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Microscopic insights into the failure of elastic double networks
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The toughness of a polymer material can increase significantly if two networks are combined into one material.
This toughening effect is a consequence of a transition from a brittle to a ductile failure response. Although this
transition and the accompanying toughening effect have been demonstrated in hydrogels first, the concept has
been proven effective in elastomers and in macroscopic composites as well. This suggests that the transition is not
caused by a specific molecular architecture, but rather by a general physical principle related to the mechanical
interplay between two interpenetrating networks. Here we employ theory and computer simulations, inspired by
this general principle, to investigate how disorder controls the brittle-to-ductile transition both at the macroscopic
and the microscopic level. A random spring network model featuring two different spring types enables us
to study the joined effect of initial disorder and network-induced stress heterogeneity on this transition. We
reveal that a mechanical force balance gives a good description of the brittle-to-ductile transition. In addition,
the inclusion of disorder in the spring model predicts four different failure regimes along the brittle-to-ductile
response in agreement with experimental findings. Finally, we show that the network structure can result in stress
concentration, diffuse damage, and loss of percolation depending on the failure regime. This work thus provides
a framework for the design and optimization of double-network materials and underlines the importance of
network structure in the toughness of polymer materials.
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I. INTRODUCTION

Polymer networks, such as rubbers and gels, can undergo
large deformation without losing elasticity. This property
makes them ideal for numerous applications, for example, in
the biomedical field or in soft robotics. One of the factors
that limits their applicability, however, is the brittleness of
many polymer networks, which leads to inferior mechanical
performance, such as low fracture toughness and strength [1].
In recent years, several strategies have been developed to
toughen polymer networks by introducing dissipation mech-
anisms that delay crack propagation. One of the most suc-
cessful strategies relies on the combination of two different
polymer networks into one material, to create a so-called dou-
ble network. In particular, extremely tough double-network
hydrogels have been produced by interpenetrating a stiff and
weak first network with a soft and extensible second network
[2–11] [Fig. 1(a)]. Later, this toughening strategy was also
shown to be effective for multinetwork elastomers [12,13]
or macroscopic composites [14,15] [Fig. 1(b)]. This suggests
that the underlying principle that leads to toughening is not
strongly dependent on molecular details, but governed more
generally by an interplay between two mechanically different
networks.

The increase in toughness of double networks is re-
lated to a transition from brittle to ductile failure. This
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brittle-to-ductile transition (BDT) becomes apparent when
looking at the stress-strain response of double networks
subjected to tensile deformation, as schematically shown in
Fig. 1(c). In contrast to single polymer networks that typically
fail in a brittle fashion (blue curve), tough double networks
fail in a ductile manner with significant softening and plastic
deformation (leading to “necking”) prior to failure (yellow
curve) [13,16]. This macroscopic softening is believed to be
due to the progressive breaking of bonds in the stiff network
(which is also called the sacrificial network), while the soft
matrix formed by the second network stays intact. To obtain
tough materials, it is thus crucial that the rupture of the first
network occurs without leading to macroscopic cracks in the
material.

Several theoretical models have been proposed to explain
the toughness of double networks. The first of these are
due to Tanaka [17] and Brown [18] that describe failure
around a defect, such as a notch or a crack. They assumed
that a crack tip in the material is surrounded by a region
in which the first network breaks by forming microcracks
that are stabilized by bridging chains from the second net-
work. Later extensions of these models explicitly accounted
for the evolution of damage in the material and were able
to describe the hysteresis in the stress-strain response, the
progressive softening, and the Mullins effect [19–24]. These
phenomenological models assume that the stress field in the
material can be described by continuum mechanics, which
treats the material as a homogeneous elastic solid. However, it
is known that double networks contain large heterogeneities,
which play an important role in determining their mechanics
[25]. To understand how microcracks in the material nucleate
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FIG. 1. Double networks across the scale. (a) By combining a
sacrificial network that is stiff and weak (blue), with a matrix network
that is soft and strong (red), a (molecular) composite both stiff and
strong (tough) can be created. (b) Typical double networks are made
of elastomers [12] and hydrogels [2], but they can also be made in
the form of macroscopic composites [14]. (c) Schematic of a brittle
(blue) and a ductile (yellow) stress-strain response.

and propagate and to find a criterion that predicts the onset
of macroscopic failure, a model is needed that takes these
heterogeneities into account.

One way to go forward is to include molecular details,
for example, using molecular dynamics simulations [26–28].
However, given the computational costs it is difficult to do
this for large system sizes and to explore a large range of
parameters. Alternatively, statistical models, such as the fiber
bundle model, can give insight into the role of disorder on
network failure [29,30]. In such models, however, a priori
assumptions must be made about the (re)distribution of stress
among the different elements, so that they cannot explain the
spatial evolution of damage in the materials and its relation to
the structure of the networks.

Here, we develop a random double spring network model,
which explicitly takes into account disorder and the resulting
heterogeneous stress distributions. Rather than making as-
sumptions about the distribution of strain and stress in the ma-
terial, this distribution emerges naturally from the condition
of mechanical equilibrium between the different networks.
Because a network is included explicitly, the model provides
information on the failure process both at the macroscopic
and the microscopic levels. We demonstrate how this model
predicts a simple criterion for the BDT and we show how
the nature of this transition is influenced by disorder and the
resulting stress localization. We also compare our network
model to a simple one-dimensional (1D) multispring model,
which can be solved analytically.

