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Role of dislocations in the bcc-hcp transition under high pressure:
A first-principles approach in beryllium
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We study the impact of dislocations on the bcc-to-hcp-to-bcc phase transition cycle using density-functional
theory. The transformation is studied under two external constraints: first under pressure, and second under
uniaxial shear. In both cases, we find that the elastic strain created by ± 1

2 [111] screw dislocations induces a
shear deformation which initiates the bcc-to-hcp transformation through the Burgers mechanism, as suggested
by the location of the phases and their orientations. For the pressure-induced transformation, a hysteresis appears
in the P-V curve and the analysis of structures reveals that only the three hcp variants topologically compatible
with the screw dislocations emerge. Our calculations thus capture characteristics of microstructures containing
grains (variant hcp) and defects (triple junction and grain boundaries). Interestingly, a small bcc inclusion is
present in the parent bcc after reversion. A careful analysis of the underlying deformation reveals that its origin
is explained by three reversion transformations which are self-accommodating and thus stable. Under shear, the
strain field induced by the dislocation decreases the energetic barrier considerably.
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I. INTRODUCTION

The martensitic transformation is a complex process from
the point of view of thermodynamics and microscopic mecha-
nisms [1,2]. One of the most known is the pressure-induced or
temperature-induced bcc-to-hcp transition which is frequent
in pure elements such as Be, Mg, Fe, Ti, Zr, Hf, Ba, Mo, and
Nb [3–7].

For the direct bcc-to-hcp transition, the calculated thermo-
dynamical transition pressures from the first-principles meth-
ods are consistent with the experimental transition pressures
for, e.g., Mg [8] and Fe [9–11]. Turning to the mechanism
of the transition, the Burgers path [12] describes the trans-
formation from bcc to hcp: Zr [12], Ba [13], Fe [14,15],
Ti [16], and Mg [17]. Indeed, the volume-conserving shear
deformation transforms {110}bcc into {0001}hcp and 〈001〉bcc

into 〈21̄1̄0〉hcp, and simultaneously the shuffle restores the
hcp stacking (Fig. 1) [18]. However, the methodology to
calculate the minimum energy path, via two-dimensional
potential-energy (enthalpy) surfaces (PES) depending on
shear deformation and shuffle as order parameters, is still in
debate [9,11,19,20]. More importantly, and according to first-
principles methods, required pressures for the transition to
happen along the Burgers mechanism (e.g., for Fe [9,19]) are
far from the ones observed under purely hydrostatic loading
[15]. A limited number of studies at the atomic scale were
devoted to explaining this theory/experiment disagreement
by using dislocations to foster the martensitic transformation
[21–26].

Phase-field models [27] and some atomistic simulations
[21–26] have highlighted that preexisting dislocations are

*Corresponding author: christophe.denoual@cea.fr

possible nucleation sites, with a stress field inducing a strong
variant selection [25]. A spreading of the dislocation core is
also observed after the transformation [28,29]. Although nu-
merical potentials could be used to achieve density-functional
theory (DFT) calculation accuracy for both phase transforma-
tion and dislocation structures [30], no potential of this kind
is available for beryllium under pressure.

In this work, we study beryllium, for which the stable phase
is hcp at ambient conditions [31]. However, the phase diagram
of beryllium is an experimental and theoretical challenge
[32–34]. Experimentally, the alleged stability domain of the
bcc phase at very high pressure has not been reached yet. The
large spreading of the hcp-to-bcc thermodynamic transition
pressure from first-principles calculations (from 100 up to
510 GPa [6,33,35–43]) is probably due to the very low energy
difference between hcp and bcc structures (less than 100 meV
per beryllium, see Fig. 2), making the determination of the
transition pressure tricky.

As for iron, first-principles calculations show that the ther-
modynamical transition pressure and the transition pressure
required to follow the Burgers path are very different (see
Sec. III A.). For this reason, in this paper we investigate the
role of dislocations on the phase transition. Contrary to iron,
beryllium has no magnetism. However, it has the particularity
that, according to ab initio calculations, the transition occurs
thermodynamically at much higher pressure (∼400 GPa) with
a very small volume variation (�V = 0.18 bohr3). The energy
difference between the bcc and hcp phases at the transition
pressure is very small (∼2.5 meV/atom) in comparison with
the energy barrier for the transition following the Burgers path
(∼33 meV/atom, see Sec. III A). Consequently, studying the
transition path at constant pressure or constant volume should
lead to similar results. Because the energy difference between

2475-9953/2020/4(6)/063609(12) 063609-1 ©2020 American Physical Society

https://orcid.org/0000-0002-8678-5173
https://orcid.org/0000-0002-9014-1725
https://orcid.org/0000-0002-4102-1348
https://orcid.org/0000-0001-7691-9708
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.4.063609&domain=pdf&date_stamp=2020-06-30
https://doi.org/10.1103/PhysRevMaterials.4.063609


RIFFET, AMADON, BRUZY, AND DENOUAL PHYSICAL REVIEW MATERIALS 4, 063609 (2020)

FIG. 1. Burgers path describing the bcc-to-hcp transformation path. The volume-conserving shear deformation in the [001]bcc direction is
the combination of a compression and a dilatation along [001]bcc and [11̄0]bcc (blue arrows), respectively. The hcp stacking is due to an atom
shuffling of

√
2a0/6 in the [11̄0]bcc direction (red arrows).

hcp and bcc phases is very small, beryllium could be seen as a
model material to highlight the role of deformation induced by
defects like dislocations to help the transition and its influence
on the transition pressure. In the following, all simulations are
performed at constant volume.

