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Spiraling crystallization creates layered biomorphs
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Biomorphs are micrometer-sized polycrystalline structures that, despite their inorganic nature, display
smoothly curved, life-like shapes. The edges of substrate-bound biomorph sheets are known to trace logarithmic
spirals and can be reproduced by reaction-diffusion fronts in subexcitable media where disrupted fronts shrink
tangentially. While freely rotating Archimedean spirals do not exist in subexcitable systems, our numerical
simulations show that pinning sites can stabilize the rotating front. This finding is confirmed experimentally for
biomorph systems that, around pH 11, produce both logarithmic and Archimedean spirals. The latter are pinned
to globular BaCO3 crystals and have a constant pitch in the range of 20 to 40 μm. Akin to screw dislocations, the
Archimedean spirals consist of multiple layers of constant height. Their front speeds on glass and pre-existing
biomorph substrate are essentially identical. We also report the detachment of intermittently pinned fronts at
highly curved features of the pinning site.
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I. INTRODUCTION

Spiral shapes are a common and often striking pattern in
nature with examples including the closely packed seeds in
sunflowers, mollusk shells, cyclones, and spiral galaxies [1].
In materials science and crystallography, spirals occur as
screw dislocations, which during growth or dissolution trans-
form into rotating front patterns. These chiral defects have
been modeled by a variety of theoretical approaches ranging
from the classical Burton-Cabrera-Frank description [2] to
models employing kinematic, Ginzburg-Landau, and phase
field equations [3–8]. Cartwright et al. [9] discussed this
broader type of crystal growth in terms of excitable media
and emphasized specifically in the context of nacre biomin-
eralization [10] similarities to spiral waves in chemical and
biological reaction-diffusion systems, such as the CO oxida-
tion on Pt surfaces, the autocatalytic Belousov-Zhabotinsky
(BZ) reaction, and cardiac tissue [1]. These excitable systems
can sustain nonlinear waves of constant speed that in head-on
collisions show no interference but rather annihilate. In many
cases, they also allow the formation of rotating vortices. The
wave fronts of these patterns trace Archimedean spirals [11],
i.e., spirals of constant pitch, and the free wave end in the
spiral center describes circular (or cycloidal) trajectories.

Recently our group investigated the applicability of non-
linear reaction-diffusion models to an intriguing type of crys-
tallization process that generates smoothly curved shapes
such as leaflike sheets, helices, funnels, and coral-like struc-
tures [Fig. 1(a)] [12,13]. These typically micrometer-sized
“biomorphs” are entirely inorganic and spontaneously form
when an alkaline solution containing silicate ions and Ba2+,
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Sr2+, or Ca2+ is exposed to atmospheric CO2 or carbonate
ions [14–18]. The smoothly curved structures consist of a
multitude of locally coaligned nanorods [Fig. 1(a), inset],
which create a hierarchical order spanning from the nano-
to the microscale and in the cases of aggregating [19] or
carbonate-controlled biomorphs [20] even to length scales of
several millimeters. The detailed growth mechanism of these
polycrystalline aggregates is still unclear, but likely involves
the formation of nanodots in solution followed by their at-
tachment to the growth front and subsequent transformation
to nanorods [21]. The latter consists predominantly of metal
carbonate (e.g., witherite) with silicon-species generating de-
tectable crystal strain [22].

Biomorph sheets are typically substrate-bound [12], about
1 μm high [23], and nucleate from metal carbonate crystal-
lites that are often reminiscent of dumbbells measuring 5–15
μm in diameter [24]. These globules form at interfaces or
in solution from which they eventually sink to the base of
the container (typically glass or plexiglass). Sheets nucleate
at the globule-substrate border and then expand as thin disk
segments. The corresponding growth front is a curve that
starts and ends at the globule. These points move along the
globule border in different directions, but can detach creating
a point defect that brings about a transition from an active to
a stalled front. Differences in the shape of the globules and
the relative time and distance of defect creation determine the
shape of the resulting leaflike sheet [12].

