We aim to find the mode of the posterior
distribution to determine the optimal parametrization w. This
is equivalent to maximizing any monotonic function of the
posterior with respect to w, in particular the logarithm, which
avoids calculation of the normalization constant N . Our final
variational problem for Bayesian ridge regression is thus

w = arg max
w′∈RD

log
∫

σ,σw

L(St |w′, D
t
, σ )p0(w′|σw ), (26)

which is typically the most stable method to determine the
optimal parametrization. Bayesian linear regressions have
been performed by using the “scikit-learn” package [77]. The
initial value of σw for the prior is set by default in the code.

V. TESTING OF THE LDML MODEL

A. Influence of interatomic potential and descriptor set

The LDML model formalism was tested on bcc defect
systems as described above (Table I), initially in a supercell
of size 8a0 × 8a0 × 8a0. The bulk lattice contained 1024
atoms before the introduction of 2–4 interstitial atoms to
produce I2−4 defects or the removal of 4 atoms for the V4

quadrivacancies. The volume of the defected supercell is fixed
to the equilibrium bulk volume.

We first tested the influence of the underlying interatomic
potentials by training and testing the LDML model on either
EAM [47] or MEAM [48] data sets. The MEAM potential
augments the EAM potential form with angular three-body
terms and typically employs analytic expressions for the pair
and embedding functions [78–80] as opposed to the tabulated
cubic splines of EAM potentials. We also compared three sets
of descriptors for the LDML model: (i) A20,10 descriptors, (ii)
the bSO(4)3.5 bispectrum, both with rcut = 5.0 Å, and (iii) the
global scattering descriptor SJ ,L. In our tests the A20,10 was
around 50% faster to evaluate than bSO(4)3.5 and SJ ,9.

For the three descriptors the MEAM results have a lower
RMSE and MAE (see Fig. 2), a feature we found replicated
across other training sets. The present surrogate model esti-
mates the multidimensional curvature of the potential energy
surface solely from the geometric structure of the minimum
basin. Consequently, a smooth energy landscape is assumed;
i.e., mathematically speaking, the underlying potential energy
surface is a smooth function with regular derivatives. The
EAM potential using spline functions does not satisfy the
assumed regularity, inducing error in the fitting procedure.
The MEAM force field is coded on smoother functions result-
ing in a smaller intrinsic error in the regression model. This
inconvenience is not related to the capacity of the force field,
EAM or MEAM, to describe the physics of phonons in bcc
iron. In order to reduce the intrinsic error due to the regularity
of the force field in this paper we use the MEAM potential
exclusively [48].

The results of regressions to the MEAM data with differ-
ent descriptor functions are shown in Fig. 2. On formation
entropies ranging between 8kB and 28kB, the performance in
descriptor sets has limited variation but we find that A20,10

consistently outperforms bSO(4)3.5, and SJ ,9 despite the
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FIG. 2. Formation entropy computed from the numerical diagonalization of Hessian against the formation entropy computed from LDML
model using (a) EAM and (b)–(d) MEAM data set for 2–4 interstitial clusters I2−4 and for quadrivacancies V4 in (8a0)3 supercells. The number
of configurations is given at first line of Table I. The descriptors in the present study are (a), (b) A20,10, (c) bSO(4)3.5, and (d) SJ ,L with scales
J = {0, 0.25, 0.5, 0.75, 1, 2, 3, 4, 5}.

greater computational efficiency, with an RMSE of 0.8kB and
0.7kB to 0.3kB, respectively.

B. Modeling data sets with multiple defect species and
variable supercell volume

It is highly desirable to have predictability on the changes
in formation entropy under deformations of the simulation
supercell, as this can be used as a proxy for changes in the for-
mation entropy under varying microstructural environments.

In addition, as LDML model formation entropy Eq. (14)
receives an input vector of fixed dimension, independent of

system size, it is possible to simultaneously train the model
on data sets with a variable number of atoms.

As a first application, we trained the LDML model on a
large data set of I2−4 and V4 configurations, found through
the ARTn searches. The simulation cell is the same 8a0 cubic
supercell as above, where each configuration was additionally
copied, subjected to an isotropic dilation of −1% to 3%
before a new calculation of descriptor vector and harmonic
entropy. The number of configurations in the data set has been
increased by a factor 5. Figure 3 illustrates the accuracy of the
LDML model using a single weight vector w for the entire
data set. We notice that the RSME error is only 0.4kB.
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FIG. 3. Illustration of the performance of the training of the surrogate model using deformed supercells of I2−4/V4 clusters (MEAM
database) with the A20,10 descriptor. The initial configurations have a (8a0 )3 volume and have been deformed by applying a homogeneous and
isotropic dilatation of the supercell. The deformation ranges from −1% to 3%. (a) Illustration of the results of the regression model depending
on the type of defect in the supercell; (b) same as in (a) but for the quadrivacancy V4 and various deformation rates.