We emphasize that this study has been designed to under-
stand how dislocations facilitate the direct bcc-to-hcp transi-
tion and what consequences they have on the hcp microstruc-
ture, and subsequently how the hcp-to-bcc inverse transition
is impacted.

Through ab initio calculations we examine the bcc-to-
hcp-to-bcc pressure-induced martensitic transformation in Be
containing a lattice of screw dislocations. Two approaches
have been employed. The first one, so-called “shear-induced
bcc-to-hcp-to-bcc transformation,” consists of constraining
the supercell to follow the shear deformation of the Burgers
path at constant volume around the thermodynamic transition
pressure. In the second one, so-called “pressure-induced bcc-
to-hcp-to-bcc transformation,” the supercell follows an im-

FIG. 2. Static atomic energy curves (eV/atom) as a function
of atomic volume [bohr3/atom] associated to bcc (Im3m), hcp
(P63/mmc), and fcc (Fm3m) phases of perfect crystal Be. The
hcp lattice is fully relaxed following the procedure described in
Appendix A. The static energy differences (meV/atom) are reported
in the inset.

posed deformation in volume. For all calculations, the ABINIT

package was used [44,45]. The analysis of local strain, elastic
deformation, and local atomic order was performed using the
OVITO package [46]. Section II involves a description of the
computational methods employed: cell construction, compu-
tational details, and description of the bcc-hcp transformation.
An additional convergence study of the transition pressure
is reported in Appendix A. Section III contains the main
results and discussion. First, a transition pathway without dis-
locations (used as reference) is proposed and compared with
literature data. Secondly, we present a description of the core
structure of dislocations for both hcp and bcc phases. Thirdly,
we discuss the transition under either hydrostatic pressure or
uniaxial stress. Section IV is devoted to the conclusion.

II. METHODS AND PRELIMINARY STUDIES

A. Preparation of supercells

A nonorthogonal supercell with a quadrupolar arrange-
ment of dislocations is defined following Ref. [47]. This
arrangement was chosen for its ability to minimize the elastic
interactions between dislocations [48]. The Bravais vectors of
the supercell are defined by:

−→
C 1 = n/3[112̄],

−→
C 2 = −→

C 1/2 +
m/2[1̄10] and

−→
C 3 = 1/2[111] = −→

b , where the C1z and C2z
components are adjusted by choosing the integers m and n, in
order to ensure the periodicity of the bcc lattice. Only an even
number of atoms in the

−→
C2 direction is compatible with the

shuffle mechanism. The pairs (m = 17, n = 10) and (m = 30,
n = 18) are considered, thus leading to the construction of
supercells containing 170 and 540 Be-atoms. A dipole of

screw dislocations with antiparallel Burgers vectors (−−→
b

and +−→
b ) is inserted into the bcc crystal in an easy core

configuration using a quadrupolar arrangement. The volume
of the supercell is equal to V = a3

0(
−→
C1 ,

−→
C2 ,

−→
C3 ) where a0 is

the lattice parameter of bcc lattice and (
−→
C1 ,

−→
C2 ,

−→
C3 ) the triple

product between vectors. Volume changes are prescribed by
modifying a0, whereas strain are imposed through modifica-
tions of the Bravais vectors supercell, following a methodol-
ogy described in Sec. II C.

B. Computational details

The bcc-to-hcp martensitic transformation is pressure in-
duced and supposed to be athermal [49]. All calculations are
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performed at 0 K with the ABINIT 8.10.1 package [44,45,50].
The projector-augmented wave formalism [50] is used to
expand the wave function. The valence electrons Be : 1s22s2

and the Jollet–Torrent–Holzwarth [51] atomic data are used.
The energy cutoff for the plane-wave expansion is 20 hartree.
We use the Perdew-Burke-Ernzerhof exchange and correla-
tion energy. The electronic and ionic convergences are per-
formed for thresholds of 1 × 10−9 hartree for the energy and
5 × 10−4 hartree/bohrs for forces. A Gaussian smearing of
0.01 hartree is used. The simulation boxes containing screw
dislocations are 170 and 540 Be-atom supercells with periodic
boundary conditions as described above. 1 × 2 × 16 and 1 ×
1 × 16 k-point grids are used for the Brillouin-zone sampling,
respectively. Note that additional tests on the plane-wave
energy cutoff and k points are done to ensure the convergence
of the transition pressure (see Appendix A). The numerical
errors on calculated pressures, transition pressures, and total
energies are estimated to be less than 0.05 GPa, 0.5 GPa, and
0.03 mhartree/atom, respectively.