FIG. 2. Minimal models for elastic double networks and their
failure response. The springs represent elements of the sacrificial
network (blue) and matrix network (red). (a) Multispring (MS)
model. (b) Random spring network (RSN) model. Simulations are
performed for networks of 50 × 50 nodes.

II. MODELS AND METHODS

The BDT is the universal mechanical feature of double-
network materials. In a brittle material, a small microcrack in
the sacrificial network directly leads to macroscopic failure.
On the contrary, a ductile material remains intact when mi-
crocracks develop. To describe this transition, we first present
a simple 1D multispring model, which is an extension of a
previously used two-spring model [24,31] and which can be
solved analytically [Fig. 2(a)]. While heterogeneity can be
included in this 1D model, it does not take into account the
network structure of the material and therefore cannot give an
accurate description of the stress distribution in the material.
We therefore consider a more realistic double random spring
model that does allow for a heterogeneous stress distribution
in the material [Fig. 2(b)].

A. Multispring model

In the multispring model (MS), the double network is
modeled as a series of elements, each consisting of two
parallel springs, one representing the sacrificial network (with
spring constant μS) and one representing the matrix (with
spring constant μM) [see Fig. 2(a)]. Each spring is assumed
to be a linear Hookean spring, so that the force acting on
it is given by Fi = μi�li, with �li the extension of spring
i. Removal of a sacrificial spring in an element leads to the
formation of a microcrack, which is bridged by the remaining
matrix spring. As the elements are connected in series, the
load on each element is equal. This force balance between the
elements implies

σ = (μM + μS )�lD = μM�lM, (1)
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where �lD and �lM represent the extension of the network
in the intact double network and in the matrix spanning the
microcrack, respectively, and where σ denotes the stress. The
overall strain of the system ε can be written as

ε = �lD(1 − φ) + �lMφ, (2)

where φ denotes the fraction of broken sacrificial bonds (i.e.,
the fraction of microcracks).

Rupture of a bond is assumed to occur instantaneously
when the extension of a spring �li exceeds its threshold λi.
In the absence of disorder, all sacrificial bonds have the same
threshold λS and all matrix bonds have the same threshold
λM . Brittle failure after formation of a microcrack occurs
when the bridging matrix bond reaches its threshold before
the other sacrificial bonds, while ductile failure occurs when
the sacrificial bonds reach their threshold first. From Eq. (1)
it immediately follows that the brittle-to-ductile transition oc-
curs when (μS + μM )λS = μMλM . We can therefore predict
which system parameters are required for a system at the BDT.
For example, the sacrificial bond threshold λ∗

S for which the
rupture force of a (matrix-reinforced) sacrificial bond is equal
to the rupture force of a matrix bond is given by

λ∗
S = μMλM

μS + μM
. (3)

More generally, we can define a parameter �α to quantify
the distance from the BDT:

�α = μMλM

(μM + μS )λS
− 1. (4)

If �α = 0, the system is at the BDT. Brittle failure occurs
for �α < 0; in this case, only one microcrack is enough
to cause global failure so the fraction of broken sacrificial
bonds at failure is φ f = 1/N with N the system size. Ductile
failure occurs for �α > 0, where all sacrificial bonds break
before the system fails globally, so φ f = 1. It follows from
this analysis that for ductile failure we need λS < λM , which
explains why the creation of tough, ductile networks requires
the sacrificial network to be much weaker than the matrix.

For a perfectly homogeneous system, the BDT in this
model is an abrupt transition. Experiments, however, show
that the descriptors of failure vary in a continuous manner
through the BDT [16]. We therefore introduce disorder by
assuming that the thresholds of the sacrificial network vary
according to a certain distribution P(λS ). All other parameters
are taken the same. In this case, the sacrificial bonds will fail
progressively, with the weakest bonds breaking first and the
stronger bonds breaking later. At a given strain ε, all sacrificial
bonds for which λS < �lD are broken. In the continuous limit
(for N � 1), the fraction of broken sacrificial bonds can thus
be written as

φ(ε) =
∫ �lD

0
P(λS )dλD. (5)

Here, we will consider a Gaussian threshold distribution
with mean 〈λS〉 and standard deviation δλ. For this case, it fol-
lows from Eqs. (1) and (5) that at the moment of macroscopic
failure (where �lM = λM), the fraction of broken sacrificial
bonds is given by

φ f = 1
2 [1 + erf(�α̃)] (6)

with

�α̃ = �α〈λS〉
δλ

√
2

(7)

a normalized parameter to quantify the distance to the BDT,
which takes into account the disorder in the thresholds. The
fraction of broken sacrificial bonds thus increases gradually
from 0 to 1 along the BDT and the parameter �α̃ sets
the steepness of this transition. With increasing disorder, the
transition becomes more gradual. The strain at break follows
from Eqs. (1) and (2):

ε f = λM

(
μM + φ f μS

μM + μS

)
. (8)

In the brittle regime (�α̃ � −1, φ f ≈ 0) we find ε f =
μMλM/(μM + μS ), while in the ductile regime (�α̃ � 1,
φ f ≈ 1) we have ε f = λM .

B. Random spring network model

Being a 1D model, the multispring model cannot ac-
count for stress heterogeneity and the resulting localization
of stresses. We therefore consider a random spring network
model (RSN) as shown in Fig. 2(b) composed of L × L nodes
arranged on a triangular lattice whose nearest neighbors are
connected by the same element we introduced for the multi-
spring model (L = 50 for all RSN simulations). Now, upon
applying an external load, stress concentration is possible
due to the topological restrictions imposed by the network
structure.

