
PHYSICAL REVIEW MATERIALS 4, 063801 (2020)

Developing an improved crystal graph convolutional neural network framework
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The recently proposed crystal graph convolutional neural network (CGCNN) offers a highly versatile and
accurate machine learning (ML) framework by learning material properties directly from graphlike represen-
tations of crystal structures (“crystal graphs”). Here, we develop an improved variant of the CGCNN model
(iCGCNN) that outperforms the original by incorporating information of the Voronoi tessellated crystal structure,
explicit three-body correlations of neighboring constituent atoms, and an optimized chemical representation
of interatomic bonds in the crystal graphs. We demonstrate the accuracy of the improved framework in two
distinct illustrations: First, when trained/validated on 180 000/20 000 density functional theory (DFT) calculated
thermodynamic stability entries taken from the Open Quantum Materials Database (OQMD) and evaluated on
a separate test set of 230 000 entries, iCGCNN achieves a predictive accuracy that is significantly improved,
i.e., 20% higher than that of the original CGCNN. Second, when used to assist a high-throughput search for
materials in the ThCr2Si2 structure-type, iCGCNN exhibited a success rate of 31% which is 155 times higher
than an undirected high-throughput search and 2.4 times higher than that of the original CGCNN. Using both
CGCNN and iCGCNN, we screened 132 600 compounds with elemental decorations of the ThCr2Si2 prototype
crystal structure and identified a total of 97 unique stable compounds by performing 757 DFT calculations,
accelerating the computational time of the high-throughput search by a factor of 65. Our results suggest that
the iCGCNN can be used to accelerate high-throughput discoveries of new materials by quickly and accurately
identifying crystalline compounds with properties of interest.
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I. INTRODUCTION

Density functional theory (DFT) calculations have proven
to be a valuable tool in characterizing materials properties and
discovering new materials [1]. However, prediction of novel
materials through DFT calculations remains a computation-
ally challenging process due to the sheer size of the materials
search space. Recently, with the availability of large material
databases [2–7], data-driven materials design and discovery
using machine learning (ML) has gained much attention for
its potential to predict new materials with favorable properties
much faster than DFT calculations with substantially less
computational cost. ML models have been developed for
various materials applications such as predicting formation
energies [8–19], band-gap energies [20–24], melting temper-
atures [25–27], thermal conductivity [26,28], and mechanical
properties of materials [29–31].

A working ML model requires three components: (1)
training and testing data, (2) a ML algorithm, and (3) mate-
rials representation. Much of the creative efforts in materials
informatics have been focused on developing representations
that can uniquely define each material and best capture the
chemistry that influences the property of interest. Recently,
inspired by the breakthroughs made in other fields such as
computer vision, there has been a rising effort to take ad-
vantage of neural networks to extract useful descriptors from

*Corresponding author: c-wolverton@northwestern.edu

inorganic compounds without having to construct them man-
ually [32–39]. In particular, graph neural networks (GNNs),
first used by the quantum chemistry community to extract
descriptors from molecular graphs [32–36], have started being
used on graph representations of crystal compounds to reach
unprecedented accuracy in predicting materials properties and
to gain chemical insight [36–38,40].

In this work, we show that frameworks utilizing GNNs
can be further improved in predicting material properties. We
build upon the recently proposed crystal graph convolution
neural network (CGCNN) framework [37] which utilizes
graph representations of crystals, referred to as crystal graphs,
and present an improved framework (iCGCNN) that better
represents the chemical nature of an inorganic compound. In
this framework, descriptors extracted from the crystal graphs
include the information of the Voronoi tessellated crystal
structure, explicit three-body correlations of neighboring con-
stituent atoms, and an optimized chemical representation of
interatomic bonds, all of which are absent in the crystal graphs
utilized by the original framework. The improvement of the
model is illustrated through two distinct tests.

