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Interplay between chemical order and magnetic properties
in L10 FeNi (tetrataenite): A first-principles study
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We use first-principles-based calculations to investigate the interplay between chemical order and the magnetic
properties of L10 FeNi. In particular, we investigate how deviations from perfect chemical order affect the
energy difference between the paramagnetic and ferromagnetic states as well as the important magnetocrystalline
anisotropy energy. Our calculations demonstrate a strong effect of the magnetic order on the chemical order-
disorder transition temperature and, conversely, a strong enhancement of the magnetic transition temperature
by the chemical order. Most interestingly, our results indicate that the magnetic anisotropy does not decrease
significantly as long as the deviations from perfect order are not too large. Moreover, we find that in certain
cases a slight disorder can result in a higher anisotropy than for the fully ordered structure. We further analyze the
correlation between the magnetocrystalline anisotropy and the orbital magnetic moment anisotropy, which allows
to study the effect of the local chemical environment on both quantities, potentially enabling further optimization
of the magnetocrystalline anisotropy with respect to chemical order and stoichiometric composition.
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I. INTRODUCTION

Magnetic materials are ubiquitous and play a pivotal role
in many technological applications ranging from consumer
electronic devices to electric power production and conver-
sion. In particular, high-performance permanent magnets form
crucial components in the devices used for generating electric
power from renewable energy sources such as wind, hydro,
tidal, etc. The strength of a permanent magnet is quantified
by the maximum magnetic energy product (BH )max, i.e., the
product of the remanence Br and the coercivity Hc. Thus,
high-performance permanent magnets are typically composed
of rare-earth elements (Sm, Nd, Dy, etc.), which provide high
resistance to demagnetization, in combination with transition
metals (Fe, Co, etc.), which provide high-saturation magne-
tization. Specifically, magnets belonging to the SmCo family
(e.g., SmCo5 and Sm2Co17), with energy products in the range
of 5–20 MGOe (40–160 kJ/m3) [1,2], and the NdFeB family
(e.g., Nd2Fe14B), with energy products in the range 5–50
MGOe (40–400 kJ/m3) [3], are currently the best-performing
supermagnets. However, the volatility in price and uncer-
tainty of supply of the required rare-earth elements makes it
highly desirable to find alternatives to these rare-earth-based
magnets, in order to meet the increasing global demand for
permanent magnets [4,5].

An interesting candidate in this respect is the chemically
ordered L10 phase of Fe50Ni50 (tetrataenite), which has been
found in iron meteorites [6–10]. The Fe and Ni atoms in
tetrataenite occupy alternating planes of the underlying fcc
lattice oriented perpendicular to the c axis (see rightmost
graph in Fig. 1), resulting in a structure with tetragonal
symmetry and a high magnetocrystalline anisotropy energy
(MAE) (>7 × 106 erg cm−3), large saturation magnetization
(∼1270 emu cm−3), and a projected energy product of 42
MGOe (335 KJ/m3) [11–14]. In contrast, the disordered

phase, where Fe and Ni atoms are randomly distributed over
the sites of the fcc lattice (see leftmost graph in Fig. 1),
exhibits only a very small MAE.

Unfortunately, the laboratory synthesis of the ordered
phase is extremely challenging due its rather low order-
disorder transition temperature Tod ∼ 593 K [15], and the slow
diffusion of atoms at this temperature, which is of the order
of one atomic jump per 104 years at 573 K [16]. Since its
discovery, several attempts have been made to achieve a high
degree of chemical order in this alloy [17–20]. Nevertheless,
synthesis of a fully ordered system remains challenging.

The low order-disorder temperature and the difficulties
in synthesizing fully ordered samples make it also very
challenging to fully characterize the magnetic properties of
tetrataenite, as the disordering occurs below the predicted
Curie temperature. It also raises the question of how the fa-
vorable magnetic properties depend on the degree of chemical
order.