Following the experimentally found guidelines for making
tough double networks [2] we consider materials in which the
sacrificial network is stiff and weak, while the matrix is soft
and strong. This means that the elastic constant of sacrificial
springs μS is always higher than the one of the matrix springs
μM . We therefore vary the ratio of the stiffnesses such that 0 <

μM/μS < 1. To reflect the asymmetry in network strengths,
we fix λM = 4.0 and vary λS such that λS < λM . In all cases,
we keep the parameters of all matrix springs the same. To
implement disorder at the bond level, the failure thresholds λS

are picked from a Gaussian distribution as in the MS model.
Nodes at the bottom and top are fixed in the y direction, but
they can slide along the x direction. Along the x axis periodic
boundary conditions are implemented.

We characterize the mechanical response of the network
by applying an extensional strain ε along the y axis in small
steps of 0.1% strain. We consider quasistatic loading and
assume that the networks remain in mechanical equilibrium
at each step, i.e., it settles in its minimum energy state.
Therefore, after every step, the total energy of the network is
minimized by displacing the nodes using the FIRE algorithm
[32] with a tolerance of Frms � 1 × 10−5. Here, Frms is the
maximum root-mean-squared force allowed in the system
[32]. To simulate failure, we break all bonds which exceed
their failure threshold λi consecutively. After the failure of
every single bond, the energy of the system is minimized.
Once all overstretched bonds are broken, the next strain step is
determined according to the bond that is closest to its failure
threshold with a minimum step size of 0.001% strain.

063603-3



TAUBER, DUSSI, AND VAN DER GUCHT PHYSICAL REVIEW MATERIALS 4, 063603 (2020)

FIG. 3. Failure strain ε f versus the average failure threshold 〈λS〉
in systems with δλ = 0.250. Results are shown for the RSN model
(solid lines) and the MS model (dashed lines) for stiffness ratios
μM/μS = 0.10 (purple), 0.50 (green), and 1.00 (yellow).

For every strain in the simulations, the virial stress is
calculated from the forces exerted by the springs on the nodes.
As the system is elongated along the y direction, we consider
the yy component of the virial tensor as a measure for the
stress σ . We define the softening strain εsoft as the strain where
the stiffness drops below the initial stiffness, and the failure
strain ε f and failure stress σ f as the strain and stress for which
the system becomes disconnected along the y direction. For
every data point, 50 simulations are performed, and error bars
represent standard deviation.

III. RESULTS AND DISCUSSION

A. Failure regimes of double networks

The aim of this paper is to systematically explore the effect
of disorder and stress heterogeneity on the failure of double
networks, focusing especially on the role of the network. To
do this in a systematic fashion, we will extensively compare
the results of the random spring network (RSN) model with
the 1D multispring (MS) model lacking any network structure.

We start our comparison by checking a prediction from
the MS model for the dependence of the failure strain ε f ,
described in Eq. (8), on the sacrificial bond properties λS

and μM/μS in the presence of disorder (Fig. 3). Although it
is clear that both the MS model and the RSN model follow
the same trend, the overall trend is not immediately obvious.
Intuitively, it is expected that the failure strain should increase
with an increase in λS . However, only at the lowest stiffness
ratio, we see that the ε f increases with λS . At high stiffness
ratios, this trend is reversed. This transition is a consequence
of the brittle-to-ductile transition (BDT). From Eq. (4) it can
be deduced that an increase in λS brings the system from the
ductile into the brittle regime. The transition is not observed at
the lowest stiffness ratio because all those systems are already
in the brittle regime. Similar trends can be found for the
material strength and the work of extension (see Supplemental
Material [33]).

These results show that we can tune the failure response
based on the properties of the individual sacrificial bonds.

FIG. 4. Typical failure response of double networks obtained via
the RSN model. (a) The four distinct stress-strain responses: brittle
(B), quasibrittle (QB), the first ductile regime (D1), and the second
ductile regime (D2). (b)–(e) Corresponding failure patterns. Every
line represents a broken sacrificial bond, color coded according to
the strain at which it failed (see color bar above).

Taking a broader view at the entire stress-strain response of
the RSN, we can differentiate between four distinct responses,
shown in Fig. 4(a). There are two brittle responses, brittle (B)
and quasibrittle (QB), that can be distinguished by the (slight)
softening that occurs before macroscopic failure in the QB
case. There are also two ductile responses (D1 and D2) that
both show a clear plateau in the stress-strain response after
softening. In case of D1, macroscopic failure occurs within
this plateau. For D2, a second increase in the stress precedes
final failure. These same four responses are also found in the
MS model (see Supplemental Material [33]).

By contrast, at the microscopic level the failure behavior of
the RSN is distinct from the MS model. In Figs. 4(b)–4(e), we
plot the broken bonds of the sacrificial network color coded
according to the strain at which they break. We clearly observe
that the number of broken sacrificial bonds increases from B
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FIG. 5. Macroscopic mechanical phase diagrams in the (μM/μS, λS ) plane. Each panel corresponds to a different value of disorder δλ.
Symbols are pie charts color coded according to the frequency of the four fracture regimes [B (blue), QB (green), D1 (orange), D2 (yellow)]
observed from 50 independent simulations. The black line indicates the BDT according to the MS model. The dashed lines indicate the
B-to-QB transition (�α̃ = −2.5) and the D1-to-D2 transition (�α̃ = 2.0) in the MS model (see Supplemental Material [33]).

to D2 type of fracture. In B, all broken bonds are part of a
single crack at the location where macroscopic failure occurs.
A similar pattern is observed for QB, where, however, more
bonds fail homogeneously throughout the sample before the
final crack appears. It is the failure of these bonds that causes
the softening observed in the QB stress-strain response. The
ductile regimes are characterized by many bonds breaking
simultaneously. Such avalanches occur over a large strain
range, from the moment of softening until macroscopic fail-
ure. In case of D2 fracture, all the nonhorizontal bonds of the
sacrificial network, which are the elastically active bonds, are
broken. In the MS model we can not differentiate between
failure patterns because the load is homogeneous throughout
the system, so that stress can not concentrate and damage will
always be homogeneous.