First, we compare the accuracy of CGCNN and iCGCNN
in predicting the thermodynamic stability of inorganic mate-
rials, using a training/testing dataset of DFT-calculated stabil-
ities from the Open Quantum Materials Database (OQMD)
[2,3]. Thermodynamic stability in this work refers to the
difference between the formation energy of a compound and
the lowest-energy linear combination of phases corresponding
to that composition, typically calculated from the so-called
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convex hull constructions (henceforth, “convex hull energy”).
We use two different approaches to predict stability. In the
first approach, we train ML models to predict the formation
energy of phases, which is subsequently used to calculate
stability relative to the convex hull energy derived from DFT
calculated formation energies. In the second approach, we
train and test the ML models directly on the DFT-calculated
thermodynamic stability data, bypassing calculations of for-
mation energy.

In the second illustration, we conduct separate ML-assisted
high-throughput searches using both CGCNN and iCGCNN
to discover stable compounds in the ThCr2Si2 structure
type, one of the most commonly occurring ternary prototype
structures. We compare the performances of CGCNN and
iCGCNN based on the number compounds that were con-
firmed to be stable through DFT and the success rate, which
we define as the ratio of the number of stable compounds
identified to the number of DFT calculations that were per-
formed to identify those stable compounds, in their respective
high-throughput search.

In both studies, we find that iCGCNN significantly
outperforms the original CGCNN model. In predicting
thermodynamic stability, iCGCNN achieves an accuracy that
is 20% higher than that of CGCNN. In predicting new stable
ThCr2Si2-type materials, iCGCNN identifies nearly twice as
many compounds with a success rate that is greater by a factor
of 2.4 than the original CGCNN. Using both CGCNN and
iCGCNN, we screened 132 600 ThCr2Si2-type compounds
that were generated by substituting elements into the original
ThCr2Si2 structure and identified 97 of them to be stable by
only performing 757 DFT calculations, a success rate that is
higher than that of an undirected high-throughput search by
a factor of 65. Our findings show iCGCNN to be a highly
efficient screening tool to predict potentially stable materials
to accelerate the challenging task of materials design and
discovery.

II. RESULTS

A. Description of improvements in the iCGCNN

The original CGCNN framework [37] utilizes a graph
representation of the crystals that is composed of two parts:
(1) nodes that represent constituent atoms of the crystal,
and (2) edges that represent the bonds between neighboring
atoms. A node is embedded with a vector vi to represent
the properties of atom i, where we define embedding as
the process of mapping a discrete object to a vector of real
numbers. Each edge is also embedded with a vector u(i, j)k

that contains the distance information between neighboring
atoms i and j of the crystal unit cell. In order to account
for the periodicity of the crystal, multiple edges between
atoms i and j, as indexed by k, can exist. Each node in the
crystal graph is connected to its 12 nearest neighbors. During
the training phase, the node vectors are updated iteratively
according to a convolution function defined by
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vectors. � represents a matrix elementwise multiplication
while σ and g respectively represent a sigmoid function and
a nonlinear activation function. W (t ) and b(t ) represent the
weight and bias matrices respectively for the t th convolution
step. A more detailed explanation of the CGCNN framework
can be found in Ref. [37].

CGCNN offers a highly flexible framework to repre-
sent different crystal structures and exhibits excellent perfor-
mances in predicting a variety of material properties. How-
ever, the design of the crystal graphs utilized by CGCNN may
not be optimal in representing the chemical environment of
constituent atoms. We identify three possible drawbacks of
the original CGCNN model that we attempt to address in the
new iCGCNN model.