Several previous studies have found a strong coupling
between the magnetic and chemical orders in this system. For
example, both Dang et al. [21] and Lavrentiev et al. [22]
found, using different models and approximations, that the
ferromagnetic Curie temperature is drastically enhanced in
the chemically ordered case compared to the random alloy
(from ∼450 K to over 1000 K in Ref. [22]) and that also the
magnetic interactions strongly increase the chemical order-
disorder transition temperature (by ∼100 K in Ref. [21]).
This suggests that it is necessary to include both chemical
and magnetic degrees of freedom to accurately describe this
system.

In this work, we present additional complementary insights
on the interplay between chemical order and magnetic proper-
ties in tetrataenite by means of first-principles-based density
functional theory (DFT) and Monte Carlo simulations. In
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FIG. 1. Examples of atomic configurations corresponding to different values of the long-range order parameter Pz, depicted in a 2 × 2 × 2
supercell relative to the conventional four-atom cubic cell. Fe and Ni atoms are represented by red and yellow spheres, respectively. In
the chemically ordered L10-FeNi phase (tetrataenite) with Pz = 1, Fe and Ni atoms occupy alternate layers perpendicular to c. In the fully
disordered A1 phase (Pz = 0), they randomly occupy sites of the underlying fcc lattice.

particular, we study how the MAE depends on the degree of
chemical order in the system. We find that small deviations
from perfect order do not lead to a significant reduction of the
magnetic anisotropy, and that in some cases a small amount
of disorder can even enhance the MAE. We then discuss
the anisotropy of the local orbital moments as an indicator
that allows to further optimize the magnetic anisotropy with
respect to the local atomic environment.

The remainder of the paper is structured as follows. In
Sec. II we first define the long-range order parameter, then
describe how we model the partially disordered as well as the
paramagnetic state in FeNi, and introduce the computational
methods used throughout this work. In Sec. III, we then dis-
cuss our results regarding the energetics of the order-disorder
transition, the effect of chemical disorder on the MAE, and the
correlation between orbital magnetic moment anisotropy and
the MAE. Finally, in Sec. IV, we conclude by summarizing
our main findings.

II. MODELS AND METHODS

A. Modeling of chemical disorder

To define the long-range order parameter for the L10

chemical order, we divide the fcc lattice into four individual
sublattices α, β, γ , and δ, according to the four different sites
in the conventional four-atom cubic unit cell (see Fig. 2). The
fully ordered L10 structure can then be described in three
different ways, corresponding to arrangements of different

FIG. 2. Depiction of the four sites of the fcc lattice within the
conventional cubic unit cell, defining the four sublattices α, β, γ ,
and δ.

atomic species in alternating planes perpendicular to the three
Cartesian axes. Thereby, always two sublattices are fully
occupied by one type of atom, while the other two sublattices
are occupied by the other type. For example, alternating
atomic planes perpendicular to z correspond to occupation of
sublattices α and β by one type of atom and occupation of
sublattices γ and δ by the other type, whereas for alternating
planes perpendicular to x, sublattices α and δ are occupied
by one type of atom and sublattices β and γ by the other
type.

We can now define long-range order parameters for the
three different orientations of the L10 order as follows:

Px = pFe
α + pFe

γ − 1, (1)

Py = pFe
α + pFe

δ − 1, (2)

Pz = pFe
α + pFe

β − 1, (3)

where pFe
i is the probability that a site on sublattice i is

occupied by an Fe atom. These probabilities have to fulfill the
condition

∑
i pFe

i = 2 (on average 2 Fe atoms per four-atom
unit cell), and thus only three can be chosen independently.
Furthermore, each pFe

i can only vary between 0 and 1, impos-
ing an additional constraint on the pFe

i . Nevertheless, Eqs. (1)–
(3) can be inverted and the probabilities pFe

i are then uniquely
defined by specifying the three components of the long-range
order parameter within the allowed range.