We note that both the RSN model and the MS model
capture the four different mechanical responses observed in
experiments on elastomers [13], hydrogels [2], and macro-
scopic composites [14,15]. The clear difference in fraction
of broken sacrificial bonds between (quasi)brittle and ductile
responses is also well established experimentally [13,16].
Furthermore, the softening response, which is irreversible
both in our model and in the experiments, is attributed to early
damage of bonds in the sacrificial network [22] which has
been shown to occur homogeneously throughout the network
well before macroscopic failure [13]. Finally, also a plateau in
the stress response is typically observed in experiments after
the yielding of the material, often accompanied by a necking
region where only sacrificial bonds break [13]. We conclude
that both the RSN and MS models represent a minimal yet
insightful model to study fracture in elastic double networks
both at the macroscopic and microscopic levels and, therefore,
we can proceed to a more detailed analysis.

B. Macroscopic characterization of the failure regimes

The results in Fig. 3 clearly demonstrate the dependence of
the failure response on the properties of the sacrificial bonds:
〈λS〉 and μM/μS . To study the joined effect of these properties
together with the disorder in the failure threshold (δλ), we
construct phase diagrams of the failure response (Fig. 5)
based on the four different regimes described above (see
Supplemental Material [33]). For each point in the diagram
we use a pie-chart symbol indicating the frequency of the four

different regimes observed over 50 independent simulations.
We first focus on the case with no disorder δλ = 0, shown
in Fig. 5(a), and observe that both μM/μS and λS control the
sharp transition from the BDT. Also, the BDT of the RSN
model coincides with the BDT of the MS model [Eq. (4)] as
indicated by the black line.

Next, we consider the cases with disorder, plotted in
Figs. 5(b) and 5(c), and observe the appearance of the in-
termediate regimes QB and D1. These two regimes appear
around the BDT and upon increasing disorder δλ progres-
sively span the entire explored parameter space, which is a
clear indication that disorder controls the position of these
transitions. In addition, the transitions between the regimes
are less sharp when the disorder is larger, as testified by the
less homogeneously colored pie-chart symbols. Indeed, the
mechanical responses of networks with large δλ depend on
the exact realization of the network (exact distribution of
threshold values and their spatial organization), even when
having the same μM/μS and 〈λS〉, especially around bound-
aries between different regimes. A similar dependence of
the location of the B-to-QB and D1-to-D2 transitions on
disorder is also predicted by the MS model (dashed lines,
see Supplemental Material for further information [33]). At
low disorder, the location of the boundaries corresponds well
between the models, but at high disorder the boundaries move
away from each other. This comparison reveals that the type of
load sharing (equal load sharing in the MS model or network
controlled load sharing in the RSN model) is not essential for
the occurrence of any of the four regimes. Nevertheless, the
stress redistribution via the network does affect how far from
the BDT these regimes occur. Furthermore, disorder clearly
plays an important role also in the experimental systems since
QB and D1 responses are typically observed experimentally
and we show that these occur only in presence of disorder.
Our results confirm that knowing the average value of the
bond strengths might not be enough to predict the failure
regime, in agreement with recent phenomenological models
aiming to capture softening and the Mullins effect in double
networks [22].

C. Failure at the microscopic level

In the previous section, we found that the macro-
scopic force balance reasonably captures the transition from
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FIG. 6. Rescaling of the fraction of broken bonds φ f . (a) The
fraction of total broken bonds φ f obtained in simulations of RSN
is plotted against �α, which quantifies the distance from the BDT
predicted by the equal load-sharing models. (b) φ f from RSN versus
�α̃. The dashed black line indicates the theoretical prediction for
φ f according to the MS model [Eq. (4)]. In the RSN model, only
the vertically aligned bonds are expected to break, therefore, the
prediction of the MS model is multiplied by a factor 2

3 . The symbols
correspond to the λS value [see legend in (b)] color coded according
to the amount of disorder δλ [see legend in (a)]. Error bars indicate
standard deviation based on 50 configurations.

(quasi)brittle to ductile fracture in the RSN model and that
disorder influences this transition. Furthermore, we have seen
in Figs. 4(b)–4(e) that as long as some disorder is present,
distinct failure patterns develop in the RSN that suggest a
tight link between the macroscopic and microscopic failure
process. In this section, we explore several indicators of
microscopic failure in disordered RSN systems, with a special
focus on stress heterogeneity, and we consider to what extent
the force balance influences the microscopic failure processes
in double networks.