The first drawback of CGCNN is that regardless of the
crystal structure being represented, each node in every crystal
graph is connected to 12 of its nearest neighbors. While the
local chemical environment of an atom is determined by all of
its neighboring atoms, atoms in the first- and second-nearest-
neighbor shell often have the largest impact on the local envi-
ronment. Depending on the crystal structure, it is possible that
the 12 nearest neighbors of an atom may include neighbors
beyond the first- and second-nearest-neighbor shell. These
neighbors may introduce information that could overshadow
the more important information relayed from the nearest
neighbors and deter the ML model from learning the most
optimal local environment representation of an atom during
training. While σ in Eq. (1) functions as a learned weight
matrix that allows CGCNN to differentiate the weaker bonds
from the stronger bonds between an atom and its 12 neighbor-
ing atoms, these weights are still determined in a data-driven
process which is more prone to error than explicitly dictating
which of the neighboring atoms have significant interactions.
In our improved model, we attempt to better represent the
local environment of crystals by connecting each node to its
Voronoi neighbors, as illustrated in Fig. 1. Furthermore, such
a construction enables us to use information from the Voronoi
tessellation of the crystal [19] in the edge vector embeddings
of the crystal graph, in addition to interatomic distance infor-
mation. Voronoi polyhedral information embedded in the edge
vectors in the iCGCNN model includes attributes such as the
solid angle, area, and volume of the Voronoi cell subtended for
the facet as calculated by the open source library, Pymatgen
[41].

The second drawback of the CGCNN is that only pairwise
correlations are explicitly encoded into the convolution func-
tion. Higher-order, many-body correlations (e.g., three-body)
are not explicitly encoded. We note that the original CGCNN
implicitly encodes some information about the many-body
correlations into the node vectors through multiple iterations
of the convolution step. However, much of the information
regarding the many-body correlations is inevitably lost as
it is not explicitly encoded into convolutional function. To
minimize the loss of information, we explicitly integrate in-
formation of three-body interactions between atoms i, j, and l
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FIG. 1. Illustration of iCGCNN crystal graph. The crystal graph shown on the far right represents the local environment of atom A.
Multiple edges connect A to neighboring nodes to show the number of Voronoi neighbors. The nodes and edges are embedded with vectors
that characterize the constituent atoms (vi, v j) and their correlations with neighboring atoms (u(i, i)k , u(i, j)k ) respectively. Edge vectors include
information about the Voronoi polyhedra such as solid angle, area, and volume.

into the convolution function in the iCGCNN model by adding
the following term to Eq. (1):
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(i,l )k′ . The computational cost of the original
CGCNN model scales linearly with the number of atoms
in the crystal structure. The time complexity can be writ-
ten out as �(mN ) where N is the number of atoms in a
crystal structure and m is the number of edges connected
to each node in the crystal graph representation. The time
complexity of iCGCNN is �(m2N ) which indicates that
the computational cost of iCGCNN is greater than that of
CGCNN, but it still scales linearly with respect to the num-
ber of atoms even after explicitly calculating the three-body
correlations

The third drawback of the CGCNN is that the chemical
representations of interatomic bonds, as defined by the edge
vectors, are not optimized. In the original CGCNN, node
vectors are iteratively optimized to better represent the local
chemical environment of an atom, but the edge vectors remain
unchanged during training. Thus, in CGCNN, interatomic
bonds are not as well represented by the edge vectors as
the local chemical environments are represented by the node
vectors. To address this issue, we implemented the follow-
ing convolutional function to update the edge vectors in

iCGCNN:
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The terms in this convolutional function closely resemble
those in Eqs. (1) and (2). The terms in σ (z(t )
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2 ) represent how the chemical properties of
the atoms i and j affect their chemical bond. The sum operator
term represents how the interatomic bonds are affected by the
presence of other nearby atoms.

B. Predicting thermodynamic stability
using CGCNN and iCGCNN

In this section, we compare the predictive accuracies of
the original and improved CGCNN model in predicting the
thermodynamic stability of crystal compounds. The thermo-
dynamic stability of a compound is determined by what is
often referred to as “distance to convex hull” or simply “hull
distance.” The convex hull is defined as the envelope connect-
ing the lowest energy compounds in the chemical space (e.g.,
binary Li-O space, ternary Cu-Mn-Al space). For example,
in the binary Li-O chemical space, the convex hull is simply
the envelope that connects the stable Li, Li2O, Li2O2, LiO2,
LiO3, and O2 phases. The hull distance of a compound i,
�Hi

stab is given by �Hi
stab = �Hi

f − Ei
hull, where �Hi

f is the
formation energy of compound i and Ei

hull is the convex hull
(constructed without including i) energy at the composition