To model the system with a given value for the long-
range order parameter, we generate 50 configurations, using
a 2 × 2 × 2 supercell of the conventional cubic cell. For each
configuration, we randomly distribute 16 Fe and 16 Ni atoms
over the 32 available sites, according to the probabilities pFe

i
corresponding to a fixed value of Pz and Px = Py = 0. The
chosen supercell size allows to obtain five different values for
the long-range order parameter Pz ∈ {0, 0.25, 0.5, 0.75, 1}.
We then calculate the total energy for each configuration using
density functional theory (DFT), as described in Sec. II C. The
total energy for a given order parameter is then obtained by
averaging over the corresponding configurations.

We note that most previous first-principles-based studies,
e.g., Ref. [23], have employed effective medium/mean-field
type approaches to model the compositional disorder. While
our complementary approach is computationally more de-
manding since it requires sampling over many configurations,
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it also incorporates effects of disorder within the local envi-
ronment, which turns out to be especially important in the case
of the MAE.

B. Modeling of the paramagnetic state

It is well known that in most magnetic materials local
magnetic moments still exist above the Curie temperature,
even though the material does not exhibit any macroscopic
(long-range) magnetic order. The incorporation of such local
moments is very important to correctly describe the electronic
structure of these materials, and thus the paramagnetic phase
cannot simply be treated as a nonmagnetic state in DFT-based
first-principles calculations.

In order to model the paramagnetic state, we therefore
employ the disordered local moment (DLM) method [24],
where the directions of magnetic moments are constrained to
random directions. Analogously to our treatment of chemical
disorder, we use a supercell approach and sample over a suffi-
cient amount of randomly generated configurations [25]. The
average of the energy over all configurations then represents
the energy of the paramagnetic phase (in the limit of very high
temperature).

For the chemically ordered case, we generate 100 collinear
DLM configurations by randomly initializing the magnetic
moments of the Fe atoms in a 2 × 2 × 2 supercell as either
up or down. For the chemically disordered case, we create 10
different chemically disordered configurations (as described
in Sec. II A) and then generate 10 DLM configurations for
each of these configurations. We do not explicitly initialize
the Ni magnetic moments since the Ni moments tend to
vanish if the surrounding Fe magnetic moments are oriented
antiparallel to each other. In other cases, the Ni moments will
converge to either up or down, depending on the orientation
of moments on the surrounding Fe atoms. Therefore, we
do not take into account the directions of the Ni moments
as independent variables. We also do not consider any non-
collinear configurations. These are not expected to alter the
results if the basic assumptions of the DLM method are valid,
but would significantly increase the required computational
effort.

To verify our sampling of the paramagnetic state, we
evaluate the nearest-neighbor spin-correlation function for the
magnetic moments of the Fe atoms:1

� = 1

NFe

∑

i

1

Ni

∑

j

êi · ê j, (4)

where the sum over i goes over all NFe Fe atoms in the
supercell (NFe = 16 in the present case), the sum over j goes
over all Fe nearest neighbors for each i (with Ni being the
number of Fe nearest neighbors of atom i, which is different
for each individual configuration), and êi is the direction of
the magnetic moment of Fe atom i.

1In analogy to the creation of our DLM configurations, we consider
only the Fe magnetic moments when evaluating the spin-correlation
function.

C. Computational methods

All DFT calculations are performed using the Vienna
ab initio simulation package (VASP) [26], the projector-
augmented wave method (PAW) [27,28], and the general-
ized gradient approximation according to Perdew, Burke, and
Ernzerhof [29]. Brillouin zone integrations are performed
using the tetrahedron method with Blöchl corrections and a �-
centered 14 × 14 × 14 k-point mesh. The plane-wave energy
cutoff is set to 350 eV, and the total energy is converged to an
accuracy of 10−8 eV. Our PAW potentials include 3p, 4s, and
3d states in the valence for both Fe and Ni.

The MAE is calculated using the magnetic force the-
orem [30,31], i.e., by including the spin-orbit coupling in
a non-self-consistent calculation, using the charge density
converged without spin-orbit coupling, and then taking the
difference in energies between two different orientations of
the magnetization direction.