1. Fraction of broken bonds

The first parameter we explore is the fraction of broken
sacrificial bonds at final failure φ f , as we have a direct
prediction from the MS model. In Fig. 6(a), we plot φ f as
a function of �α, the distance from the BDT as introduced
in Eq. (4) for various amount of disorder δλ. Clearly, we
see a strong increase in the number of broken bonds upon

going from the brittle to the ductile regime. For δλ = 0
we observe that all data points collapse on a step function
exactly at the BDT, �α = 0. When disorder is introduced, the
transition becomes more gradual, corresponding to the shift
of the B-to-QB and D1-to-D2 transition in Fig. 5. We can
understand these effects by pointing out that both weak and
strong bonds are introduced due to the spread in sacrificial
bond strength. For �α < 0, φ f is increased by the disorder
due to the presence of weak springs that break before brittle
failure occurs. Similarly, for �α > 0, φ f decreases due to
disorder that introduces bonds that are too strong to break
before the matrix fails.

According to the prediction for the MS model in Eq. (6) we
can collapse all these data on one master curve for all values of
λS , μM/μS , and δλ, if we consider the rescaled distance to the
BDT: �α̃. Indeed, we obtain a good collapse for φ f , as shown
in Fig. 6(b). However, there is a significant increase in φ f in
the brittle regime relative to the prediction of the MS model
(dashed line) (see Supplemental Material [33]). This could be
an indication that the load sharing via the network enhances
the failure of sacrificial bonds, however, we can not exclude
that the discrepancy is due to a finite-size effect.

2. Stress concentration in the spring network model

In the MS model it is assumed that stress is distributed
homogeneously throughout the entire system, even after fail-
ure of sacrificial bonds. Hence, stress can never concentrate
within the MS model. In the RSN model stress concentra-
tion is possible and therefore it can be used to study the
nucleation and propagation of failure in double networks. It is
fascinating that this fundamental difference between the MS
model and the RSN model does not result in big differences
in macroscopic failure or the fraction of broken sacrificial
bonds.

Interestingly, a second look at the type of sacrificial bonds
that break does reveal a striking difference between the MS
model and the RSN model caused by the concentration of
stress. By construction, in the MS model sacrificial bonds
break in the order of their strength, from weak to strong, until
a certain threshold λ∗

S [Eq. (3)] is reached and macroscopic
failure occurs. At this threshold λ∗

S , the force required to
break a (matrix-reinforced) sacrificial bond is equal to the
force required to break a matrix bond. How λ∗

S influences the
failure of bonds is further illustrated in Fig. 7(a) for a system
below the BDT (�α̃ = −0.7, μM = 0.4, and 〈λS〉 = 1.4). For
this system λ∗

S = 1.14, so in the MS model only weak bonds
with λS < 1.14 would fail. However, in the RSN model we
see that sacrificial bonds stronger than λ∗

S also break [see
Figs. 7(b) and 7(c)]. In particular, in Fig. 7(d) we plot the
fraction of broken strong sacrificial bonds φstrong, f (i.e., bonds
with λS > λ∗

S that break) as a function of the distance from the
BDT �α̃ for various amounts of disorder δλ. At low δλ and far
below the BDT, failure of strong sacrificial bonds is required
in order to achieve macroscopic failure since there are just
not enough weak sacrificial bonds [Fig. 7(b)]. However, upon
approaching the transition at �α̃ = 0, φstrong, f grows, even
though a decrease could be expected based on the total con-
centration of strong sacrificial bonds [Fig. 7(c)]. Interestingly,
we observe a maximum in φstrong, f before fully entering the
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FIG. 7. Development of stress heterogeneity and stress concentration during deformation. In all subpanels, 〈λS〉 = 1.4. (a) Distribution of
λS for a system with 〈λS〉 = 1.4 and �α̃ = −0.7. At λ∗

S the force required to break a sacrificial bond is equal to the force required to break a
matrix bond. Thus, if λS < λ∗

S a sacrificial bond is weaker than the matrix bonds (dark gray) and if λS > λ∗
S a sacrificial bond is stronger (light

gray). (b) Comparison of total fraction of weak bonds that align with the deformation field and the fraction of weak bonds φweak, f that failed
during deformation versus �α. (c) Similar comparison for the total amount of strong bonds and broken strong bonds φstrong, f . (d) φstrong, f versus
�α̃ for different δλ. Error bars indicate standard deviation. (e) Development of 	, defined as the difference between the rupture threshold λS,fail

of the failing sacrificial bonds and dlaff , the extension of the bonds if the strain field were homogeneous throughout the system, as a function of
strain for a network with �α̃ = −0.7, 〈λS〉 = 1.4, and δλ = 0.250. The four intervals are described in the text. The average (line) and standard
deviation (shaded area) are calculated from a histogram of λS,fail − dlaff over 50 simulations accumulated over bins of 2.5% width. The dashed
black line indicates the prediction for 	 according to the MS model.

ductile regime �α̃ > 0 where mostly weak sacrificial bonds
control the fracture process. Strong bonds can only break
if the force they carry exceeds the maximum force that is
expected based on the macroscopic force balance. Thus, we
conclude that the network structure plays a crucial role in
(re)distributing the load during deformation, giving rise to
stress concentration. The development of stress heterogeneity
is tightly bound to the disorder that is present in the ini-
tial structure. We expect that by including more (structural)
disorder in the initial network (e.g., inhomogeneities in the
connectivity of the nodes, a disordered spatial distribution
of the nodes, or a distribution in the stiffness of the bonds)
the stress heterogeneity would become even larger [34]. As a
consequence, we would expect significant broadening of the
QB and D1 phases with respect to the prediction from the MS
model.