063801-3



CHEOL WOO PARK AND CHRIS WOLVERTON PHYSICAL REVIEW MATERIALS 4, 063801 (2020)

of i. Using the previous example, �HLi2O
stab is calculated by

constructing a convex hull in the Li-O space after explicitly
excluding Li2O. It thus follows, as defined here, that all stable
compounds have a hull distance �Hi

stab � 0 meV/atom. Note
that our definition of hull distance is different from one of
the common ways of defining it where Ei

hull is the energy of
the convex hull constructed including i. Under such a defini-
tion, stable compounds have a hull distance of zero.

In this study, we considered two strategies to determine the
hull distances, using a combination of ML and DFT energies.
In strategy 1, we train the ML models on DFT-calculated for-
mation energies of the compounds in the training dataset. Hull
distances of the compounds in the test dataset are evaluated by
taking the differences between the ML-predicted formation
energies and DFT-calculated convex hull energies as in the
OQMD. This approach requires us to calculate the convex hull
energy every time we are predicting the hull distance of a new
compound. In strategy 2, we train the ML models directly on
the DFT-calculated hull distances. This approach requires us
to construct the convex hulls for compounds in the training
data, but it allows us to bypass the convex hull construction
altogether when predicting the stability of a new compound.

CGCNN and iCGCNN models using strategy 1 were
trained and validated on the formation energies of the
∼200 000 compounds in the training and validation data taken
from the OQMD. The models were then used to evaluate both
the formation energies and hull distances of the ∼230 000
compounds in the test data, where the hull distances are
computed by taking the differences between the ML-predicted
formation energies and the convex hull energies as calculated
in the OQMD at that composition. Model performances uti-
lizing strategy 1 are summarized in Fig. 2. Mean absolute
errors (MAEs) for formation energy predictions are 41.3 and
30.5 meV/atom for the CGCNN and iCGCNN respectively
[Figs. 2(a) and 2(b)]. In comparison, Ward et al. report a
MAE of 80 meV/atom in cross validation for the Voronoi
tessellation model [19] when trained and tested on 435 000
formation energies taken from the OQMD. This shows that
both CGCNN and iCGCNN offer highly accurate estimations
of DFT-calculated formation energies compared to previously
developed ML models, consistent to the results reported in
Ref. [37]. In another comparison, DFT is widely considered
to be a reliable method in estimating various material prop-
erties where, for many cases, the differences between DFT
and experimental results are trivial. For measuring formation
energies, the difference between the DFT and experiments is
around 100 meV/atom [3]. This implies that both CGCNN and
iCGCNN can be used as a reliable method to estimate DFT-
calculated material properties. MAE for hull distances are 41
and 30 meV/atom for CGCNN and iCGCNN respectively,
identical to the formation energy prediction errors as expected
since the hull distances are calculated directly from the for-
mation energies [Figs. 2(c) and 2(d)]. Overall, iCGCNN hull
distance prediction errors are lower than CGCNN by 25% and
15% in terms of MAE and root-mean-square error (RMSE)
respectively.

A common trend observed in Figs. 2(a) and 2(b) is
the position of the outliers indicated by the red arrows.
Both CGCNN and iCGCNN have prediction errors greater
than 3 eV/atom for the formation energies of the same 11

compounds. These outliers in the ML predictions were found
to consist of compounds with failed DFT calculations that
occasionally occur in automated, high-throughput calcula-
tions due to the “hands-off” nature of the automation. All
11 outliers with their corresponding DFT errors are listed in
Table S3 of the Supplemental Material [42]. For 9 out of the
11 outliers, the indication of DFT error shows up as a large
energy difference (several eV/atom) between the relaxation
calculation and the final, static calculation, further implying
that the DFT-calculated formation energies of these outliers
may significantly deviate from the ground truth. Thus, it is
possible that when we use highly accurate ML models such
as CGCNN or iCGCNN to predict the formation energies of
these compounds, the ML predictions are closer to the true
formation energy values than the DFT calculations, resulting
in large differences between the ML-predicted and DFT-
calculated formation energies. While it is concerning that such
errors can exist in a high-throughput database, we perceive
that an analysis of ML-predicted vs DFT-calculated energies
can provide us with the means to quickly locate and ultimately
correct these errors.