In order to calculate the elastic constants associated with
bcc and hcp lattices under high pressure and at 0 K, the stress
tensor components for small strains are calculated using the
method presented in Refs. [52,53]. The elastic constants are
calculated using the local-density approximation (LDA). 40
× 40 × 40 and 40 × 40 × 28 k-point grids are used for the
Brillouin-zone sampling for the bcc and hcp lattices, respec-
tively. The ionic convergence is performed for a threshold of
1 × 10−9 hartree/bohr. Unless otherwise stated, the conven-
tional two-atom cells of the bcc and hcp lattices are considered
at the generalized gradient approximation (GGA) transition
volume, (i.e., isoenergetic bcc and hcp): 23.177 bohr3/atom
at 0 K. The lattice parameters of the conventional hcp cell
fully optimized in LDA are a = 3.209 97 bohrs, c = 5.194 64
bohrs, and c/a = 1.618.

C. Shear-induced bcc-to-hcp transformation

Given a set of atoms in the bcc cell, we describe in this sec-
tion their positions during the bcc-to-hcp transformation as a
function of reaction coordinates for the shear deformation and
the shuffle, according to the Burgers mechanism illustrated
in Fig. 1 [12,18]. Let p be the position of a given atom; the
corresponding transformation reads p �→ U p + t (p), where U
is the stretch tensor associated with shear and t is the shuffle
vector. The expression of the tensor U , in the reference bcc
configuration, is defined as follows:

U =

⎡
⎢⎢⎣

3
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√
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+

√
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√
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where c/a is the lattice ratio of the hcp cell. The shuffle is a
translation that applies to one in two {110}bcc planes:

t (p) = 0 if U p ∈ {0001}hcp

t (p) =
√

2

6
Uu if not,

where u is a unit vector that gives the shuffle direction, i.e., the
〈11̄0〉 direction in the {110}bcc plane of interest. Depending

TABLE I. Variants obtained for the bcc-to-hcp transformation.

Variant Plane of shear Shuffle direction

0 (110) [11̄0]
1 (11̄0) [1̄1̄0]
2 (101) [101̄]
3 (1̄01) [1̄01̄]
4 (011) [011̄]
5 (01̄1) [01̄1̄]

on the initial {110}bcc plane, different specific orientations of
hcp, so-called “variants,” can be generated. Since the shuffle
direction is related to the shear mechanism, only the given
of U is relevant to identify a variant. Thereby, the method
described in Ref. [54] is used to reach all possible hcp vari-
ants. In practice, it consists of rotating the tensor U of a given
variant, using point-group symmetries of the bcc lattice. Six
distinct hcp variants are accessible from a unique bcc variant
(see Table I).

Intermediate states are obtained by a simple interpolation
which is governed by the two order parameters s and η, from
0 to 1:

p �→ [I + s(U − I )][p + ηU −1t (p)].

In this equation I is the identity tensor. The determinant of
I + s(U − I ) is not necessarily equal to 1 as written, hence
the transformation from this tensorial representation is not
isochoric. To study the transformation at constant volume, the
tensor I + s(U − I ) is normalized at each step with respect to
its determinant.

The couple (s, η) = (0, 0) corresponds to the bcc phase,
while (1,1) corresponds to the hcp phase. Additional calcula-
tions are done to study the effect of the c/a ratio. Only the con-
clusions are presented here. In the case of a dislocation-free
bcc phase, the minimum energy path characterized by the s
and η order parameters is marginally modified if one considers
the ideal (c/a = √

8/3) or calculated (c/a = 1.6175 at 405 GPa)
c/a ratio, the difference between these two paths being less
than 4 meV/atom. In the case of a bcc phase containing a
screw dislocation dipole and stating that the dislocation core
structure is unchanged after the complete transformation, a c/a

ratio close to the ideal value has been calculated (1.638 for the

variant 1 hcp at 254 GPa). For these reasons, only c/a =
√

8
3

is considered in this work to study the transition path of the
bcc-hcp transformation.

III. RESULTS AND DISCUSSION

A. Dislocation-free bcc-to-hcp transformation

To identify the minimum energy path (MEP) associated
with the dislocation-free bcc-to-hcp transformation, the
two-dimensional PES at different volumes depending on s and
η are calculated. The following lattice parameters (a0) for the
bcc lattice are considered: 3.592, 3.786, and 4.110 bohrs. The
associated pressures (before transformation) are equal to 395,
246, and 103 GPa, respectively. Only the energy surface for
which the bcc and hcp phases are isoenergetic (3.592 bohrs),
i.e., at the transition volume, is discussed in detail. For other
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FIG. 3. (a) A contour plot of the PESs as a function of shear (s) and shuffle (η) for a0 = 3.592, 3.786, and 4.110 bohrs, respectively. The
color scale corresponds to �E = E (s, η)–Ebcc (meV/atom). The white dotted curves show the MEPs. (b) Evolution of the energetic barrier
with the supercell volume. The values in the plots (a) and (b) correspond to the lattice parameter a0 (bohr).

a0, only the MEP is considered. The variant 1, with a (11̄0)
shear plane and a [1̄1̄0] shuffle direction, is considered in this
section, but using another variant would be equivalent due to
symmetry.

Figures 3(a) and 4 show the contour plot and the MEP
characteristics (energy barrier, pressure, and von Mises stress)
at the transition volume. The PES has two minima at (0,0) and
(1,1) corresponding to bcc and hcp, respectively.