In many cases, the edges of biomorph sheets trace loga-
rithmic spirals that result from the local stalling of the crys-
tallization front [Fig. 1(b)]. This propagation failure can be
understood in terms of subexcitable reaction-diffusion media
in which fronts with an open end shrink while continuing to
move forward [Fig. 1(c)]. Notice that in an excitable system,
open wave ends undergo tangential front expansion and ini-
tially straight front segments curl into rotating Archimedean
spirals [Fig. 1(d)] [25]. For an initially planar wave, shrinking
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FIG. 1. (a) Scanning electron micrograph (SEM) of a biomorph
sheet formed during the crystallization of BaCO3 from solutions con-
taining silicate. Inset: Nanorods on the sheet surface visualized by
SEM. Scale bars: 50 μm and 200 nm (inset). (b) Optical polarization
micrograph of sheets with logarithmic spirals (dashed lines) fitted to
four biomorph edges. Scale bar: 50 μm. (c,d) Numerical simulation
of the open end of a reaction-diffusion wave under subexcitable
(c) and excitable (d) conditions. Several snapshots of the traveling
waves are superposed. The red lines are the trajectories of the open
wave end. Model parameter a: (c) 0.64 and (d) 0.72.

motion creates linear defect trajectories, whereas for initially
circular fronts, the trajectories are logarithmic spirals. Using
a simple two-variable reaction-diffusion model (the Barkley
model [26] without recovery), we numerically simulated these
dynamics and obtained structures that closely resemble the ex-
perimentally observed shapes [12]. Closed front curves (e.g.,
circles) steadily expand in both excitable and subexcitable
systems.

Here we report observations of Archimedean spirals in the
biomorph system. These rotating spirals are pinned to glob-
ules and-similar to screw dislocations-generate multiple sheet
layers. The existence of these crystallization vortices raises
the question whether pinned Archimedean spirals can exist in
subexcitable systems or whether our new observation voids
earlier interpretations of biomorph growth in terms of non-
linear reaction-diffusion models. We address this question by
performing numerical simulations based on the full Barkley
model and interpret multiple excitation events as the forma-
tion of multiple sheet layers. We find that pinned Archimedean
spirals indeed occur under subexcitable conditions and char-
acterize the minimal pinning radius that prevents detachment
and defect nucleation. Our results provide additional evidence
for the interpretation of the smoothly curved biomorph sheets
as the result of nonlinear reaction-diffusion processes.

II. EXPERIMENTAL

Biomorphs are grown from aqueous solutions in Petri
dishes (diameter 35 mm) containing small glass plates as re-
movable sample substrates. All experiments are performed at

room temperature. The initial concentrations of barium chlo-
ride and sodium silicate are 5.0 mM and 8.4 mM, respectively.
The initial pH is set to a desired value by addition of a few
drops of HCl solution. The Petri dishes are covered with their
lids, but are not sealed. Four hours after sample preparation,
we start monitoring the growth of the microstructures using
an inverted optical microscope (Leica DM IRB connected to a
Nikon D3300 camera) at a magnification of 40×. This optical
microscopy utilizes simple bright-field illumination with or
without two polarizing filters. The latter reveal the local
orientation of the birefringent nanocrystals as color variations
(the background color results from stress patterns in the plastic
Petri dish). Image sequences are recorded at 12 frames/min.
All data are analyzed using in-house MatLab scripts.

For scanning electron microscopy (SEM) and profilometric
measurements, the biomorph growth is stopped abruptly by
removing the glass substrates from the Petri dish. These
samples are then quickly submerged in a dilute NaOH solution
(pH 10). After 15 s, they are transferred to a water bath
and after an additional 15 s allowed to dry under ambient
conditions with two drops of acetone facilitating rapid dry-
ing. Surface heights are measured with a Dektak XT stylus
profiler. For SEM, the dried samples are coated with iridium
(layer thickness 6 nm) and transferred to a FEI Nova 400
field emission scanning electron microscope. Micrographs are
collected at an acceleration voltage of 10 kV and a spot size
of 2.5 nm.

III. MODEL AND NUMERICAL SIMULATIONS

Our simulations are based on the dimensionless Barkley
model [26]

∂u

∂t
= Du∇2u + ε−1u(1 − u)

(
u − v + b

a

)
, (1)

∂v

∂t
= u − v, (2)

where the system parameters ε, b, and Du are kept con-
stant at 0.02, 0.11, and 1.0, respectively, while a is varied
systematically. We integrate these model equations on a two-
dimensional lattice of 256 × 256 [280 × 200 in Figs. 1(c)
and 1(d)] grid points using explicit Euler integration and a
five-point stencil for the Laplacian. The grid spacing and
the integration time step are kept constant at 0.2 and 0.008,
respectively. Notice that this qualitative model aims to capture
the experimentally observed dynamics but the variables and
parameters are not easily matched with chemical species,
concentrations, or rate constants. However, we consider u to
represent the crystallization activity (possibly the associated,
autocatalytic drop in pH near the growth front) and

∫
vdt

to measure the amount (i.e., height) of the solid biomorph
product.