While it is important that a ML model does not predict a
highly unstable compound to be stable, the ability to correctly
predict new stable materials is often more closely related to
how accurately a ML model can predict the hull distances of
compounds that are stable or nearly stable, i.e., compounds
that have hull distances less than ∼50 meV/atom. To eval-
uate the ML models in this aspect, hull distance predictions
of stable/nearly stable compounds are shown separately in
Figs. 2(e) and 2(f). For this latter set of compounds, iCGCNN
hull distance prediction errors are lower by 33% and 28%
in terms of MAE and RMSE respectively compared to those
of CGCNN. For CGCNN and iCGCNN respectively, MAE
measured on the nearly stable compounds are 28% and 16%
higher compared to when they are measured on the entire test
dataset. The worse predictive accuracy for the stable/nearly
stable compounds is likely because there are far fewer stable
compounds than there are unstable compounds in the training
data (e.g., out of the training set of ∼200 000 compounds
only 5.1% are stable), making it more difficult to learn the
formation energies/hull distances of the stable/nearly stable
compounds.

CGCNN and iCGCNN models using strategy 2 were
trained directly on the hull distances of the training entries as
queried from the OQMD, and then used to predict the hull
distances of the testing entries without having to construct
the convex hulls. Model performances for strategy 2 are
summarized in Fig. 3. The overall MAEs for the original and
improved models are 48.9 and 38.7 meV/atom respectively
[Figs. 3(a) and 3(b)]. We find that the improved model outper-
forms the original model by close to 20%. For nearly stable
compounds, MAEs for the original and improved models are
61.6 and 50.1 meV/atom respectively [Figs. 3(c) and 3(d)].
The difference between the MAE values for stable/nearly
stable compounds is close to 20%, consistent with the gap
between the overall MAE values. Again, as in strategy 1,
we observe that MAE measured on the stable/nearly stable
compounds are higher compared to when they are measured
on the entire test dataset by 26% and 29% for CGCNN and
iCGCNN respectively.
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FIG. 2. Predictive accuracies of CGCNN and iCGCNN using strategy 1. Hull distances are evaluated by taking the differences between
ML-predicted formation energies and DFT-calculated convex hull energies. (a), (b) DFT vs ML formation energies for (a) CGCNN and
(b) iCGCNN. Red arrows indicate the common outliers in CGCNN and iCGCNN predictions. (c), (d) DFT vs ML predicted hull distances for
(c) CGCNN and (d) iCGCNN. Close up on compounds with hull distances smaller than 50 meV/atom for (c) and (d) are shown in (e) and (f)
respectively.

Comparing strategies 1 and 2, we find that hull distance
prediction errors in general are higher for strategy 2. For
stable/nearly stable compounds, the MAE resulting from
strategy 1 was almost 40% and 30% lower for the original
and improved CGCNN models respectively. Furthermore, for
strategy 2, the DFT-calculated and ML-predicted hull dis-
tances have a negative coefficient of determination (R2) as
shown in Figs. 3(c) and 3(d), implying the lack of a linear

correlation between the calculated and predicted stabilities.
We speculate that there are two causes for this result: First,
the hull distance is inherently a more complicated property to
learn compared to formation energy. As opposed to formation
energy which is calculated with respect to the elemental
reference states, hull distance is calculated with respect to
the ground-state phases. The number of ground-state phases
that are required to be learned for strategy 2 is much larger
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FIG. 3. Predictive accuracies of CGCNN and iCGCNN using strategy 2. ML models are trained to directly predict the hull distances.
(a), (b) DFT vs ML predicted hull distances for (a) CGCNN and (b) iCGCNN. Closeup on compounds with hull distances smaller than 50
meV/atom for (a) and (b) are shown in (c) and (d) respectively.