We define the MAE as the energy difference E [100] −
E [001], where E [100] and E [001] are the total energies obtained
with magnetization aligned along the [100] and [001] direc-
tions, respectively. Thus, the MAE is defined as positive when
the magnetic easy axis lies along the [001] direction, which
is the reported easy axis for L10 FeNi [14,15]. To check the
convergence of the MAE with respect to the k-point sampling,
we perform calculations using up to 25 × 25 × 25 k points
and find that the MAE is sufficiently converged (to about
±1 μeV/f.u.) for our purposes using a 14 × 14 × 14 k-point
mesh.

The temperature dependence of the chemical long-range
order parameter is obtained from simple Monte Carlo simu-
lations, considering an fcc lattice using a 3

√
N × 3

√
N × 3

√
N

supercell of the conventional cubic cell, containing 4N sites
over which we distribute Fe and Ni atoms in equal proportion.
For a given temperature, we perform Monte Carlo sweeps
using the Metropolis algorithm, where in each trial step the
configuration is varied by exchanging the positions of an
arbitrarily chosen pair of Fe and Ni atoms, then calculating the
long-range order parameter P = (Px, Py, Pz ), and evaluating
the corresponding total energy as described in Sec. III A.

III. RESULTS AND DISCUSSION

A. Energetics of the order-disorder transition

We first determine equilibrium lattice parameters for per-
fectly ordered L10 FeNi in the ferromagnetic state. We ob-
tain lattice parameters a = 3.560 Å and c = 3.577 Å (c/a =
1.0048). Our calculated lattice parameters agree well with
the values measured in experiments (a = 3.560 to 3.582 Å
and c = 3.589 to 3.615 Å) [19,32], and obtained in previ-
ous calculations (a = 3.557 to 3.560 Å and c = 3.570 to
3.584 Å) [13,33,34].

Next, we determine the dependence of the total energy on
the long-range chemical order parameter, while keeping the
perfect ferromagnetic order. For this, we calculate the total
energy of 50 configurations for each value of Pz, generated as
described in Sec. II A.

For simplicity, we keep the lattice parameters fixed cor-
responding to a metrically cubic unit cell with a = 3.560 Å
and c/a = 1, i.e., we neglect the small tetragonal strain
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FIG. 3. Total energy (per atom) and average magnetic moment
(per atom) as function of the long-range order parameter Pz (with
Px = Py = 0), calculated for perfect ferromagnetic order. Red dots
represent the mean over 50 configurations for each Pz < 1. Error bars
indicate the highest and lowest energies of the individual configura-
tions. The black curve shows a quadratic fit to the data. Energies
are defined relative to the fully ordered state (Pz = 1). Filled squares
represent the mean of magnetic moments over 50 configurations for
each Pz < 1. The blue line is a guide to the eye.

on the unit cell (which will also depend on the degree of
long-range order). Our test calculations for perfect chemical
order (Pz = 1) show that these simplifications change the
total energy by less than 5 meV/atom, which is negligible
compared to the energy changes related to the different dis-
tributions of atoms. Furthermore, we do not perform any
further optimization of atomic coordinates for the disordered
configurations.

The corresponding total energies (averages as well as total
spread over different configurations) are shown in Fig. 3 as
function of the long-range order parameter Pz, together with
the average magnetic moment per atom. It can be seen that
the averaged total energies are well fitted by a quadratic
dependence on Pz, E = E0 − �EP2

z , where �E = 62 meV is
the energy difference (per atom) between the perfectly ordered
and completely disordered structure. We note that a quadratic
dependence on Pz, or more generally on P =

√
P2

x + P2
y + P2

z ,
also corresponds to the leading-order term allowed by sym-
metry for small fluctuations around the disordered state, P =
0, and also follows from a simple energetic model with
only nearest-neighbor interactions. The good quality of the
quadratic fit thus also indicates that rather accurate (sufficient
for our purposes) mean energies can be obtained by using 50
different configurations for each Pz < 1.

One can also see that the average total magnetic moment
depends only weakly on Pz, increasing slightly from 1.611μB

to 1.630μB between zero and full chemical order. We note
that the increase in the total magnetic moment is mainly due
to the average magnetic moment of the Fe atoms, while the
average Ni magnetic moment remains fairly constant until
Pz = 0.75, after which it slightly decreases for the perfectly
ordered structure.