For simulations of ring-shaped annuli, two circular no-flux
boundaries are generated by phase fields [27,28]:

∂u

∂t
= ∇ log ψ · ∇u + ∇(D∇u)

+ 1

ε
u(1 − u)

(
u − v + b

a

)
. (3)
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Before integrating Eq. (3) numerically, we first obtain the
values of the phase field ψ . In practice, we set ψ to be 1
inside the ring-shaped annulus and 0 outside but integrate an
auxiliary diffusion equation of the form

∂ψ

∂t
= ξ 2∇2ψ + (2ψ − 1) − (2ψ − 1)3 (4)

to smooth the interface, where the width depends on the
controlling parameter ξ (here 0.05).

This phase field approach is also used for the leaf-shaped
heterogeneity in Fig. 6. In the example discussed here, its
specific shape is part of a hypotrochoid,

x = (Rh − rh) cos θ + d cos

(
Rh − rh

rh
θ

)
, (5)

y = (Rh − rh) sin θ − d sin

(
Rh − rh

rh
θ

)
, (6)

with Rh = 6, rh = 2, and d = 7 that is rescaled to a vertical
width equaling one-third of the system width.

IV. RESULTS

As the initial pH of the solution is increased from around
10 to 11, we observe an increase in the number of globules and
accordingly a decrease in their average shortest distance. Un-
der these conditions, globules do not only nucleate sheets but
are also likely to act as physical obstacles to their expansion.
This interaction between the moving growth front and the
globules causes dynamics—to be discussed in a subsequent
study—that induce multilayer growth; i.e., biomorph sheets
growing on preexisting sheets. In our experiments, we have
observed up to three, possibly four, layers. A typical example
involving three layers is shown in Fig. 2(a), where the local
number of sheet layers is indicated for a few locations. Fig-
ure 2(b) shows representative profilometric scans over three
different biomorph surfaces. The sheet heights vary around
the earlier reported average of about 1.1 ± 0.2 μm [23]. For
each given sample, we find that the first and second layers are
nearly identical in height.

Sheet-on-sheet growth also allows us to investigate po-
tential differences between the front speeds on glass and on
earlier formed biomorph surfaces. Such measurements are
of interest because the mechanism controlling the biomorph
thickness is not understood and could potentially involve
enhanced nucleation and/or aggregation of nanoparticles on
the substrate. Figure 2(c) shows superposed images of a
crystallization front propagating over a pre-existing stalled
front (dark nearly vertical line). The figure is generated by
computing the local minimal intensity from a set of six mi-
crographs (500 s between frames). In the case of a substrate-
dependent speed, the front should show refraction and obey
Snell’s law [29,30]. The data in Fig. 2(c), however, show
no significant deformations. To quantify this observation, we
measured the growth speed of glass- and biomorph-bound
sheets. Measurements were performed for initial solution pH
values of 10.8–11.0 and 4–8 h after the start of the reaction.
The resulting histograms [Fig. 2(d)] yield average front speeds
of 0.82 ± 0.07 μm/min (on glass) and 0.81 ± 0.08 μm/min
(on biomorphs). We hence conclude that the speeds, at least
for these two surfaces, have a negligibly small difference or

(a)

(c)

(e)

(d)

(b)

FIG. 2. (a) SEM image of a sheet structure with the local number
of vertical layers indicated (“0” being the glass substrate). Scale bar:
10 μm. (b) Linear height profiles across portions of three different
biomorph sheets. (c) Superposed optical micrographs illustrating the
motion of a growing sheet edge (dark bands) along a stalled, inactive
edge. Scale bar: 10 μm. (d) Histogram of front speeds on glass
(green, left columns) and pre-existing biomorph sheets (blue, right
columns). Dashed lines indicate the respective averages. (e) SEM
image of a two-layer sheet resolving differently oriented nanorods.
Scale bar: 2 μm.

are entirely independent of the substrate. The individual layers
of the resulting biomorphs have, in general, different nanorod
and crystallographic orientations that could induce interesting
optical features. An example of nearly perpendicular nanotex-
tures is shown in Fig. 2(e), where the nanorods in the upper
and lower layers are coaligned in the one and four o’clock
directions, respectively.

