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Phononic transport and simulations of annealing processes in nanometric complex structures
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Modeling thermal transport at the nanoscale is a difficult task, especially when external time-varying heating
sources and the complexity of the studied systems make computational schemes that rely on accurate particlelike
simulations nonaffordable. Alternative strategies based on corrections of the Fourier law could satisfy the trade-
off between accuracy and computational efficiency, since they can be implemented in partial differential equation
solvers. This continuum approach could also allow for the coupling between thermal transport and other evolving
fields related to the generalized temperature field. Here we demonstrate that corrections due to the finite phonon
mean free paths can be suitably included in annealing process simulations of three-dimensional nanosystems.
Quantitative predictions can be obtained and readily compared with the experimental characterization of the
processed samples.
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I. INTRODUCTION

The release of energy towards a processed sample is
probably one of the most important aspects of material ma-
nipulation processes. Temperature control, heating, anneal-
ing, and quenching are mandatory keywords of any sample
preparation method in the scientific literature. Often, when
standard laboratory practices for macroscopic samples are
directly applied to the manufacturing of nanoscale systems,
they become critical. If, in addition to the system size, also the
process time shrinks (as in the case of laser thermal annealing
(LTA) with nanosecond range pulses [1]), the critical issues
become huge and the accurate process control requires basic
research also supported by reliable modeling. An accurate
theoretical approach of heat transport at the nanoscale relies
either on direct solutions of the Boltzmann transport equa-
tion (BTE) for phonons [2] or on atomistic simulations in
the molecular dynamics framework [3]. These methods are
fundamental for achieving a deep understanding of the en-
ergy transport in particular nanosystems, but their application
could be too cumbersome when applied in a thermal process
simulation.

Indeed, an advanced simulation of a thermal process (in-
cluding a laser process) aims at predicting the modifications of
a material presumably in the presence of complex structures
(e.g., with nanometer-wide elements made of different ma-
terials and/or phases and in thermal contact with meso- and
macroscopic objects like substrates, supports, etc.). Moreover,
it is generally a multiphysics problem where several “fields”
[4–12] (i.e., electromagnetic field, impurity density, local
time-dependent phases, etc.) self-consistently interact with the
temperature field. In this framework, heat transport is usually
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modeled by means of numerical solutions of the Fourier
law (FL), expressed as a partial differential equation (PDE),
by means of the finite element method (FEM), or similar
numerical schemes, when suitable space-time-dependent heat
sources and boundary conditions are defined.

Such an approach shows strong limitations for nanoscale
systems with complex boundaries and material specifications,
where, e.g., the regime of transport for phonons can change
from diffusive to ballistic. As a consequence, an appealing
improvement of the heat transport model for structures with
component sizes comparable to their intrinsic phonon mean
free paths should maintain this continuum description in order
to allow for a direct integration in process simulators while
introducing a proper formulation for the corrections due to
the phonons’ dynamics. Advancements in this sense appear
in the recent literature [13,14], where the important general
conclusion is that corrections due to the finite size of the sys-
tem are based on Fourier law–like PDEs (where the thermal
conductivity is the only material-dependent parameter in the
bulk), whereas boundary conditions (BCs) of the corrections
have to be significantly modified in order to consider the
transport of phonons. In this context, we have integrated
phonon transport corrections to our existing simulation tool
LIAB (LASSE Innovation Application Booster [15]) in order
to reproduce experimental data and predict the behavior of
various material structures upon thermal annealing, includ-
ing laser annealing [16]. Our continuum modeling is thus
integrated in a FEM framework and the corrections allow
for achieving a calibrated method able to simulate thermal
processes from the diffusive to the ballistic regime of phonon
dynamics. Within this approach, we have simulated different
cases where heating is induced by conventional and laser
annealing in various complex bi- and tridimensional (2D and
3D) structures. Results are in excellent agreement with the
experiments and demonstrate that a continuous treatment of
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thermal transport is possible in complex nanosize systems in
thermal contact with macroscopic objects.