The two dimensions of the PES are not commensurate in
our case (proportional to a shear angle for the x axis, and
proportional to a displacement for the y axis), so that the
gradient of the surface, ∇E (s, η), has no particular meaning.
We therefore choose not to use a gradient-based method (e.g.,
string method or nudged elastic band) for the MEP. Instead,
we define this path by imposing the shear (noted s), and
by minimizing, for every s, the shuffle η. This is consistent
with the hypothesis of a timescale shorter for the shuffle
evolution than for the shear one [20], as discussed in Ref. [55].
The simulations discussed in Sec. III D seem to confirm this
hypothesis.

The MEP can be decomposed in three stages. The first one,
for s from 0 to 0.42, is a step of pure shear. There is no shuffle
and the system energy increases from 0 to 26.18 meV/atom.
The pressure slightly increases by ∼1 GPa (394.82 to 395.81)
and the associated von Mises stress increases rapidly to
63.2 GPa. At this step, the intermediate structures are

distorted bcc lattices. The bcc-to-hcp transition is thereby
initiated by a pure shear deformation. This result is in
agreement with that of Lu et al. [11], which considers the
enthalpy surface at constant pressure in the α(bcc)-ε(hcp) iron
case. The partial shuffle at s = 0.43 initiates the second stage
which ends at s = 0.6. This step is associated with a pressure
increase (396 to 403 GPa) and a drop of the shear stress
(from 63.2 to 9.4 GPa) probably because 76.7% of shuffle
happens at this step. The transition state (TS) is reached for
s = 0.5 and corresponds to a local minimum of the von Mises
stress. During the third stage (s = 0.6–1.0), the coupled
shear-shuffle process occurs smoothly, and the associated
pressure is stabilized around 403 GPa, the maximum pressure
being reached at s = 0.8. The von Mises stress decreases
progressively from 37.1 to 16.4 GPa.

The MEP at a0 = 3.592 bohrs has an energy barrier
(�EMEP) of 33.19 meV/atom and the range of transformation
pressure (�PMEP) is equal to 8.5 GPa. The evolution upon
decompression of the energetic barrier is reported in Fig. 3(b).
�EMEP and �PMEP tend to decrease under decompression.
Indeed, for a0 = 3.592 → 3.786 → 4.110 bohrs, �EMEP and
�PMEP evolve as follows: 33.19 → 18.11 → 3.31 meV/atom
and 8.5 → 6.2 → 3.9 GPa, respectively. Benedict et al. calcu-
lated using DFT (GGA) an energy barrier of ∼23 meV/atom
at a0 = 3.699 bohrs (∼300 GPa) [42], which is in agreement
with our study. The existence of a barrier on the MEP around

FIG. 4. MEP characteristics of the bcc-hcp transformation at a0 = 3.592 bohrs and 0 K: (a) �E (meV/atom), (b) pressure (GPa), and (c)
von Mises stress, noted as σ VM [GPa] as a function of shear. The blue dashed lines delimit the three stages of the MEP (see text) and the red
circles indicate the position of the transition state.
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250 and 100 GPa (a0 = 3.786 and 4.110 bohrs, respectively)
shows that the bcc phase is metastable at 100 GPa (i.e.,
300 GPa lower than the transition pressure) with however
an important decrease in the transformation energy [from 0
to −57.09 meV/atom; see Fig. 3(b)]. Otherwise, we stress
that the bcc structure is mechanically stable: the calculated
elastic constants for the bcc lattice at a0 = 4.110 bohrs fulfill
the following mechanical stability criteria: C11 − C12 > 0 and
C33(C11 + C12) − 2C2

13 > 0 with C11 = 4.926, C12 = 3.467,
and C44 = 4.657 Mbar. From Fig. 3(a), we observe that the
energetic barrier maximum associated with the MEP is shifted
towards the low s and η values [(0.5,0.567) → (0.4,0.4) →
(0.25,0.367), respectively]. All the transformations can be
induced by a pure shear, with the shear to transformation
decreasing with decreasing pressure.

At the transition volume (a0 = 3.592 bohrs), the elastic
constants of the bcc and hcp lattices fulfill the mechani-
cal stability criteria mentioned above: (i) in the bcc lattice,
C11 = 13.830; C12 = 9.566; C44 = 9.188 Mbar, and (ii) in the
hcp lattice: C11 = 18.073; C33 = 23.490; C12 = 9.438; C13 =
5.412; C44 = 5.364; C66 = 4.317 Mbar. The Universal Elastic
Anisotropy Index [56], denoted AU , quantifies the degree of
anisotropy of single crystals (with AU = 0 for isotropic mate-
rials). AU is equal to 3.05 for the bcc lattice. This rather high
anisotropy index indicates that the results mentioned in the
next section could be altered by the dislocation arrangement
(here a quadrupolar arrangement), as discussed in the next
section. The Universal Elastic Anisotropy Index of hcp lattice
is nearly zero (Au = 0.06) as for ambient pressure hcp Be
[56], thereby indicating a nearly perfectly isotropic behavior
for the low-pressure phase.