These results agree very well, both qualitatively and quan-
titatively, with recent calculations by Tian et al. employ-
ing the coherent potential approximation (CPA) to treat the

FIG. 4. Calculated spin-correlation functions for 100 DLM con-
figurations for both chemically ordered (Pz = 1) and chemically
disordered (Pz = 0) configurations. Solid red and blue lines represent
the cumulative averages for Pz = 1 and 0, respectively.

compositional disorder [23]. The good agreement between
this complementary approach and our configurational sam-
pling technique confirms on one side the good convergence
of our data and on the other side also indicates that effects
of the local environment, not included in the CPA approach,
are not too relevant for the total energy and average magnetic
moment.

In order to estimate the order-disorder temperature from
the calculated E (Pz ), we perform simple Monte Carlo sim-
ulations, as outlined in Sec. II C. The total energy for each
Monte Carlo configuration is evaluated from the quadratic
fit in Fig. 3, i.e., E = −4N�EP2, with �E = 62 meV. The
resulting temperature dependence of the long-range order
parameter is shown in Fig. 6 using a system size of N = 103

(see Sec. II C). Using larger system sizes does not lead to any
noticeable changes.

It can be seen that the order parameter vanishes around
1400 K, which is significantly higher than the reported ex-
perimental value for the order-disorder transition temperature
of 593 K [15]. It is also significantly above the predicted
ferromagnetic Curie temperature for L10 FeNi [22,33]. Thus,
assuming perfect ferromagnetic order when obtaining �E
is probably not justified. In the following, we recalculate
the energy difference between chemically ordered and dis-
ordered states for the paramagnetic case, using the DLM
approach [24], as described in Sec. II B.

To confirm that our sampling over a sufficient amount
of randomly chosen DLM configurations converges as ex-
pected, Fig. 4 shows the nearest-neighbor spin-correlation
function [see Eq. (4)] for different chemically ordered and
disordered magnetic configurations, evaluated from the con-
verged magnetic moment directions, together with their cu-
mulated averages, obtained by averaging over an increasing
number of configurations. One can see that the cumulated
average of the spin-correlation function approaches zero both
for the chemically ordered and the chemically disordered
magnetic configurations, which shows that the amount of
configurations we average over is sufficient, and that the
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FIG. 5. Calculated total energies (per atom) for 100 DLM con-
figurations generated for the chemically ordered (Pz = 1, top) and
the chemically disordered (Pz = 0, bottom) case, using a 2 × 2 × 2
supercell. The cumulative averages are shown as solid black lines.

magnetic moments indeed converge to the directions that were
initialized.

Figure 5 shows the total energies (per atom) obtained for
the 100 DLM configurations corresponding to the chemically
ordered (Pz = 1) and the chemically disordered (Pz = 0) case.
The cumulative averages are indicated by the solid black lines.
All energies are taken relative to the chemically ordered fer-
romagnetic case. Again, one can see that, in spite of the large
variations in the energies of the individual configurations, the
averages converge rather well, and appear to be accurate to a
few meV already after averaging over about 50 configurations.

Table I summarizes the average total energies obtained
for the ferromagnetic and paramagnetic states, both for the
chemically ordered and the chemically disordered cases. It
can be seen that the energy difference between the chemically
ordered and the chemically disordered case is drastically
reduced in the paramagnetic state compared to the ferromag-
netic case (from 62 meV to about 20 meV per atom), indicat-
ing a strong coupling between chemical and magnetic order.
Furthermore, the energy difference between the ferromagnetic
and the paramagnetic state is also significantly reduced in the
chemically disordered alloy compared to the case with perfect
L10 order (from about 100 meV per atom to 58 meV per
atom). This indicates that the magnetic Curie temperature of
the chemically disordered phase is expected to be significantly
lower than the (hypothetical) Curie temperature of the chemi-

TABLE I. Average total energies (in meV/atom) of the ferro-
magnetic and the paramagnetic states for chemically ordered and
chemically disordered FeNi (relative to the ferromagnetic chemically
ordered case).