II. HEAT TRANSPORT MODEL

The Fourier law can be expressed as

�FQ = −k∇T, (1)

where FQ is the net heat flux, k is the thermal conductiv-
ity, and T is the temperature. Equation (1) is ubiquitously
applied for the study of heat diffusion problems and it can
be formally derived from the BTE for local phonon distri-
butions close to the thermodynamic equilibrium, assuming
the continuum limit and the diffusive regime [17]. Recently
[14] a systematic expansion in terms of continuum quasither-
mal fields has been derived, indicating that the FL is the
correct zero-order approximation for the phononic BTE in
the (diffusive) limit of a small Knudsen number 〈Kn〉. We
notice that 〈Kn〉 is a dimensionless number defined as the
ratio between the average phonons’ mean free path and the
representative length of the system in study. In the diffusive
approximation, the same derivation [14] demonstrates that the
usual (1) Dirichlet (T = T0), (2) Neumann (∇T = 0), and
(3) continuity (−k1∇T1|� = −k2∇T2|� and T1|� = T2|� = T )
relations are the correct boundary conditions, respectively, for
(1) the thermostat at temperature T0, (2) the diffusely specular
wall, and (3) the interface � between two materials 1 and 2
with thermal conductivities k1 and k2. The analysis of high-
order corrections in 〈Kn〉 shows that these are ruled by FL-
type equations in the bulk (all ruled by the bulk conductivity),
whereas boundary conditions have to be modified with jump-
type BCs for the temperature [14]. Interesting analytic results
in simple one-dimensional systems [13] show that by using
the FL and suitable jump BCs, we can obtain exact solutions
in the diffusive 〈Kn〉 � 1 and ballistic 〈Kn〉 � 1 limits, while
the solutions deviate only a few percent with respect to
the BTE solution in the intermediate 〈Kn〉 ∼ 1 region. If we
consider a system in contact with a thermostat at a temperature
T0, the jump boundary conditions can be written as

n̂ · �FQ = kbulkλ
−1(T − T0), (2)

where �FQ = �F+
Q − �F−

Q is the combined phonon flux coming
from the left and right sides of the junction between the
nanosystem and the thermostat, kbulk is the bulk thermal
conductivity of the material, and λ is the average phonon scat-
tering length, which can be related to known and measurable
material properties as

λ(T ) = 4kbulk (T )/C(T )vs(T ), (3)

where vs(T ) is the sound velocity and C(T ) is the thermal
capacitance, which is also used in the time-dependent bulk
equation for the T field

C(T )
∂T

∂t
= ∇ · [kbulk (T )∇T ] + S(t ), (4)

with S(t ) the eventual time-dependent internal source. Equa-
tion (4) is numerically solved in the simulation results of
Sec. IV.

We note that the interpolating boundary correction
[Eq. (3)] derives from a multiple-temperature approach to the

local nonequilibrium, due to ballistic effects. T is the average
temperature [13] and the multiple temperature collapses to a
single T in the diffusive limit. If the system is significantly
smaller than λ (ballistic limit, 〈Kn〉 � 1) the corrected BCs
in Eq. (2) impose that the phonon modes which are in thermal
equilibrium with the thermostat at T0 and at the interface
do not thermalize with inner phonon modes: they reproduce
correctly the behavior in the ballistic regime (details are
discussed in Ref. [13]).

Extending this derivation with arguments coming from the
Chapman-Enskog-like expansion of Ref. [14], we have to
consider again the jump solutions at different temperatures T1

and T2 at the interface between two regions made of different
materials. Consistent with the interpolating correction at the
thermostat surface [Eq. (2)], the discontinuous solutions at the
material’s boundary � are

−k1
bulk∇T1 = �̂(T1|+� n̂1 + T2|−� n̂2), (5)

where n̂1 = −n̂2 are the local outward normal unit vec-
tors to the two sides of the boundary and �̂ = (k1

bulkλ
−1
1 +

k2
bulkλ

−1
2 )|� is the local phonon-scattering functional. More-

over, the energy conservation condition at the boundary has to
be imposed as [14]

−k1
bulk∇T1|� = −k2

bulk∇T2|�. (6)

Equation (6) acts as a closure of the model at the interface lo-
cation. We note that an external boundary simulating a virtual
interface with the same material is still ruled by the Neumann
relation ∇T = 0. In the following we discuss the impact of
the thermal mode equations introduced here [Eqs. (2)–(6)]
by comparing corrected and standard solutions (i.e., solutions
with strictly diffusive BCs) in the heating processes of 2D and
3D systems.