than the number of elemental reference states that needs to
be learned for strategy 1. For example, as opposed to only
having to learn the elemental reference states of Li and O to
predict the formation energy of Li2O, a ML model must learn
about the ground state Li, Li2O2, LiO2, LiO3, and O2 phases
to directly predict the hull distance. Second, convex hulls in
the OQMD, or any high-throughput materials database that
is currently available, are very much incomplete as there are
still potentially thousands of compounds that have not been
discovered yet. Thus, for strategy 2, it is very likely that the
training data include incorrect hull distance values derived
from incomplete convex hulls. For example, suppose there is
a compound with the composition of Li4O in the binary Li-O
space that is stable but is yet to be discovered. If such hypo-
thetical compound does exist, it means that our knowledge of
the convex hull in the Li-O space so far has been incomplete,
and the convex hull distances that we calculate for compounds
with compositions such as Li3O in the OQMD are incorrect
because they are based on a convex hull construction that
excludes the stable Li4O phase. Such incorrect information
in the training data may hinder the learning process of the ML
models.

C. Using CGCNN and iCGCNN to accelerate high-throughput
DFT searches: Discovering new stable ThCr2Si2-type materials

The ThCr2Si2 structure-type, illustrated in Fig. 4(a), is
one of the most commonly observed crystal structures in
nature. It is the fifth most common crystal structure among
ternary intermetallics [43], accounting for 289 of the 13 026
ternary compounds in Pearson’s Crystal Data [44]. The crystal
structure has often been identified with materials that exhibit
interesting properties such as superconductivity and valence
fluctuation [45]. The number of possible compositions for the
ThCr2Si2 structure is about 500 000, and at the time of this
study, there were 538 stable ThCr2Si2-type compounds in the
OQMD. This implies that if we conducted an undirected high-
throughput search for these compounds, we would identify
approximately one or two new stable compounds for every
1000 DFT calculations. For a high-throughput DFT search,
we could define a success rate as the ratio of number of
stable compounds identified to the number of DFT calcula-
tions that were performed to identify those stable compounds.
The success rate of an undirected high-throughput search for
ThCr2Si2-type materials would then be around 0.2%. In this
section, we conduct a ML-assisted high-throughput search for

063801-6



DEVELOPING AN IMPROVED CRYSTAL GRAPH … PHYSICAL REVIEW MATERIALS 4, 063801 (2020)

FIG. 4. (a) Structure of ThCr2Si2. (b) Periodic table where colored elements were substituted into ThCr2Si2 structure to generate new
compounds.

materials in the ThCr2Si2 structure-type by using the original
and improved CGCNN models in parallel with strategies 1
and 2 to improve the success rate.

First, new prototype compounds were generated by sub-
stituting elements into the original ThCr2Si2 structure. Only
metallic elements that are not rare earth, totaling 52 ele-
ments, were considered for substitution [Fig. 4(b)], resulting
in 132 600 (52×51×50) variations. The 538 stable ThCr2Si2-
type compounds that already exist in the OQMD were
then removed to avoid discovering duplicates. CGCNN and
iCGCNN models that have been trained for the comparative
study in the previous section were then used to predict and
screen for potentially stable compounds among the newly
generated prototype compounds. For the compounds that were
predicted to be stable by the ML models, DFT was used to
calculate the formation energies and subsequently the hull dis-
tances to validate their thermodynamic stability. The convex
hulls that were used to assess the hull distances and confirm
the DFT stability of the crystal structures identified by the
ML models were constructed from the DFT-calculated phase
data available through the OQMD. All DFT calculations were
performed within the OQMD framework. Finally, we evaluate
the performance of each model based on the number of newly
discovered compounds and success rate of their respective
high-throughput search.