Because in the RSN the initial structure is homogeneous,
stress concentration does not occur from the onset of deforma-
tion, but develops during deformation as bonds are ruptured.
We can quantify this development via the difference between
the failure threshold of a broken sacrificial bond λS,fail, a
measure for the actual local extension, and the extension
estimated from the global strain assuming all deformations
are affine, dlaff . We therefore define 	 = λS,fail − dlaff . To
compare with the MS model, it must be noted that in this
model the stress is homogeneous, but the strain field is not. In
fact, the microcracks take up additional strain to compensate
for the absence of the sacrificial network. This means that the
deformation of the remaining sacrificial bonds is less than the

affine strain, so that 	 is always smaller than 1 in the MS
model [see dashed line in Fig. 7(e)]. If at any time 	 > 0,
stress concentration must therefore be present.

This analysis reveals different modes of stress concen-
tration during the failure of a RSN system as shown in
Fig. 7(e). At first nothing breaks, this regime coincides with
the reversibly elastic regime found at the macroscopic level
(regime A). Then, sacrificial bonds start to break exactly as
predicted by the affine deformation. Here, both the average
stress concentration 〈	〉 and its variance are zero (regime
B). Upon further increasing the deformation, the variance
of 	 starts to grow indicating stress heterogeneity in the
system, quickly followed by an increase of 〈	〉 indicating
stress concentration (regime C). As a result, strong sacrificial
bonds also start to break and failure of weak sacrificial bonds
is postponed or even prevented (see Supplemental Material
[33]). Finally, we arrive at a peak in 〈	〉, after which the 〈	〉
decreases until macroscopic failure is reached (regime D). We
attribute this decrease to structural relaxation of the sacrificial
network via the formation of microcracks, leading to loss of
rigidity and eventually loss of percolation in the sacrificial
network. It must be noted that the variance in 〈	〉 remains
constant, indicating that heterogeneity in stress is present until
the final failure event.

3. Crack development and stress delocalization

The development of stress heterogeneity and stress con-
centration during deformation is the result of microscopic
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FIG. 8. Evolution of diffuse damage. (a) Fraction of broken sacrificial bonds not belonging to the largest crack (φdiff ) as a function of strain
ε for different combinations of parameters below (�α̃ < 0) and above (�α̃ > 0) the BDT. Corresponding failure patterns in the sacrificial
network are also shown, with purple bonds belonging to the largest crack and green bonds to diffuse damage. (b) Normalized diffuse damage
at final failure φdiff, f as a function of �α̃ for different disorder δλ. Points are averages and error bars indicate standard deviation calculated
over 50 configurations. For all curves, 〈λS〉 = 1.4.

damage evolution in the sacrificial network: the nucleation
and propagation of cracks. We also suggested that the devel-
opment of stress concentration is tightly linked to the disorder
in the initial, undeformed, system. How crack nucleation
and propagation are influenced by both initial disorder and
stress heterogeneity during deformation is not trivial. We have
already seen that in the RSN model, not all sacrificial bonds
that break are part of the largest crack (Fig. 4). Thus, it seems
that stress can be delocalized away from the crack tip of the
largest crack throughout the system via diffuse damage. In
this section, we quantify the evolution of (micro)cracks in
the sacrificial network, focusing on diffuse damage and its
coupling with stress delocalization.

In Fig. 8(a), we plot the diffuse damage, quantified by
the fraction of broken sacrificial bonds (with respect to the
total number of initial sacrificial bonds) that are not part
of the largest crack φdiff as a function of strain ε for three
representative systems below, around, and above the BDT
(see Supplemental Material [33]). In the brittle case (�α̃ =
−2.9), φdiff barely increases and fracture occurs at smaller
strain. Closer to the BDT (�α̃ = −0.7), the diffuse damage
significantly increases, reaches a maximum, and just before
final failure slightly decreases. This decrease in the curve
indicates that microcracks merge into the largest crack that
eventually breaks the system [Fig. 8(a)]. Beyond the BDT
(�α̃ = 1.1), the diffuse damage reaches a higher maximum of
more than 15% of the total amount of sacrificial bonds before
a significant decrease that extends for a large strain interval.
Finally, φdiff reaches zero, indicating that all microcracks are
now merged in a single large crack or damage zone, well
before the final failure and all subsequent failing sacrificial
bonds join this large crack.

With respect to the global stress-strain response, diffuse
failure is expected to be most influential before the BDT. In
the ductile regime, broken bonds will eventually join to form
one large damage zone. However, in the brittle regime, many
bonds can break in a diffuse fashion without being part of
the largest crack, potentially diminishing stress concentration.
We therefore focus on the final ratio of the broken sacrificial
bonds belonging to the diffuse damage φdiff, f as an indicator

of stress delocalization and plot it versus �α̃ for various
amounts of disorder in Fig. 8(b). We observe a nonmonotonic
behavior with a peak slightly before the BDT. At the BDT,
φdiff, f drops drastically as all bonds eventually join the largest
crack. We conclude that just before the BDT, the diffuse
damage is maximum and therefore hypothesize that the crack
nucleation is delayed the most in this region. A consequence
of this delayed nucleation is the widening and branching
of the largest crack as shown in Fig. 8(a) (snapshot in the
middle). The widening of the damage zone in the sacrificial
network around a defect is often used as an explanation for
the enhanced fracture toughness in double-network materials
[2,18]. Although our simulations do not measure the fracture
toughness directly, our results suggest that widening of the
damage zone and therefore fracture toughness is maximal just
before the BDT.