L10 FeNi A1 FeNi
(chemically ordered) (chemically disordered)

Ferromagnetic 0 62
Paramagnetic 101 120

FIG. 6. Long-range order parameter P as a function of temper-
ature for the ferromagnetic (black) and paramagnetic (red) case,
obtained from Monte Carlo simulations. The temperature at which
the long-range order parameter vanishes indicates the corresponding
order-disorder transition temperature.

cally ordered phase, which appears to be consistent with other
theoretical studies [22,23].

For L10-ordered FeNi, a magnetic Curie temperature of
TC = 916 K has been suggested, based on first-principles DFT
calculations [33]. This is more or less consistent with the
value of ∼1000 K obtained from simulations using a first-
principles-based Heisenberg-Landau magnetic cluster expan-
sion [22]. However, on heating the L10 order starts to dis-
appear at temperatures around 700–800 K, depending some-
what on the heating rate [35]. Note that the actual reported
chemical order-disorder temperature is much lower (Tod =
593 K [15]), but that the chemical order is kinetically stable
up to temperatures where atomic diffusion becomes thermally
activated. Therefore, it is clear that the predicted TC for the
ordered system is only a hypothetical Curie temperature, as
the ordered phase is unstable at such high temperatures.

If we simply scale the predicted values for TC of the chem-
ically ordered case according to our obtained reduction of the
ferromagnetic-paramagnetic energy difference, we obtain an
estimate for the Curie temperature of chemically disordered
FeNi of around 550 K, which however appears too low com-
pared to experimental values of around 785–789 K [36,37].

Interestingly, one should note that the temperature range
where the chemical order effectively disappears (∼700–
800 K [35]) is quite similar to the Curie temperature of the
disordered system. This means that once the system disorders,
the magnetic order also disappears rather abruptly (see, e.g.,
Refs. [14,38]).

As seen in Fig. 6, the reduced �E obtained for the para-
magnetic state also leads to a strong reduction of the order-
disorder temperature, obtained in our simple Monte Carlo
simulations, to about 450 K. Note that these calculations are
in principle expected to strongly underestimate the true order-
disorder temperature since the system is still magnetically
ordered in that temperature range. On the other hand, our
simple approach neglects several other effects, e.g., lattice
vibrations, which tend to reduce the order-disorder temper-
ature [23,39,40]. Without considering such factors as well
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FIG. 7. Calculated MAE, defined as E[100] − E[001], as a function
of the long-range order parameter in FeNi, obtained for 50 different
ferromagnetic configurations for each Pz < 1. Black dots represent
the value for each configuration. Red dots correspond to the mean
MAE for a particular Pz.

as kinetic effects, the temperature dependence of the order
parameter is expected to follow the ferromagnetic curve for
low temperatures and then move toward the paramagnetic
curve once the magnetic order vanishes. Note, however, that
the fully paramagnetic case considered here, with no short-
range correlations, is in principle only reached for T → ∞.
Thus, while our simplified model is not expected to quantita-
tively predict the order-disorder transition temperature, it can
provide order of magnitude estimates and clearly indicates the
strong coupling between the chemical order-disorder transi-
tion and the magnetic state in L10 FeNi.

B. Magnetocrystalline anisotropy

Several studies in the past have investigated the
MAE in L10 FeNi by means of first-principles calcula-
tions [14,33,34,41]. In addition, several experimentally mea-
sured values of MAE were also reported. However, very few
investigations exist on the dependence of the MAE on the
degree of chemical order in L10 FeNi. Kota and Sakuma [42]
theoretically estimated the variation of MAE as a function of
long-range order parameter for several L10 alloys including
FeNi. They employed the tight-binding linear muffin-tin or-
bital method in conjunction with the CPA. They found that
for FeNi, among other L10 alloys, the MAE is proportional to
the power of the order parameter where the power varies from
1.6 to 2.4.