C. Training on combined disordered and crystalline data sets

To test the ability of the LDML model and descriptor
functions to predict formation entropies beyond crystalline
structures, we created an additional database of highly disor-
dered structures from an ARTn database of I2−4 and V4 config-
urations in cubic supercells of dimension 8a0, 10a0, and 12a0,
as described in Table I. For each configuration, a large number
of individual atoms were subjected to random displacements,
which creates many Frenkel pairs even after relaxation. Once
the relaxation procedure has been realized we obtained a
highly defective structure containing up to 22 vacancies and
26 interstitials. The set of such structures will be referred to as
the random database. The distribution of defects in the random
database is presented in Fig. 4. The difference between the
number of interstitials and vacancies is conserved before and
after the disordering procedure, giving a strong correlation
between the effective vacancy and interstitial count. We also
present the distribution of formation entropies, Fig. 5(b), and
the distribution of distances between point defects, Fig. 5(a),
associated with Fig. 4. The distribution of formation entropies
Fig. 5(b) emphasizes that the selected configurations are di-
verse and carefully selected. Concerning the distribution of
distances between defects Fig. 5(a), we can notice that about
1/3 of the distances are less than the “interaction distance”
defined by 2rcut = 10 Å for the descriptors. Moreover, the
interaction between defects is not limited to the cutoff distance
of the force field. The point defects used in the present
database have a strong elastic dipole tensor [3,81–83] that
induces a strong elastic field far beyond the defects and makes
almost all the defects interact with each other. Figure 6(a)
presents the results of the LDML model trained on this highly
diverse data set. We find that the RMSE error is only 0.8kB,
which is to be compared to a formation entropy range of
approximately 250kB. This high value of formation entropy

in comparison to the ARTn database, Fig. 2, is ascribed to the
much higher effective number of defects in the system.

In order to prove the robustness and the transferability of
the model illustrated in Fig. 6(a), a training/testing procedure

FIG. 4. The analysis of the distribution of randomly generated
point defects in the random database. This database is derived from
the ARTn database only using the supercells of volume (10a0 )3 and
(12a0 )3 by random creation of Frenkel pairs. The plot emphasizes
the occurrences in the entire random database of number of self-
interstitial atoms (SIAs) and vacancies in the same supercell. The
random database contains 9016 configurations.
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FIG. 5. The analysis of the distribution of formation entropies (b) and of distances between point defects in the random database. Formation
entropies follow the same distribution as defect numbers in simulation boxes drawn in Fig. 4. Concerning distance distribution, about 1/3 of
the point defects are separated by less than 10 Å = 2rcut .

is performed. The database is split randomly into two sets
following the proportion p. One set corresponds to the training
set with the proportion (1 − p); the second one is the test
set with p proportion. The LDML model is adjusted on the
training set and a prediction is realized for the test set. In
order to reduce bias on the random procedure we iterate this
training/testing set sampling a hundred times for a given pro-
portion p and we average the values of RMSE and MAE for

the training and test sets. RMSE and MAE calculated for both
sets are presented in the inset of Fig. 6(a). The weak variability
of RMSE against the proportion p indicates the extremely
good quality of predictions, up to a splitting of 90%. We
notice for a 90% training/10% testing ratio that the testing
error is less than the training error. This behavior reflects the
natural tendency of any regression: there are more data in
training and therefore the RMSE training is higher. Moreover,

FIG. 6. The robustness and the transferability of the surrogate model are tested by (a) crossing validation using several splitting proportions
between training and testing configurations of the joined ARTn database and the random database (the entropies are computed using MEAM
potential [48] and the LDML model employs A20,10 descriptor). The statistical indicators are given by the RMSE and MAE. The inset shows
RMSE for training and testing data sets against testing proportion (defined in the text). (b) The predictive power of the LDML model trained on
the ARTn database and validated on the random database. The statistical indicators, RMSE and MAE, are computed for the random database.
The order of magnitude of the statistical indicator is the same as in (a) while the model is in the extrapolation regime.
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at that unbalanced ratio it is possible to have some stochastic
fluctuations. So far, the probability to have predicted data with
a large systematic error (symptomatic data) is higher than the
probability to find symptomatic data in the test set.