The results of the search are summarized in Table I.
Combining the compounds predicted to be stable from both
strategies 1 and 2 without overlap, the original CGCNN
predicted a total of 556 unique compounds to be stable, out

of which 72 were confirmed to stable through DFT. Out of the
423 unique compounds predicted to be stable by iCGCNN,
133 were confirmed to be stable through DFT, nearly twice the
number of stable compounds identified by CGCNN. The 31%
success rate of iCGCNN is a factor of 2.4 greater than the 13%
success rate of the original CGCNN and a factor of 155 greater
than the 0.2% success rate of an undirected high-throughput
search. Further investigation of the compounds that were not
stable as calculated by DFT revealed that the number of nearly
stable compounds found by iCGCNN was 82% and 41%
higher than that of CGCNN for strategies 1 and 2 respectively.
The average hull distances of the compounds predicted by
iCGCNN that were DFT unstable were also lower by 3.9%
and 57.7% for strategies 1 and 2 respectively. Both results
show that iCGCNN predicted compounds are consistently
closer to the convex hull than the compounds predicted by
CGCNN. Overall, iCGCNN is far more accurate and efficient
in discovering new stable compounds than CGCNN.

We note that for iCGCNN, strategy 2 has identified more
stable compounds with a marginally higher success rate than
strategy 1, which seemingly contradicts the results of the
previous section where strategy 1 had a higher performance
than strategy 2. We speculate that there are various factors
that led to this contradiction. The first factor is bias in the
ML training data. The data that were used to train CGCNN
and iCGCNN contain 227 ThCr2Si2-type compounds, all of
which have hull distance values below 0. Thus, when the ML
models are trained to directly predict the stability as done
in strategy 2, the models are more likely to predict the hull

TABLE I. Performance breakdown of CGCNN and iCGCNN using strategies 1 and 2 in predicting stable compounds out of the 132 600
new prototype ThCr2Si2-type materials.

No. of compounds No. of compounds Avg. hull distance of DFT
predicted to be stable validated to be stable Success unstable compounds

by ML by DFTa rate % (meV/atom)

strategy 1 134 35 (29) 26 103.3
CGCNN

strategy 2 443 52 (57) 12 179.6

strategy 1 197 69 (55) 35 98.3
iCGCNN

strategy 2 260 93 (82) 36 82.3

aNumbers in parentheses indicate the number of compounds that are not stable but are nearly stable as calculated by DFT.
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FIG. 5. Periodic tables where elements are color-coded based on the number of stable occurrences on the (a) Th site, (b) Cr site, and
(c) Si site.

distances of the prototype ThCr2Si2-type compounds to be
below 0 as well. This bias is reflected in the fact that for both
CGCNN and iCGCNN, the number of compounds predicted
to be stable by strategy 2 is significantly higher than that of
strategy 1 (more than threefold difference for CGCNN). With
more compounds predicted to be stable, it is more likely that
strategy 2 will identify more stable compounds than strategy
1, even with a lower hull distance predictive accuracy. The
slightly higher success rate of strategy 2 over strategy 1 for
iCGCNN seems to be the combined result of iCGCNN’s
improved performance over CGCNN and statistical noise.

Through this survey, we performed a total of 757 DFT
calculations and identified 143 stable unique compounds,
of which 97 compounds have not yet been reported in the
literature to the best of our knowledge. Among the 97 com-
pounds, 42 are significantly stable with hull distances less than
−50 meV/atom. While all 97 compounds identified in this
survey are computational predictions that await experimental