III. EFFECTIVE CONDUCTIVITY ANALYSIS

We start our analysis with Si nanowires (NWs) having their
equilibrium shape [18] (i.e., an almost regular polygon with
12 edges) and different diameters. These are in contact with
one or two thermostats along one or two perimeter edges,
while internally heated by a uniform source. The effective
phonon-scattering length λ is the only physical quantity of
the model, which, in all the results presented in this paper,
has been calibrated using the experimental values of kbulk (T ),
C(T ), and vs(T ) which can also depend on T . In Fig. 1(a)
we report a cross section, perpendicular to the Si NW axis,
of the thermal field obtained for the standard Dirichlet BC(s)
(left side) and the corrected BC(s) expression (right side) for
the edge(s) in contact with the thermostat. The temperature
obtained in the two cases along the NW diameter connecting
the center of the thermostat edge and the opposite edge is
shown in Fig. 1(b). For the thermal calibration of Si we used
values deriving from Ref. [15] while the sound of speed was
set to vs = 6400 m/s [19]. In the simulations of single Si NWs
(Figs. 1 and 2) the internal source is tuned in order to obtain an
increase of the order of ∼1 K for the internal temperature with
respect to the thermostat. The difference between the standard
and the corrected solution is relevant for this structure and it
tends to enlarge (decrease) for smaller (larger) NWs (see also
Sec. S1 of the Supplemental Material [20]).
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FIG. 1. (a) Cross section of a heated Si nanowire with a diameter of 56 nm: standard (left) and corrected (right) solutions. (b) Standard and
corrected T values along the nanowire diameter line shown in (a).

Si NWs are reference systems for the study of phononic
energy transport and they have been subjected to extensive
experimental analyses. The interest in Si NWs has intensified
from the apparent scaling of the thermal conductivity with

FIG. 2. (a) Evaluation of the apparent thermal conductivity for
Si NWs with one and two thermal contacts and different sizes: 10
nm (green lines), 100 nm (blue lines), and 1000 nm (red lines). Bulk
Si thermal conductivity is shown as a black line. (b) Comparison
of simulated (solid grey markers, plain line for one contact, dotted
for two contacts) and observed (open markers) thermal conductivity
for Si NWs with different sizes: 22 nm (red lines), 37 nm (purple
lines), 56 nm (blue lines), and 115 nm (green lines). Bulk Si thermal
conductivity is shown as a black line. Experimental data extracted
from Ref. [21].

the diameter of the NW, and several papers reported these
evidences. As a consequence, our model predictions could in
principle be compared also with the experimental results. As a
matter of fact, measurements are based on the “FL equivalent”
behavior of the system: they are dependent on the uniform
heat source and they have to be correctly interpreted in terms
of the real microscopic behavior.

A direct method to compare the experimental [21] and
theoretical results uses the apparent conductivity, kapp, concept
[13]. kapp is a geometry-dependent parameter which describes
a thermal field distribution T obtained in real and numerical
experiments, assuming that the constitutive equation of T
is the standard FL. As a consequence kapp 	 kbulk in large
systems while in the nanoscale its geometrical dependence
includes also the real or virtual realization of the thermal con-
tacts with the environment (e.g., the experimental apparatus).
Following Ref. [13] we have calculated kapp with the results
of our NW simulations as

kapp(T ) = kbulk (T )
〈Tstandard − T0〉
〈Tcorrected − T0〉 , (7)

where Tcorrect and Tstandard are the corrected and diffusive
temperature fields evaluated numerically; the symbol T0 is
the thermostat temperature while 〈 〉 indicates the average
of the field expression over the space region occupied by
the structures. The approximate estimates of kapp have been
compared in Ref. [13] with direct Monte Carlo solutions
of the Boltzmann transport for the thin-film geometry. The
discrepancies between the two methods are globally below
6% and tend to zero in the ballistic and diffusive limits.
Similar deviance could be expected if the continuum method
is compared to accurate predictions based on the phonon
mean-free-path sampling approach of Ref. [22].