D. Relating microscopic events to the macroscopic
failure regimes

The network and the heterogeneous stress distribution
emerging upon deformation clearly have a huge impact on
the microscopic failure mechanism. We have seen that which
microscopic failure mechanisms occur is controlled by the
distance from the BDT. In addition, we have observed that
these failure mechanisms can be connected to failure events
that occur as a function of the applied strain. Here, we will
unify our microscopic insights with the macroscopic failure
regimes described earlier based on the strain values at which
these events occur. These results are summarized in Fig. 9.

At the macroscopic level we identify two characteristic
strains: the softening strain εsoft, where the stiffness (dσ/dε)
drops below the initial stiffness [see Fig. 4(a)], and the failure
strain ε f where the system breaks in two pieces. At the
microscopic level we identify strain points of three distinct
events: the strain ε	,max corresponding to the maximum in
stress concentration [peak in Fig. 7(e)], the strain where the
diffuse damage is maximal εdiff,max, corresponding to the peak
in Fig. 8(a), and finally the strain where the (geometrical)
percolation of the network of sacrificial bonds is lost εperc (i.e.,
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FIG. 9. Characteristic strains corresponding to microscopic and
macroscopic events as a function of �α̃ (〈λS〉 = 1.4 and δλ =
0.250). ε	,max (purple triangles) is the strain at maximum stress
concentration [see Fig. 7(e)]. εdiff,max (pink circles) is the strain at
which the diffuse damage is maximal [see Fig. 8(a)]. εperc (gray
squares) is the strain at which percolation in the sacrificial network
is lost. εsoft (light gray downward triangles) indicates the onset of
softening in the stress-strain curve [see Fig. 4(a) and Supplemental
Material [33]]. ε f (dark gray stars) corresponds to final fracture. The
vertical lines indicate the transitions between the failure regimes in
the RSN estimated from the phase diagram in Fig. 5(b).

the top and bottom of the sacrificial network are no longer
connected).

B regime. In the brittle regime, far below the BDT, the
system deforms homogeneously and every microcrack imme-
diately develops into a macroscopic crack, leading to global
failure. Therefore, all failure events, both macroscopically and
microscopically, occur at the failure strain ε f .

QB regime. Approaching the BDT from below, we arrive at
the QB regime, where global failure is preceded by softening
in the stress-strain curve. The onset of this softening behavior
εsoft becomes distinguishable from the failure strain ε f around
the transition from B-to-QB. Interestingly, the softening strain
does not depend strongly on the distance from the BDT, �α̃

(Fig. 9). If we direct our attention to the microscopic level,
we see that the onset of softening coincides with the peak
in stress concentration 	 [Fig. 7(e)]. Also, for ε	,max we
only see a weak dependence on the distance from the BDT
(Fig. 9). Here, we would like to stress that even though the
softening strain is the first clear macroscopic sign of failure,
it is not the strain at which the first bonds break. Actually,
a significant amount of (weak) bonds break homogeneously
throughout the system before the softening strain. However,
the creation of these microcracks does not have a big effect
on the stress-strain response because the bonds surrounding
these microcracks absorb the released stress, leading to the
increase in stress concentration in Fig. 7(e). At the softening
strain, such a large amount of microcracks has been formed
that the system can release (a part of) the stress caused by an
applied strain via structural relaxation, i.e., the rearrangement
of nodes and springs, causing the softening in the stress-strain
curve in Fig. 4(a) and the drop in 	 in Fig. 7(e). Also after
εsoft, we mostly observe the creation of new microcracks or a
minor expansion of existing microcracks as indicated by the
strong rise of diffuse failure (Fig. 8). However, in the QB
regime, just before final failure, most of these microcracks

merge into one large macroscopic crack, leading to global
failure as is visible in the middle snapshot in Fig. 8.

D1 regime. After the BDT, the merging of microcracks
starts to occur well before system failure, as can be identified
from a peak at εdiff,max in the diffuse failure as a function of
strain [see Fig. 8(a)]. In the ductile regime, the merging of
cracks occurs at the same strain, as indicated by the fact that
εdiff,max is independent of the distance from the BDT. Even
though microscopic cracks in the sacrificial network start to
merge, this does not mean that the sacrificial network breaks
completely, i.e., loses (geometrical) percolation. In fact, in the
D1 regime for a system with sufficient disorder in λS , loss
of percolation in the sacrificial network only occurs around
the failure strain (Fig. 9). Thus, in a system with a network
structure such as the RSN, the criterion for entering the
plateau region in the stress-strain curve (Fig. 4) does not have
to be loss of percolation in the sacrificial network, but rather
the opportunity for structural relaxation within the sacrificial
network. This observation provides an alternative mechanism
with respect to what was proposed in literature, where loss of
percolation was thought to be necessary to enter the ductile or
necking regime [9,35].

D2 regime. In the D2 regime, the stress-strain curve enters
a matrix dominated regime after the plateau in stress [see
Fig. 4(a)]. Microscopically, this transition is marked by the
loss of percolation in the sacrificial network. From the loss
of percolation onward, the stress in the material is carried
by the matrix as is also apparent from the constant slope in
the stress-strain curve [Fig. 4(a)]. However, we also observe
that ε f continues to grow with increasing �α̃, until a plateau
is reached in the failure strain as we have observed earlier
in Fig. 3. The initial increase of ε f in the D2 regime shows
that although percolation is lost in the sacrificial network
and the matrix carries most of the stress, the sacrificial
network can still contribute to the mechanical properties.
Finally, we emphasize that during all these processes the
matrix network remains largely intact and only very close to
macroscopic failure the matrix bonds break (see Supplemental
Material [33]).