validation, compounds with the significantly negative convex
hull distances are most likely to be synthesizable, and hence
should be prioritized in any experimental synthesis effort.
All 97 compounds are listed by the convex hull distance in
Table S4 of the Supplemental Material [42]. The number of
stable occurrences for each element on the Th, Cr, and Si
site are shown in Fig. 5. The Th site, which has the highest
coordination among the three sites, is mostly occupied by
alkaline elements that generally have large radii. The Cr site
and the Si site are mostly occupied by transition metals and
metalloids respectively. Finally, we emphasize that we have
discovered 97 potentially new stable compounds by only
performing 757 DFT calculations, a success rate of 13% that
implies that we have accelerated the high-throughput search
for ThCr2Si2-type materials by a factor 65 using both CGCNN
and iCGCNN. Compared to some of the previous works
that utilize ML to accelerate materials discovery through
high-throughput DFT studies, CGCNN and iCGCNN boast
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state-of-the-art performances. For example, Faber et al. pre-
dicted 2133 elpasolites to be stable and confirmed 128 of
them were DFT stable and Kim et al. performed 909 DFT
calculations and identified 55 stable quaternary Heusler com-
pounds, indicating that their ML models both had success
rates of 6% [16,46]. In another benchmark, Schmidt et al.
showed that their ML model can accelerate high-throughput
DFT calculations by at least a factor of 5 [47]. While it is
difficult to make an apples-to-apples comparison, our results
imply that CGCNN and iCGCNN are more effective in iden-
tifying new stable compounds than the previous ML models.
However, we note that CGCNN and iCGCNN can be limited
by their dependency on the atomic coordinates which we
further discuss in Sec. III of the Supplemental Material [42].

III. METHODS

A. Data

We use DFT-calculated thermodynamic data from the
OQMD for training, validating, and testing ML models
throughout this work. OQMD v1.1 contains about ∼450 000
DFT calculations of unique ordered inorganic compounds,
including ∼40 000 experimentally known ones from the In-
organic Crystal Structure Database (ICSD) [48,49], and the
rest hypothetical ones generated from commonly occurring
structural prototypes. All DFT calculations in the OQMD
are performed with the Vienna Ab Initio Simulation Package
(VASP) [50,51]. The details of the methodology and settings
used for the high-throughput calculations are explained in
Ref. [3]. All ML models in this work are trained on a set
of ∼180 000 compounds and validated on another ∼20 000
compounds, all randomly selected from the OQMD with no
overlap. Models are tested on a separate set of ∼230 000
compounds that are not included in the training or validation
data [2,3].

Code implementation. The iCGCNN was implemented
based on the CGCNN code available through github [52].

IV. CONCLUSIONS

The CGCNN model provides a highly accurate and flexible
ML framework in which material descriptors are adaptively
extracted according to the task at hand and thus allows us
to bypass the painstaking process of handcrafting the mate-

rial descriptors ourselves. We have presented an improved
CGCNN model (iCGCNN) to demonstrate that this frame-
work can be further improved. This was done by integrating
the Voronoi tessellation information of the crystal structure,
explicitly encoding the three-body correlations of neighboring
constituent atoms, and optimizing the chemical representation
of interatomic bonds in the crystal graphs. We trained and
tested the original and improved CGCNN models on OQMD
data to compare their hull distance predictive accuracy us-
ing two approaches: (1) predic the formation energy and
subsequently calculating the hull distance relative to OQMD
constructed convex hull and (2) bypass the need to construct
the convex hull by directly predicting the hull distance. In
both approaches, there were significant gaps between the
predictive accuracies, where the iCGCNN performed 25%
and 20% better than CGCNN for the former and latter ap-
proach respectively in terms of the MAE measured on the
entire testing data. Finally, when used to predict new sta-
ble compounds with ThCr2Si2-structure, iCGCNN not only
identified twice as many more stable compounds than the
original CGCNN, it exhibited a success rate that was greater
by a factor 2.4. Beyond comparing the two ML models, we
discovered 97 stable compounds in a high-throughput search
that was accelerated by a factor of 65 using both CGCNN
and iCGCNN. Its excellent performances in screening stable
compounds suggests that iCGCNN can be used to greatly
accelerate materials discovery.
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