In Fig. 2(a) the apparent conductivity kapp(T ), evaluated in
a broad temperature range for Si NWs of different sizes and
in the cases of the two types of thermal contacts, is compared
with the kbulk (T ) of bulk Si. We notice that the investigated
temperature range starts at 200 K since at lower temperatures
the phonon quantization makes our continuum analysis un-
feasible. kapp(T ) is close to the bulk value for mesostructures
in the micrometer range, while there is an important average
reduction of kapp(T ) and a strong geometric effect for sizes
of the order of ∼100 nm and below. Consistently, we note
that the quantitative value kapp(T ) significantly depends on
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the contact realization procedure at the nanoscale, while this
dependence is less important at the mesoscale.

Our theoretical estimates of kapp(T ) can be compared with
experimental measurements of the thermal conductivity, since
any procedure of conductivity measurement implicitly uses
the FL for the data analysis (i.e., we could reliably assume that
experiments measure the apparent conductivity kapp(T ) of the
nanosystem in a given configuration of the contacts). These
comparisons are shown in Fig. 2(b), where experimental data
(open symbols) are extracted by the data discussed in Ref. [21]
while the numerical evaluations of kapp(T ) are plotted for sin-
gle (solid lines) and double (dashed lines) contacts. Consider-
ing the numerous effects that can impact this analysis (e.g., the
heat sources and the realization of the thermal contacts, the
difference between real and ideal NW edges, the uniformity
of the size along the NW axis, etc.), the agreement between
calculations and measurements is noteworthy. Finally, we
notice that the differences in the calculations of kapp(T ) for
the single and double contacts and fixed size should have a
counterpart in the experimental measurements, if the same
nanosystem is studied with different measurement techniques
or procedures.

IV. SIMULATIONS OF COMPLEX SYSTEMS

The demonstration of the reliability of the approach based
on jump solutions for the heat transport equation opens per-
spectives for its application in the simulation of the anneal-
ing process of complex nanosystems. However, although the
formal extension of the method is rather straightforward, its
numerical implementation is more difficult due to the possible
presence of solution discontinuities at the boundaries of the
material. We have implemented the discontinuous Galerkin
FEM approach in the time-dependent LIAB solver (see Sec.
S2 of the Supplemental Material [20]) in order to numeri-
cally address this issue. In the following, we present some
examples of laser annealing process simulations in complex
nanosystems where the conventional and corrected solutions
are compared.

The first system [see Fig. 3(a), where the used computa-
tional mesh is shown] is composed of a Ge telescopic NW (10
nm + 15 nm diameters) immersed in air and deposited over a
Si substrate. In this geometry a thermal contact forms between
the substrate and the larger portion of the telescopic NW. The
used value of the speed of sound in Ge is vs = 5400 m/s [24],
while the interface with the air is ruled by an effective value of
λair = 3 nm (see also Ref. [20] for a discussion on the effect
of this parameter). The calibration of the thermal parameters
for Ge is that reported in Ref. [23] (being also the default cali-
bration in LIAB). LIAB implements a self-consistent solution
of laser annealing, where the heat source [see Fig. 3(b) for the
source distribution of a transverse electric incident wave] is
evaluated by means of the solution of the Maxwell equations
in the time-harmonic approximation, once the temperature
field is known [15]. In our simulation, we use the same laser
pulse setting (wavelength 308 nm, pulse width ∼160 ns; see
Sec. S3 of the Supplemental Material [20]) of Ref. [15] and a
fixed energy density of 0.4 J/cm2.

The solutions (corrected and standard) of the thermal field
distribution along the NW axis obtained after 5 ns of simulated

FIG. 3. (a) Computer-aided design (CAD) model and mesh of
a Ge telescopic NW on a Si substrate: the colors distinguish the
different elements used to compose the CAD geometry. (b) Heat
source distribution mapped in the structure mesh used for FEM
calculations. The arrow indicates equivalent regions in (a) and (b).
(c) Comparison of thermal profiles obtained after 5 ns of simulated
LTA using standard and corrected BCs.

annealing are shown in Fig. 3(b). The different temperatures
(blue lines) obtained in the two sides of the junction when the
standard FL rules the transport are due to a combined effect
of different sizes and the differently absorbed heat. However,
the solution is obviously smooth along the NW junction axis.
A completely different heat distribution is calculated for the
corrected solution. Apart from the different average values
of the temperature that are caused by overall reduced heat
dissipation when phononic corrections are included at the
nanoscale (confirmed by the previous analysis of the apparent
conductivity), we can also observe an abrupt change of the
temperature at the junction of the telescopic NW. We note that
no contact resistance correction has been added in the heat
transport model at the junction position, since the junction is
not a material boundary, and this jump is caused only by the
different types of BCs, considering a finite scattering length
for the phonons at the material interfaces (the larger NW only
forms a thermal contact with the Si substrate).