E. Connecting the model to experiments

In our model, we explored how stiffness (μM and μS) and
extensibility (strain at break of a single spring λM and λS)
of the individual networks influence the failure behavior of
double networks. Typically, in an experimental system, such
as a hydrogel or an elastomer, those parameters cannot be
tuned independently. For example, the stiffness is set by the
density of polymer chains [36] and the extensibility is set
by the length of these chains [37]. As a first approximation,
the volume fraction of monomers determines the density of
polymer chains, and thus the stiffness (μ), whereas the ratio
between the volume fraction of monomer and crosslinker
determines the chain length, and thus the extensibility (λ).
This is only an approximation because at high monomer
volume fractions, both intranetwork and internetwork entan-
glements will occur. These entanglements can act as effective
crosslinks, increasing the effective chain density and reducing
the effective chain length [38,39].
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Nevertheless, within this approximate mapping, we find
that experimental results for hydrogel and elastomer double
networks are qualitatively consistent with the predictions of
our model. For example, hydrogels show a transition from a
brittle to a ductile failure response if the volume fraction of
the matrix monomer is increased (i.e., an increase in μM in the
model, consistent with Fig. 5) [4,31]. Moreover, experiments
on hydrogels and elastomers reveal that an effective way
to make a tough double network is to swell the sacrificial
network [3,13,16,31], which prestretches the polymer chains
in the sacrificial network. The prestretching reduces the ex-
tensibility of the sacrificial network, which can be captured in
our model by decreasing λS . In agreement with experiments,
we observe in Fig. 5 that by reducing λS we can enter the
ductile failure regime. If the matrix monomers are used to
swell the network, both λS and μM/μS are affected, revealing
that the experimental swelling protocol ultimately determines
which regions of the phase diagrams in Fig. 5 can be explored.
Furthermore, our model shows that disorder tunes the macro-
scopic failure response away from the BDT, such as the B-to-
QB transition and the D1-to-D2 transition. In experiments, the
introduction of voids can be one method to introduce disorder
in a controlled way. For example, in Ref. [40] a shift in the
failure response is observed from D2 to D1 with an increase
in void size. In the context of our model, this corresponds to an
increase in disorder and can be explained as a decrease in �α̃

[Eq. (7)].
Finally, recent advances in mechanochemistry made it

possible to explore the failure response at the microscopic
level as well, revealing significant diffuse damage, even before
the yielding point (Fig. 7) [12,13]. In addition, scattering
experiments show evidence of the delocalization of stress by
probing the length scale of the nonaffine response [41] and the
expansion of microscopic defects [42]. In particular, Ref. [42]
suggests that a higher fraction of matrix monomer leads to
the creation of new microcracks instead of the expansion
of existing defects (Fig. 8). These observations fit within
our theoretical framework where the distance from the BDT
and disorder provide control over the microscopic failure
mechanism.

The current simulation framework can be extended to
increase the accuracy of its predictions for polymeric systems
such as hydrogels and elastomers. In particular, we expect that
the implementation of nonlinear springs will better represent
the nonlinear stress-strain response of finitely extensible poly-
mers and the redistribution of stress in a polymer network.
With such an extended model we could explore if nonlinear
elasticity enhances stress delocalization with respect to linear
elasticity and if this effect influences nucleation and propaga-
tion of microcracks.

IV. SUMMARY AND CONCLUSIONS

In this paper we studied both the macroscopic and mi-
croscopic failure behavior of double-network materials using
a spring network model (RSN) with emergent load sharing.
By comparing the results of the RSN with a model based on
equal load sharing, we reveal the following: (i) The location
of the BDT, defined on the basis of macroscopic stress-strain
behavior, is captured by a simple force balance. (ii) Disorder
introduces intermediate failure regimes but it can be incorpo-
rated in the parameter �α̃ to correctly describe the distance
from the BDT, allowing for rescaling of the number of total
broken sacrificial bonds. (iii) At the microscopic level, stress
concentration and delocalization reveal a markedly different
picture compared to global load sharing.

The overall picture that emerges from the RSN is that
the force balance, a central feature of double networks, has
significant control over both the macroscopic and microscopic
failure behavior, irrespective of how stress is (re)distributed.
By contrast, the nucleation and propagation of (micro)cracks
is also highly dependent on the mode of stress (re)distribution.
In particular, we have identified how stress concentra-
tion, diffuse damage, and loss of percolation are related
to the transitions from B-to-QB, QB-to-D1, and D1-to-D2,
respectively.

We highlight that, because many microcracks can form
before global failure due to the stabilization by the matrix, the
load sharing in double networks becomes highly nonlinear as
a result of the interaction between these microcracks. There-
fore, double networks provide a unique opportunity to exploit
these nonlinearities in microcrack interaction. For example,
this knowledge about the microscopic failure process could
aid the development of robust self-healing double networks,
as the healing of diffuse damage is easier than the healing of
macroscopic cracks [11,43,44].

By extending the RSN model, additional features of
double-network gel failure could be studied, such as the
influence of prestress or structural disorder in the sacrifi-
cial network. Furthermore, the introduction of disorder in
the matrix would allow to also study the enhancement of
strength and toughness, including the role of microscopic
failure. In conclusion, this paper demonstrates that a random
spring network model provides the opportunity to system-
atically study the microscopic failure process within double
networks.
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