B. Core structure of dislocations under high pressure

In this part, we describe the core structure of dislocations in
bcc and hcp supercells under pressure. Their roles during the
bcc-to-hcp-to-bcc transformation are presented in Secs. III C
and III D.

1. Bulk-cubic-centered phase

Figure 5 illustrates the elastic strain (obtained as the norm
of the Green-Lagrange elastic strain measure, as provided by
OVITO) at each Be atom in the relaxed bcc phase contain-
ing a screw dislocation dipole. The elastic strain magnitude

FIG. 5. Norm of the Green-Lagrange elastic strain, as defined by
Ovito [46] in the relaxed 540-Be-atom supercell at 396 GPa.

FIG. 6. (a) Differential displacement map on the (111) plane

at the screw dislocation core +−→
b for the 540-atom supercell at

396 GPa. The atoms of defect-free bcc crystals are represented by
circles and the color indicates the relative position of the successive
(111) atomic planes. (b) Notation used to calculate the polarization
index. (c) Evolution of the polarization index as a function of the
pressure (GPa) and the size of the supercell.

is maximal at the dislocation core and it decreases away
from the core. Although the shape of the dislocation core is
compatible with the trifold symmetry imposed by the {110}
gliding planes, the quadrupolar interactions between dislo-
cations modify the long range interactions, with noticeable
strain localization along [1̄10] that can alter the onset of the
transformation. This effect can be removed by using flexible
boundary conditions [57,58], but only for dislocation in a
homogeneous crystal and thus not for the onset of a phase
transformation with dislocations.

We investigated the equilibrium core structure of disloca-
tions in the bcc phase at 0 K and different pressures. The
differential displacement (DD, see for a definition Ref. [59])
map of the screw component, presented in Fig. 6(a) and
obtained after minimizing the energy with respect to atom
positions, reveals a strongly polarized core structure.

To quantify the polarization, we also calculated the polar-
ization index p [Figs. 6(b) and 6(c)]:

p= |d (AB)−d (AF ) |+|d (CD)−d (CB) |+|d (EF )−d (ED)|
|−→b |

,

where d(ij) represents the differential displacement along the
[111] direction between atoms i and j with respect to the
perfect bcc lattice. A fully symmetric (=compact) and an
asymmetric (=polarized) dislocation core are characterized
by p = 0 and 1, respectively. This polarization is plotted as
a function of pressure for the 170- and 540-atom supercells in
Fig. 6(c). At 427 GPa, p = 0.86 and increases with decreasing
pressure, reaching a full polarization (p = 1) at approximately
200 GPa. Interestingly, this evolution is strongly dependent on
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FIG. 7. (a) Differential displacement map (the atoms of the defect-free hcp crystal are represented by circles and the color indicates their
relative positions), and (b) adaptive common neighbor analysis [46] associated with one extended dislocation in the variant 5 for the 540-atom
supercell at 403 GPa.

the supercell size, with the 170-atom supercell giving stronger
p, a possible consequence of dislocations interaction.

Note that beryllium (this study) and magnesium [29], both
alkaline earth metals, have a strongly polarized core structure,
while a compact core structure is identified in many transition
metals such as Ta, Mo, Fe, W, V, Nb, and Cr using ab initio
calculations [60–64].

2. Hexagonal close-packed phase

In order to identify the core structure of dislocations in the
hcp phase, we apply for a0 = 3.592 bohrs the complete bcc-
to-hcp transformation (e.g., we use the variant 5 of Table I),
as described in Sec. II C, on nonrelaxed (compact core) and
relaxed (polarized core) bcc structures. Then, the obtained
structures are relaxed. In both cases, the dislocation core
dissociates in the basal plane into two partial dislocations of
type 1

3 〈11̄00〉hcp connected together by a stacking fault ribbon
(see Fig. 7), as previously observed in another study in the hcp
phase of Mg [65,66]. During the bcc-to-hcp transformation,
the shuffle has to be applied to one in two shuffle planes,
which is not possible for screw dislocations connecting these
planes through the lattice distortion. For ± 1

2 [111] screw dis-
locations, this limits the topologically acceptable transforma-
tions to variants n°1, 3, and 5 (see Table I) [67]. For these three
variants, a dipole of extended dislocations is observed.

Obtaining a basal stacking fault for the hcp dislocation
core from the initial bcc trifold core is an indication that
this structure is probably amongst the most stable one for
this phase. It is however important to notice that this core is
inherited from the initial bcc core and the Burgers path; both
could have influenced the selection of this particular structure.
Assessing the stability of all core structures would require a
dedicated study, as discussed for example in Ref. [68].

We apply the hcp-to-bcc shear deformation (same variant
as the dislocation-free bcc-to-hcp transformation) on the re-
laxed hcp structure containing a dipole of extended disloca-
tions. During the relaxation of this structure, the reverse shuf-
fle occurs and the core structure of the dislocations evolves
into the initial polarized core structure, thus demonstrating a

fully reversible behavior. This evolution is detailed for all the
range of shear components (s) in the next section.