LTA has a great application potential for microelectronics
and, as a consequence, we have tested our method considering
the complex structure of a fin-shaped field effect transistor
(FinFET). The simulation of the LTA process with the FL of
heat diffusion for a Si fin partially embedded in a SiO2 layer
and a tungsten (W) gate [see Fig. 4(a)] has been extensively
discussed in Ref. [15]. The used mesh is shown in Fig. 4(a)
while the heat source distribution evaluated with the corrected
model after 5 ns is shown in Fig. 4(b) (laser energy density
of 0.4 J/cm2). For the phononic correction parameter we used
vs = 5600 [25] and vs = 5200 m/s [24] in the SiO2 and W
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FIG. 4. (a) CAD model and mesh of a Si-gated FinFET structure.
The colours distinguish the different elements used to compose the
CAD geometry. (b) Heat source distribution mapped in the structure
mesh used for FEM calculations. The arrow indicates equivalent
regions in (a) and (b). (c) Comparison of thermal profiles obtained
after 5 ns of simulated LTA using standard and corrected BCs.

regions, respectively. A comparison between the temperature
field obtained with both the FL and the corrected model along
a symmetric axis passing through the fin center demonstrates
that corrections are necessary for an accurate simulation,
although the differences are not so strong as in the telescopic
NW case. As discussed previously, the modified geometric
constraints can explain this reduced difference of the FL and
corrected solutions: (a) the area of the cross section for the two
nanosystems is different (100/165 nm2 for the NWs, ∼1000
nm2 for the fin), (b) the boundary with the substrate is made of
the same material for the fin, but of two different materials for
the telescopic NW, and (c) only one side of the telescopic NW
is in contact with the substrate, while the full fin is in contact
with its own substrate.

V. CONCLUSION

To conclude, our investigation demonstrates that the inclu-
sion of phononic corrections in the continuum heat transport

models is a feasible route for an accurate simulation of the
heating processes of complex nanosystems. The goal of the
method is the replacement of “ad hoc” geometric calibrations
(e.g., the use of the size- and shape-dependent kapp(T ) in
the FL) with a more experimentally or theoretically derived
robust and general “material” calibration. In this work, we
have explored the impact of a first-order phononic correction
in simulations of heating for different 2D and 3D systems.
This correction is able to interpolate between the diffusive
and the ballistic regimes of thermal transport using as a single
additional calibration parameter the average scattering length
for the phonons in the material. The results of our numerical
approach are promising: the corrections are important in the
nanoscale; moreover, when comparisons with experiments
are feasible, the solutions are able to recover the precise
experimental scenario.

Limitations of the current method are related to the ap-
proximation of the phononic energy transport in terms of a
single scalar average field and the consequent definition of
a single phonon scattering length. Generalizations could be
necessary in the cases where this approximation could be
too stringent, as, e.g., in anisotropic materials, many phonon
modes determine the heat conductions, or in the case of
amorphous or disordered systems. The tensor form of the
Fourier law is usually applied in anisotropic materials, which
imposes a different formalization of the boundary relations
[Eqs. (2)–(6)] in the framework of the present derivation. Our
approach implicitly assumes the same average relaxation time
for all phonon modes. Of course, the accurate inclusion of
the relaxation term with respect to frequency and polarization
shifts the problem to the BTE level. However, the qualitative
framework of the present (approximate) derivation could be
still useful also for disordered or amorphous materials or,
in general, when heat transport is barely coupled with the
sound transport mechanism. In this case, λ cannot be properly
related to the material properties as in Eq. (3), but it should be
considered as an ad hoc model parameter to be properly fitted.
Finally, further refinements are possible, including additional
corrections to the bulk constitutive equations, especially when
atomically thin low-dimensional materials are considered
(e.g., see Ref. [26]).
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