Although the speed of the biomorph fronts is the same on
glass and pre-existing sheets, growing edges can be affected
by sheet features in lower layers as well as other crystalliza-
tion products. Figures 3(a)–3(c) show a sequence of optical
micrographs recorded over the course of 29 min. Near the
image center is a globule with an average diameter of 12 μm.
In the upper, right image quadrant, we find a pre-existing
and stationary biomorph edge (green arrow). An active front
propagates nearly perpendicular to this edge and between
frames (b) and (c) stalls locally, creating a cusplike feature.
We observed this edge-induced stalling in numerous cases
[see also Fig. 2(c)] including situations where the stalled lower
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FIG. 3. [(a)–(c)] Sequence of optical micrographs of a pinned
crystallization spiral. (d) Superposition of seven consecutive snap-
shots (�t = 250 s) showing the same spiral. Colors indicate the local
arrival time of the growth front. Scale bar: 20 μm.

and stalling upper front were nearly parallel to each other.
More importantly for this study, Fig. 3 shows the evolution of
a pinned spiral. The rotating motion of this pattern is further
illustrated in Fig. 3(d) where seven snapshots, recorded at
250-s intervals, are superposed. The different colors indicate
the time of the front passage with blue and cyan being the
earliest. Notice that the spiral tip is attached to the globule
and traces its perimeter in the clockwise direction. The occur-
rence of clockwise and counterclockwise spirals appears to be
equally likely.

Rotating spiral waves are a common pattern in excitable
reaction-diffusion systems [1] and can either freely rotate or
be pinned to unexcitable heterogeneities [31–33]. Disregard-
ing anisotropic cases such as the CO oxidation on Pt(110)
surfaces [34], their fronts are well described by the involutes
of circles and Archimedean spirals. The former is the curve
for which all the normals are tangent to a fixed circle, whereas
the latter has a constant pitch (see Appendix). Archimedean
spirals and involutes of a circle deviate only near the core. In
Fig. 4, we compare the shape of pinned biomorph fronts to
these mathematical curves. A representative biomorph spiral
is shown in Fig. 4(a) and was obtained by optical polarization
microscopy. The local color variations result from different
orientations of the birefringent witherite nanorods (that are
individually not resolved). From this image, we determine
the front position (open markers) and replot the Cartesian
[Fig. 4(b)] and polar [Fig. 4(c)] coordinates (r, φ). The appro-
priate origin is determined by minimization of the root-mean-
square (rms) deviation of the experimental polar coordinates
and the best linear fit.

For the experimental data in Figs. 4(b) and 4(c), we then fit
an Archimedean spiral (blue line) and an involute of a circle

FIG. 4. (a) Micrograph of a spiral-shaped growth front. The front
coordinates are measured at numerous points (open circles). Scale
bar: 30 μm. (b) The blue and the dashed red curves are fits of
an Archimedean spiral and a circle involute to the growth front,
respectively. The circle of the involute is plotted in green. (c) The
same data and fits in polar coordinates.

(red dashed line). Both mathematical descriptions are in very
good agreement with the experimental data and the difference
between their respective rms deviations is too small to dis-
tinguish between these two very similar curves. The pitch of
the Archimedean spiral is found as λ = 30.6 μm. Figure 4(b)
also shows the (green) circle corresponding to the involute fit.
This circle has a diameter of 9.6 μm and should approximate
the boundary between the rotating crystallization front and
the pinning globule. The globule in the micrograph [Fig. 4(a)]
yields widths of �x = 9.0 μm and �y = 9.2 μm, which are
comparable to the circle diameter. However, we note that the
globule boundary deviates from a simple circle, which causes
a slightly different involute. Despite these complications, our
results clearly establish that the pinned crystallization fronts
are well described by spirals of constant pitch.

In the biomorph system, pinned Archimedean spirals al-
ways exist in the presence of logarithmic spirals. The latter
often demark the stalled, outer edges of a biomorph sheet,
although more complicated curves are also observed. In the
context of nonlinear reaction-diffusion systems, the formation
of these logarithmic spirals requires subexcitable conditions
for which freely rotating Archimedean spirals do not exist.
Accordingly, front pinning to globules is essential for the
coexistence of these two very different patterns. To investigate
whether pinned Archimedean spirals exist under subexcitable
conditions, we perform numerical simulations on the basis of
the spatially two-dimensional Barkley model which is very
similar to the FitzHugh-Nagumo model of neuronal activity.
The model involves an activator variable u and control vari-
able v. The parameters a and b define the excitation threshold
uthres = (v + b)/a that a local perturbation in u must over-
come to trigger an excitation event. Depending on the choice
of parameter values, it describes excitable or subexcitable
conditions with the latter occurring for small a and large
b values (i.e., high values of uthres). Under both conditions,
the model allows for all locations to be excited multiple