We calculate the dependence of the MAE on the long-
range order parameter by sampling over 50 ferromagnetic
configurations for each value Pz < 1, as described in Sec. II C.
Note that we also use the 2 × 2 × 2 supercell to calculate the
MAE for Pz = 1 to obtain consistent data. The results are
plotted in Fig. 7, which shows the data for each individual
configuration as well as the average value for each Pz. It can
be seen that for Pz = 0, even though the MAE for the indi-
vidual configurations shows a large spread of ±50 μeV/f.u.,
the obtained average is very close to the expected value of
0 μeV/f.u. This indicates that we sample a sufficient amount
of configurations to obtain reliable averages.

The MAE increases with increasing degree of chemical
order, but, strikingly, reaches its maximal value already for
Pz = 0.75. This means that the MAE does not decrease signif-
icantly if the deviations from perfect order are not too large.
In view of the fact that perfectly ordered samples are very
difficult to synthesize, this is an important result. We also
note that our results do not follow the power-law behavior
suggested by Kota and Sakuma (MAE ∝ P1.6–2.4) [42]. This
is most likely due to their use of the CPA approximation to
describe compositional disorder and shows that for a quantity
such as the MAE, effects of the local environment can be very
important. This is different from the total energy, shown in
Fig. 3, which agrees well with previous CPA calculations [23].
Furthermore, for both Pz = 0.75 and 0.5, we find some con-
figurations with even higher MAE than the fully ordered alloy.
This indicates that it might be possible to further increase the
anisotropy of this system, beyond the value obtained for the
stoichiometric 50:50 composition with perfect chemical order.

The MAE we obtain for the fully ordered case (Pz =
1) is 76 μeV/f.u. corresponding to 0.54 MJ/m3, which
agrees well with previous calculations using similar methods
(0.56 MJ/m3 [34], 0.48 MJ/m3 [33], and 0.47 MJ/m3 [43]).
We note that this value is quite comparable, albeit slightly
smaller, than what has been reported experimentally in
Ref. [44] for samples with a long-range order parameter
around 0.5 (≈0.7 MJ/m3). On the other hand, for Pz = 0.5, we
obtain a value that is clearly smaller than the experimentally
reported MAE. This suggests that we are underestimating
the true MAE of the system. Indeed, it has been shown
that including a so-called orbital polarization correction can
enhance the MAE of the fully ordered system roughly by a
factor of 2 [34,45].

C. Orbital magnetic moment anisotropy

In order to obtain further insights into the origin of
the MAE, we now analyze the orbital magnetic moment
anisotropy as a function of long-range order parameter. The
orbital magnetic moment and its anisotropy is often closely
connected to the MAE [46,47]. In the present case it can
potentially provide insights as to which local chemical en-
vironments are particularly favorable for obtaining a large
MAE. We define the orbital moment anisotropy as �L =
L[001] − L[100], where L[001] and L[100] are the total orbital
magnetic moments (summed over all atoms in the 2 × 2 × 2
supercell) when the magnetization lies along the [001] and
[100] directions, respectively. Here, the sign is chosen such
that the orbital anisotropy is positive if the orbital magnetic
moments are larger along the [001] direction (which is the
easy magnetic axis for L10 FeNi).

Figure 8 shows the total as well as the atom-resolved
orbital moment anisotropy as a function of the long-range
order parameter (i.e., averaged over all configurations corre-
sponding to the same Pz). One can clearly see that the main
contribution to the total orbital moment anisotropy for Pz < 1
comes from the anisotropy of the Fe orbital magnetic moment,
while the contribution from the Ni moments is almost negli-
gible. For the perfectly ordered structure, we observe that the
orbital magnetic moments of the Ni atoms are larger along the
[100] direction, which results in a small decrease of the total
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FIG. 8. Calculated total orbital moment anisotropy �L =
L[001] − L[100], averaged over all configurations with the same long-
range order parameter Pz, as a function of Pz. Separate contributions
of all Fe and all Ni atoms in the system are also shown.

orbital moment anisotropy as we go from Pz = 0.75 to 1 (see
solid black curve in Fig. 8).