C. Shear-induced bcc-to-hcp-to-bcc transformation

In this section, only the shear deformation is prescribed so
that both dislocation core structure and shuffle are outputs of
the relaxation. For the bcc-to-hcp transition, one important
aspect is that the dislocations could move during the relax-
ation when a low shear is applied due to the very low Peierls
stress of basal dislocations in hcp. In order to limit the effects
of elastic interactions on the energy barrier, we consider the
fully transformed bcc and hcp phases as a starting point for all
shears (for the direct and reverse paths, respectively) [69]. The
local structural environment of each atom is identified with
the adaptive Common Neighbor Analysis as implemented in
OVITO [46].

We apply a global shear deformation on the (11̄0) plane,
which favors the variant 1 (see Table I). The bcc-to-hcp trans-
formation is initiated at s = 0.27. Contrary to the dislocation-
free case in which the shuffle occurs homogeneously in the
supercell under shear, the variant 1 hcp nucleates between
the two dislocations at s = 0.27 [see the relevant snapshot
in Fig. 8(a)], with the corresponding shuffle. In this figure,
only the nearest lattice structures (hcp, fcc, or bcc) are plotted
without indicating the elastic lattice strain. The interfaces
between different phases are thus indicative only. Then, the
increase of s induces the propagation of hcp around dislo-
cations. The intermediate structure at s = 0.825 shows that
the propagation ends before full transformation, leaving a
zone around the dislocation core untransformed. The inverse
mechanism (nucleation and propagation) occurs during the
reversion (hcp-to-bcc), inducing a complete reconstruction
of the polarized dislocation core structure (see Sec. III B).
Finally, Fig. 8(b) shows that the direct and reverse pressure-
shear (or P-s) curves are not equivalent, which originates from
the fact that the nucleation starts in the direct and reverse
paths from dislocations of different natures, i.e., from trifold
symmetry dislocations in bcc for the direct path and from two
dislocation partials in hcp for the reverse path. In particular,
the intensities of shear induced by these two dislocations are
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FIG. 8. (a) Energy profiles (eV) associated with the bcc-to-hcp
transformation (blue) and its reversion (orange) with (blue and
orange) and without (black) dislocations in the 540-atom supercell.
Atoms are colored according to their local structural environment.
(b) Pressure (GPa) change during the bcc-to-hcp and hcp-to-bcc
transition processes.

different. The presence of dislocations slightly reduces the
variation of pressure during the transition by 0.6 GPa: from
8.5 to 7.9 GPa.

The energy barriers are reported in Fig. 8(a) as a function
of the shear intensity s. The bcc-to-hcp and hcp-to-bcc energy
profiles are similar despite some dislocation motions, in par-
ticular in the direct path. Although the energies of bcc and hcp
were equal without dislocations, the simulations [Fig. 8(a)]
show that the excess energy induced by dislocations is higher
(+0.715 eV/dislocation) for the hcp phase. This could be
explained by stronger elastic interactions, an effect that cannot
be easily quantified through our ab initio results.

To identify the strain that drives the transformation, we
calculated the local von Mises shear strain [46] at each atom.
The deformation induced by the dislocation adds to the im-
posed shear deformation from the Burgers mechanism. This

FIG. 9. P-V hysteresis of the bcc-to-hcp-to-bcc transformation
under homogeneous deformation for the 540-atom supercell. The
bcc-to-hcp and hcp-to-bcc transformations are in blue and red,
respectively.

creates important inhomogeneous shear regions that foster the
transition. Notably and interestingly, considering the MEP of
the dislocation-free case (see Fig. 3), no atomic shuffle is
visible when the shear is below ∼0.4. With dislocations, the
local shear appears to be larger than the imposed shear, so
that the atomic shuffle in those regions starts at lower imposed
shears [below 0.3, see Fig. 8(a)].

Our results thus prove that the dislocations foster the
phase transition. We focused on shear-induced transforma-
tions which obviously favored one variant. In what follows,
we study the transformation under pressure without the im-
posed shear from the Burgers mechanism. The variants nucle-
ate directly from the relaxation.

D. Pressure-induced bcc-to-hcp-to-bcc transformation

The P-V curve associated with the bcc-to-hcp transfor-
mation and its reversion are reported in Fig. 9. The starting
point is the bcc phase at 396 GPa (a0 = 3.592 bohrs). Then,
an increase in the a0 parameter decreases the pressure down
to 1 GPa (a0 = 4.740 bohrs). The transformation reversion
starts at 59 GPa (a0 = 4.300 bohrs) and ends at 396 GPa
(a0 = 3.592 bohrs).

First, the transition takes place with dislocations, whereas
it does not happen without dislocations. Secondly, a hysteresis
is observed on the P-V curve in the presence of dislocations.