063402-4



SPIRALING CRYSTALLIZATION CREATES LAYERED … PHYSICAL REVIEW MATERIALS 4, 063402 (2020)

FIG. 5. Numerical simulations based on the Barkley model.
[(a) and (b)] Spiral wave interacting with a disk-shaped heterogeneity
under subexcitable conditions. The larger disk (a) creates a pinned
vortex, whereas pinning is unsuccessful for the case of a smaller
disk (b). The dotted lines show the front positions at earlier times.
(c) Systematic variation of the model parameter a generates subex-
citable (0.616 < a < 0.657) and excitable dynamics (a > 0.657).
Open triangles denote the critical radius of the disk below which
pinned state do not exist; open circles represent the core radius of
freely rotating spirals.

(infinitely many) times. In the biomorph system, each point
can only convert once to the solid product and, hence, these
multiple excitations need to be interpreted as the formation
of successive sheet layers. This interpretation is justified by
our finding of substrate-independent front speeds and the
negligible height-to-width ratio (0.1 or smaller) of biomorph
sheets. Notice that multiple excitations are impossible in
the framework of Ref. [12], which used the Barkley model
without recovery. In addition, we model the witherite globules
as static, impermeable, and inert regions. This assumption is
adequate considering the typical rotation periods of the pinned
biomorph spirals (20–50 min); however, we note that the glob-
ules occasionally expand during the rotation of the spirals.

Figure 5(a) summarizes the outcome of a numerical simu-
lation for subexcitable conditions. The active domain is ring
shaped with a central hole modeling the globule. The simu-
lation commences with an initial perturbation that triggers a
linear wave segment (extending in the six o’clock direction).
This wave segment begins to rotate around the globule in
the counterclockwise direction and transforms into a pinned
spiral wave. Figure 5(b) illustrates the outcome of a similar
simulation that differs from Fig. 5(a) only by the diameter
of the globule. For this smaller globule, the wave segment
is pinned for only half a rotation, then detaches, and finally
annihilates at the outer boundary.

The examples in Figs. 5(a) and 5(b) prove that pinned
spirals exist in subexcitable media and suggest that pinning
requires a sufficiently large globule. To further investigate this
size dependence, we performed simulations in which the ra-
dius R of the globule was slowly decreased. These simulations
reveal the existence of a critical pinning radius Rcrit below

FIG. 6. [(a)–(c)] SEM images illustrating the variability in the
shape of witherite globules. Scale bar: 2 μm. (d) Superposition of
optical micrographs showing the detachment of the leftward moving
crystallization front at a high-curvature feature of the globule (lower
left corner of globule). Time between frames: 125 s. Scale bars:
10 μm. (e) Numerical simulation of an initially pinned, clockwise
moving excitation front detaching at a high-curvature feature of the
pinning heterogeneity (white area).

which spirals do not pin. This pinning threshold increases with
decreasing values of the model parameter a [open triangles in
Fig. 5(c)]. The size of the critical radii is comparable to the
system-specific core radii Rfree of freely rotating spirals in the
nearby excitable parameter space (open circles). Notice that
Rfree diverges at a ≈ 0.657 (right vertical line), the bound-
ary between excitable and subexcitable systems. Our results
also indicate, that Rcrit diverges to infinity but at a smaller
bifurcation value (a ≈ 0.616) below which excitation waves
exist are not sustained. This divergence is further illustrated
by fitting the approximating function R(a) = A + B/(a − C)
(red curves) to the numerical results. These fits are also used
to estimate the bifurcation points between systems with no
wave propagation, subexcitable dynamics, and excitable be-
havior (vertical lines). We also verified that the results shown
in Fig. 5 are independent of the outer radius of the active
medium.