Note that both the MAE and the total orbital moment
anisotropy show similar behavior as one increases the long-
range order in the system. This suggests a possible expla-
nation for the somewhat unexpected behavior of the MAE,
provided that the MAE can be understood in terms of local
contributions of the Fe and Ni atoms that correlate with
the corresponding orbital moment anisotropies. Thereby, the
(small) contribution to the MAE from the Ni atoms would
be opposite to that of the Fe atoms and also be much more
sensitive to deviations from perfect chemical order, such
that it essentially vanishes already for Pz � 0.75, while the
contribution from the Fe is still rather strong.

To further demonstrate the correlation between the MAE
and the orbital moment anisotropy, we show in Fig. 9 the
MAE as a function of orbital moment anisotropy for all
individual configurations with different values of the chemical

FIG. 9. MAE versus orbital moment anisotropy of the Fe atoms
for each individual configuration. Configurations corresponding to
different values of Pz are indicated by different markers. The solid
black line corresponds to a least square fit to the data.

order parameter. Only the orbital moment anisotropy obtained
from the Fe atoms is shown here. There is a clear linear
correlation between the two quantities, indicated also by the
least mean square fit to all data points (solid black line).
On the other hand, there can also be a noticeable spread in
the linear relationship between the MAE and the orbital mo-
ment anisotropy on the level of the individual configurations.
Nevertheless, our results suggest that the orbital moment
anisotropy can in principle be used as proxy for the MAE,
which then allows to analyze how the local environment
affects both quantities.

IV. SUMMARY AND CONCLUSIONS

In summary, we have demonstrated a strong coupling be-
tween chemical and magnetic orders in L10 FeNi, consistent
with previous studies employing effective medium/mean-
field type approaches to describe the compositional disorder.
Specifically, our results show that chemical disorder reduces
the energy difference between the ferromagnetic and param-
agnetic state by about 40%. Consequently, the magnetic Curie
temperature of the disordered system is much lower than the
rather high (hypothetical) Curie temperature of the ordered
phase. As a result, the magnetic order vanishes once the sys-
tem starts to disorder under heating, as has been observed in
various experiments [14,38]. On the other hand, perfect ferro-
magnetic order increases the energy gain due to chemical or-
der by nearly a factor of 3 compared to the paramagnetic case.
In principle, this implies that if it would somehow be possible
to stabilize the ferromagnetic state at higher temperatures, one
could artificially increase the order-disorder transition temper-
ature, which could then ease the synthesis of the ordered mate-
rial. While our simple energetic model is obviously too crude
to obtain very accurate values for the order-disorder transition
temperature, the estimates we obtain from our Monte Carlo
simulations give the correct order of magnitude, indicating
that our DFT calculations correctly describe the underlying
energetics.

Most importantly, our calculations of the magnetocrys-
talline anisotropy (MAE) as function of the chemical long-
range order parameter Pz reveal that a reduction of Pz by
25% does not decrease the MAE within the accuracy of
our method. This is rather encouraging since it shows that
full chemical order is not required to obtain full anisotropy.
However, it also indicates that previous estimates of the full
anisotropy, based on the extrapolation of results obtained
for partially ordered samples, are probably too high. We
note that in order to obtain this result, the use of our con-
figurational sampling method is crucial. Effective medium
approaches, such as CPA, do not take into account the spe-
cific local chemical environment and thus will always pre-
dict a gradual decrease of the MAE for reduced chemical
order.

Interestingly, we obtain the highest MAE for certain con-
figurations with partial disorder, which suggests that the MAE
can potentially be increased beyond the value obtained for the
perfectly ordered L10 structure. We also demonstrate a clear
correlation between the orbital magnetic moment anisotropy
and the MAE, which suggests that chemical environments
resulting in a large local orbital moment anisotropy will also
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be favorable for obtaining a high MAE. While it might be
highly nontrivial to engineer a specific partially disordered
configuration, it provides an exciting avenue to optimize
the MAE in tetrataenite with respect to the local chemical
environment, by considering small deviations from perfect
L10 order as well as from the ideal equiatomic stoichiometry.
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