Defects from the random database are representative struc-
tures of bcc iron under irradiation. These structural properties
of defects influence drastically the phonon properties. Let us
take the case of 〈111〉 interstitial clusters [74,84,85]. These
interstitial clusters exhibit a soft mode due to an almost free
translation of the dumbbell along the 〈111〉 direction. This
phonon mode is highly active in the α-γ martensitic transition
of Fe as well as in the pair kinks nucleation in the 1

2 〈111〉
dislocation [86] and is delocalized over distances larger
than 10 Å.

The ability of the present LDML model to mimic the
physics of those soft modes is nontrivial, as the characteristic
wavelength is far beyond the cutoff radius of the descriptors
used to sample the local atomic environment. Despite this, the
linear regression in the descriptor space is able to reconstruct
the correlation between high formation entropies and the large
phonon wavelengths.

D. Transferability of crystalline model to disordered structures

In this final example, we artificially tested the transferabil-
ity of the LDML model by training only on the ARTn database
of defect structures, before attempting to predict the formation
entropies of the random database. As illustrated in Fig. 6(b),
the LDML model achieves a remarkable predictive accuracy
with an RSME error of only 1.53kB. Such a performance is
obtained while the prediction is made for a basin of the energy
landscape which is disjointed from the training basin where
formation entropy is bounded by 25kB.

In order to prove the transferability of the LDML in non-
crystalline structures we investigate LJ38, the Lennard-Jones
cluster containing 38 atoms. It is an archetypal system with
thousands of minima organized in many attraction basins [87].
This system is often the benchmark for advanced numerical
methods in the exploration of the complex energetic land-
scapes [88–90]; we used the LJ38 database from Cambridge
University [90]. For such a system the cluster entropies could
be easily calculated by direct diagonalization of the Hessian
of the system. We have randomly chosen up to 10 000
different LJ38 configurations. The present surrogate model
used the AFS(20,10) descriptor having rcut = 5 Å. Figure 7
illustrates the results of the regression model for LJ38, and the
inset shows the results of the training/testing procedure. The
surrogate model presents the same score and transferability
behavior as in the case of the bcc iron system.

VI. CONCLUSIONS AND PERSPECTIVES

This work proposes a strategy to predict the vibrational
entropy of structural defects in crystalline solids from the
Cartesian coordinates of atoms. After a training phase, the
procedure is based solely on geometrical information and
does not require explicit knowledge of the Hessian and its
spectrum. The D chosen descriptor functions are calculated
for each atom in a relaxed configuration, then summed across
all N atoms, giving a model input space of dimension D
independent of the system size N . This reduction is based on

FIG. 7. LDML applied to the Lennard-Jones clusters of 38 atoms
LJ38 to adjust the vibrational entropy of clusters in εT −1 units.
Training/testing procedure is described in Sec. V C; results are
presented in the inset. The statistical indicators RMSE and MAE
remain stable even for large proportions of testing set.

the physics of the harmonic approximation that enables us to
compute the total vibrational entropy of the system as the sum
of the local atomic entropies. This reduction is exact within
the harmonic approximation and justifies the summation over
the local descriptors in order to build the descriptor of the
simulation box. The regression entropy descriptor is then
parametrized via methods developed in the machine learn-
ing community, specifically Bayesian ridge regression. The
extensivity for entropy, in number of particles, volume, and
deformations, was carefully checked.

The physics background of the present surrogate model
ensures robustness and outstanding transferability. By using
two disjoint parts of an extensive database we demonstrate
the transferability from supercells containing only one defect
cluster to complex configurations having more defects and
clusters. The low error in predictions, around 1kB for the
absolute values ranging from 20kB to 250kB, opens many
perspectives; e.g., the defects can be trained separately in
small cells, while complicated structures such as those in
radiation damage can be accurately predicted [91].

Moreover, the routine calculations of formation vibrational
entropies of defects is hindered by the computational cost. The
harmonic approximation scales as cubic in number of atoms.
In the present approach, the evaluation is very rapid. By far,
most of the numerical evaluation is reserved by the calculation
of the fingerprint of the local atomic environment. The present
algorithm scales linearly with the number of atoms and can be
easily parallelized for massive systems.

The present surrogate model opens the way for the pre-
diction of the vibrational entropy of defects up to nanometric
size with a host medium up to millions of atoms. Moreover,
the present strategy can be integrated in on-the-fly skims
such as relaxed Monte Carlo for fast evaluation of the kinetic
pathways of the system on the free energy landscape.
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