The pinning sites discussed so far are circular disks, but the
globules in the biomorph system often strongly deviate from
this simple shape. Figures 6(a)– 6(c) show SEM images which
illustrate this variability. The structure in Fig. 6(a) is close to a
typical dumbbell-shaped globule, which results from the suc-
cessive fractal branching of silica-poisoned barium carbonate
crystals [14]. However, the globules in Figs. 6(b) and 6(c)
are rather irregular, show long ridges, or are reminiscent of
framboids [24,35,36], although the globules typically do not
result from the aggregation of multiple crystals. The sharp
corners and highly curved features of these irregular globules
diminish the likelihood of crystallization fronts successfully
pinning to them. Figure 6(d) illustrates this effect for a rep-
resentative experiment. The figure superposes a sequence of
14 optical micrographs of a leftward moving crystallization
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front (lower image half) that is initially pinned to a witherite
globule (dark region in the center of the image). Once the
front reaches a sharp corner of the globule, it detaches cre-
ating an open front end that departs from the globule and
slowly shrinks. This phenomenon, i.e., the detachment of a
transiently pinned front at a point of high curvature, can be
reproduced by our simulations. Figure 6(e) shows an example
in which the irregular globule is modelled as a teardrop-
shaped region (white area). The front dynamics are illustrated
by superposing six snapshots of a clockwise rotating front.
When the front reaches the sharp tip of the anchoring site, it
detaches and transforms into a shrinking front with an open
end. The results of this simulation are in very good agreement
with the dynamics observed in the experiment.

V. DISCUSSION AND CONCLUSIONS

In this study, we have provided additional evidence that the
growth of biomorph microstructures is describable in terms
of nonlinear reaction-diffusion processes. We specifically ob-
served and characterized rotating spiral waves of constant
pitch. While these familiar patterns are known to exist in
systems such as the BZ reaction, Archimedean spirals had
not been described in the context of biomorph growth. The
subexcitable conditions of the biomorph system require that
these rotating crystallization fronts are pinned to unexcitable
objects. At elevated pH values around 11, such objects are
readily present in the form of witherite crystals. Future studies
could attempt to use lithographic techniques for the creation
of cylindrical posts as pinning sites. Control over the diameter
of these posts would allow the study of critical radii and the
measurement of the rotation period T as a function of the
pinning radius R [32]. The latter can be expected to obey T =
2πR/c, where c is the constant propagation speed of the front.
In systems like the BZ reaction, curvature effects [37] and
a refractory zone in the wake of the excitation pulse causes
deviations from this simple dependence for small values of
R. Our attempts to measure T (R), or the corresponding pitch
dependence λ(R), for biomorph spirals has been unsuccessful
so far, most likely due to difficulties in evaluating R for the
complicated three-dimensional shapes of the pinning glob-
ules. We also note that multiarmed pinned spiral waves can
exist in the BZ reaction [38] suggesting the possibility of
similar patterns in the biomorph system.

The subexcitable behavior of sheet-forming biomorph so-
lutions could be affected by system noise such as fluctu-
ations in the concentration of the dispersed nanoparticles
that extend the microstructures by attachment at the active
growth edges [21]. For the example of the photosensitive BZ
reaction, Kadar et al. showed that shrinking wave segments
in subexcitable media can be stabilized by externally applied
noise [39]. Such noise effects might explain unusually shaped
sheet edges that we and others occasionally observe and that

deviate from the reported spirals (see, e.g., Fig. 1 in Ref. [14]).
Noise effects might also explain the rare disruption of fronts at
locations that have no obvious heterogeneity. Unfortunately,
both phenomena might also be caused by external perturba-
tions and slow variations in certain parameters due to the
acidification of the solution or fluid dynamics. Clearly more
research is needed to test the relevance of stochastic processes.

Last, we restate that our study analyzes an overall three-
dimensional reaction medium in terms of a two-dimensional
model. Preliminary data (to be substantiated in a future study)
indicate that the nucleation of pinned spirals in the biomorph
system involves processes that require an explicit treatment of
the vertical space coordinate. Such three-dimensional models
will have to account for the self-limitation of the vertical sheet
growth to about 1 μm/layer and other phenomena including
the upward curling of the sheet edge.
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APPENDIX

Spirals are plane curves that wind around a point while
moving farther away from it. Three types of spirals are rel-
evant for this study and we have utilized their descriptions in
polar coordinates (r, φ), specifically for comparisons with our
experimental data.

(i) The Archimedean spiral is a curve described by

r = λ

2π
(φ − φ0), (A1)

where λ and φ0 denote the constant pitch and phase,
respectively.

(ii) The involute of a circle with radius Rc is a very similar
curve and given by

φ = 1

Rc

[√
r2 − Rc

2 − Rc arccos

(
Rc

r

)]
− φ0. (A2)

The range of the radial coordinate is limited to r � Rc.
Notice that the involute of a circle can be generated by tracing
the path of the end of a string as it is unwound from that circle.

(iii) The third curve relevant to our study is the self-similar
logarithmic spirals [40] which is given by

r = a eb(φ−φ0 ). (A3)
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