Let us discuss the transition under decreasing pressure,
using Fig. 9: at 93 GPa, the bcc-to-hcp transformation starts
and occurs partially only. At 72 GPa, the transformation is
completed. As shown in the dislocation-free case in Fig. 3,
the energy barrier decreases (from 33.2 to 3.3 meV) when
the pressure decreases (from 395 to 103 GPa). Despite this,
the transformation did not take place spontaneously in the
dislocation-free bcc phase. Moreover, we observed that the
energy barrier maximum is shifted toward the low s (Fig. 3).
Here, the decisive point is that the shear deformation of
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FIG. 10. (a) Structural description of the phase at 59 GPa for the
540-atom supercell. (b) Schematization of this supercell: twin bound-
aries and other grain boundaries are in blue and orange, respectively.
Labels (1, 3, and 5) correspond to hcp variants as defined in Table I
and green lines correspond to the trace of the (0001) hcp variant basal
planes.

dislocations initiates the bcc-to-hcp transformation when the
energy barrier tends to disappear. The final structure has
three grains, corresponding to the three variants topologically
compatible with the dislocation orientation (see Fig. 10).
Some grain boundaries can be interpreted as twin boundaries
represented in blue in Fig. 10(b), as shown by the trace of the
(0001) hcp basal planes. Interestingly, Poschmann et al. [25]
also observed the coexistence of variants in titanium using
a large number of atoms and a semiempirical potential. We
obtain similar results despite a limited number of atoms but
using ab initio calculations.

Turning to the transformation reversion, it starts at around
120 GPa. The hcp-to-bcc transformation initiates at grain
boundaries and triple junctions, as shown in the intermediate
structure obtained at 215 GPa (Fig. 9). At 306 GPa, the
transformation is not finished but a bcc variant emerges. At
396 GPa, the reversion is completed and the final structure
is stabilized into the initial bcc lattice containing a small
inclusion of bcc, discernible through the non-bcc surrounding
atoms (in blue in Fig. 9), without any visible dislocation.

The hysteresis in pressure comes from the fact that the
microstructure produced at 72 GPa is particularly stable, and
it requires a very high pressure to transit into the bcc phase.

To understand the microstructure at 396 GPa, we calculated
the transformation gradient Fi by defining the displacement
as the difference between this final (reverted) state and a
defect-free bcc lattice. The Green-Lagrange deformation ten-
sors Ei = 1

2 (F T · F − I ), calculated for all atoms i, are then
compared to one of the 13 theoretical deformations Fr (with
r between 0 and 12) for reverted bcc (see Appendix B). For
an atom i, the best matching reversion index r is the argmin
of the distance d (r) = |Ei − Er |, with Er the Green-Lagrange

FIG. 11. Top: nearest deformation matrices represented in color
by their indexes and shades (distance to the transformation best
match). Atoms in black correspond to deformations absent of the
reversions list (e.g., the black horizontal line on the left part of the
figure, which corresponds to the deformation left by the destruction
of a dislocation dipole). The three main reversions (5 in purple, 8
in blue, and 10 in green) are arranged in a self-equilibrated zone, as
discussed in the main text. Bottom: a slice (highlighted in red in the
top view) shows that the inclusion is composed of two deformations
(teal and purple), but one single lattice orientation.

deformation of Fr . Figure 11 shows both indexes r and dis-
tances, the latter indicating the quality of the match, bright
colors standing for a short distance and thus a good match.
Surprisingly, the bcc inclusion is made of three zones, each
associated with a reversion matrix at an acceptable accuracy,
although only one crystalline orientation can be detected in the
inclusion. The triple junction where these three zones meet
(at the inclusion center in Fig. 11) corresponds to the grain
triple junction of the hcp basis (see Fig. 10), with a different
orientation for each grain. These vestigial deformations are
then the result of three complex transformation pathways,
which in the end turn out to lead to one single bcc orientation.
Determining the transformation path only by using the final
lattice orientation (e.g., from experimental results) thus proves
to be sometimes insufficient to establish the transformation
paths.

The transformation tensors associated with these reverted
zones have no volume deformation [det(Fr ) = 1], i.e., are
mainly of deviatoric nature. Since the deformations are impor-
tant (|E | ≈ 0.25), the question of their stability can be posed.
The reverted zones are spread over equivalent volumes, and
the average deformation for the inclusion Ẽ , approximated
by Ẽ = (E5 + E8 + E10)/3, is very small (|Ẽ | = 0.03). These
three reversion transformations are thus self-accommodating
and stable (in our calculation), at least at 0 K.
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IV. SUMMARY AND CONCLUSIONS

To better understand the mechanism by which bcc transits
towards hcp under high pressure, we have first analyzed the
dislocation-free bcc-to-hcp transformation. A simple tensorial
representation permits us to transform the square lattice into
a hexagonal one with no volume change. The atomic shuffle
restores the hcp stacking. We report a two-dimensional energy
surface depending on shear and shuffle as order parameters.
A decomposition of the minimum energy path in three steps
highlights, prior to complete transition: (i) a pure shear which
is characterized by a high increase in von Mises stress (up to
63.2 GPa), (ii) a sudden atomic shuffle during which the pres-
sure increases strongly, and (iii) a coupled shear-shuffle pro-
cess occurring smoothly with a stabilization of the pressure.
This transition, based on a homogeneous shear deformation
at each atom and a simultaneous atomic shuffle, cannot spon-
taneously occur because of the energetic barrier of 33.2∗nBe

meV, with nBe the number of Be atoms in the supercell.
We propose a study dealing with dislocations–bcc/hcp

transformation coupling. Two bcc-to-hcp-to-bcc transition
modes are investigated:

(i) The reversible shear-induced transformation at constant
volume

The elastic strain due to screw dislocations adds to the
shear deformation from the Burgers mechanism. The conse-
quence is that the shuffle occurs earlier under shear compared
with the dislocation-free case because of local concentration
of shear deformation. This results in a gradual bcc-to-hcp/hcp-
to-bcc transformation (nucleation and propagation) around
dislocations. Our results prove that the dislocations induce
unambiguously a decrease in the global energy barrier. In
the hcp phase, the screw dislocations dissociate in the basal
plane into extended dislocations. The parent bcc and the screw
dislocation core are regenerated after a complete cycle (bcc-
to-hcp-to-bcc). Only the variant compatible with the applied
shear deformation appears in the supercell.

(ii) The irreversible pressure-induced transformation
The dislocations clearly facilitate the bcc-to-hcp transfor-

mation because it happens spontaneously at around 90 GPa.
In particular, the shear deformation of dislocations allows
initiating the bcc-to-hcp transformation when the energy bar-
rier tends to disappear. Furthermore, this study demonstrates
that the screw dislocations impose a variant selection (ori-
entation, position). The obtained structures after complete
transformation have structural characteristics similar to those
of microstructures (grain, grain boundary, triple junction).
During the hcp-to-bcc reversion, the created defaults, i.e.,
grain boundaries and triple junctions, also become nucleation
sites for the bcc phase. Our analysis of the bcc child (after
reversion) proves that the transformation paths connecting the
final and initial lattice orientations can be more complex.

Our results also show that a supercell with 540 atoms
containing a dipole of screw dislocations can be used, despite
its reduced sizes, for an extended analysis of the coupling
between dislocations and bcc-hcp transformation. The reli-
ability of the ab initio calculations for beryllium, for both
dislocation core structure and the mechanism of phase trans-
formation, allows for a discussion about this coupling, without
adding the difficulty of the fitting of a molecular-dynamics
potential. From this point of view, these first-principles cal-

TABLE II. Convergence study of Ptrans in function of the plane-
wave energy cutoff and k-point grids.

k-point grid Cutoff energy (hartree)

bcc hcp 16 20 30 40

10 10 10 10 10 7 308 320a 326.5 328
20 20 20 20 20 14 388.5 414 412 413
30 30 30 30 30 21 383.5 408.5 406.5 407.5
40 40 40 40 40 28 380 405 403 404
50 50 50 50 50 35 379.5 404.5

aCalculated using the plane-wave energy cutoff of 18 hartree.

culations, and especially the microstructure induced by the
dislocations, are of high interest for bcc-hcp transformations
in general.
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APPENDIX A: TRANSITION PRESSURE
AND CONVERGENCE TESTS

We have assessed the impact of the plane-wave energy
cutoff and k points on the thermodynamic transition pressure,
noted as Ptrans. At 0 K, Ptrans corresponds to the pressure at
which the bcc and hcp enthalpies are equal.

We set the space group to Im3m for the bcc unit cell with
one atom (primitive cell) and to P63/mmc for the hcp cell with
two atoms (conventional cell). The hcp lattice is fully relaxed
at constant volume. The transitions pressures, defined by the
transition hcp-to-bcc for decreasing volume, are reported in
Table II. We have also checked that the fcc phase (Fm3m) is
never the most stable phase for all pressures (see Fig. 2).

Our convergence study shows that the 20-hartree and
40 × 40 × 40 grid parameters give a Ptrans value (405 GPa)
sufficiently converged. 405 GPa is used as reference to verify
that the 1 × 2 × 16 grid used for the 170-Be-atom supercell
is sufficient. A value of 406 GPa has been calculated for the
170-Be-atom supercell validating the convergence of data in
using the 1 × 2 × 16 grid. We have also studied the effect of
the c/a ratio on Ptrans for the Be two-atom cell (hcp structure)
and the 170-Be-atom supercell. In both cases, an ideal value

of c/a, i.e.,
√

8
3 , reduces the Ptrans value by 6 GPa.

APPENDIX B: CALCULATION OF THE
REVERSION MATRICES

The methodology used to generate the reversion matrices
from a martensitic transformation is presented in details in
Refs. [54] and [70]. We considered the Burgers transformation
U given in Sec. II C with a c/a ratio of 1.618. This transforma-
tion was then expressed in the frame used for the ab initio
calculations: [112̄]||x, [1̄10]||y, and [111]||z (this transforma-
tion is noted as Ū ). The point-group rotations Ri, bcc for the
bcc phase, in this latter basis, is used to generate all variants
hcp (defined by their transformations Ūi), starting from Ū , by
using Ūi = RT

i,bcc · Ū · Ri,bcc. The point-group rotations Rj, hcp
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of the hcp basis induced by a Burgers transformation (thus
expressed so that (0001)hcp||(1̄10)bcc and [2̄110]hcp‖[001]bcc,
with the bcc lattices defined after the rotation Ri, bcc) is used to
generate the reversions transformations: V̄j = RT

j, hcp · Ū −1
j ·

Rj,hcp · Ūi. Due to the transformation symmetries, only 6 for-
ward transformations are unique, leading to 13 (or 12+1) pos-
sible bcc orientations after reversion. Transformation strain
tensors for bcc variants are given in Ref. [70].
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