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Atomistic simulations of the thermal conductivity of liquids
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We present a method based on sinusoidal approach to equilibrium molecular dynamics (SAEMD) to compute
the thermal conductivity of liquids. Similar to nonequilibrium molecular dynamics, and unlike equilibrium
simulations based on the Green-Kubo formalism, the method only requires the calculation of forces and total
energies. The evaluation of heat fluxes and energy densities is not necessary, thus offering the promise of
efficiently implementing first principles simulations based on density functional theory or deep molecular
dynamics. Our approach is a generalization of SAEMD for solids, where the thermal conductivity is computed
in the steady state, instead of a transient regime, thus properly taking into account diffusive terms in the heat
equation. We present results for liquid water at ambient conditions and under pressure and discuss simulation
requirements to obtain converged values of the thermal conductivity as a function of size and simulation time.
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I. INTRODUCTION

Heat transfer is prevalent in many processes and systems
of interest to materials science, chemistry, and geoscience,
including electronic devices [1,2], solar [3] and photoelec-
trochemical cells [4], batteries [5], and transport of fluids
in the earth [6]. Hence, the ability to measure and compute
the thermal conductivity of solids and liquids is an active
field of research. In the past decade, a number of interesting
methods have been proposed in the literature to compute the
thermal conductivity of solids [7–10], with some of them
also applicable to liquids, e.g., molecular dynamics simu-
lations using the Green-Kubo formalism (GK) [11–14] and
the (reverse) nonequilibrium MD method (NEMD) [15]. In
particular, we recently proposed a method, sinusoidal ap-
proach to equilibrium molecular dynamics (SAEMD) [10],
which only requires calculations of trajectories and atomic
forces; the method avoids the direct computation of heat
currents and energy densities necessary within the Green-
Kubo approach, which are cumbersome and time consuming
to obtain when using first principles calculations. In addition,
the method requires shorter sequential simulation times than
non equilibrium MD, it can be efficiently used on parallel
high performance architectures, and in principle it can be
used in conjunction with path integral molecular dynamics
methods or ring polymer MD to include quantum effects.
However, in its original formulation the SAEMD approach
cannot be applied to liquids [10], as discussed in detail
below.

Here we present a method based on approach to equilib-
rium MD simulations, which retains all the advantages of
SAEMD, and can straightforwardly be applied to liquids. As
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an example we present results for liquid water at ambient
conditions and under pressure, at conditions (1000 K and
10 GPa) for which ab initio simulations of the structural prop-
erties of the liquid have been recently reported [16]. Water
is responsible for heat transfer in many physical, chemical
and biological processes. It exhibits a number of anomalous
properties, including high specific heat and, with the excep-
tion of liquid metals, the highest thermal conductivity of
pure liquids at standard conditions [17]. While measurements
of heat transport in water are available at room T and P,
very few experiments [18] have been reported under extreme
conditions, where the ability to predict thermal conductiv-
ity is thus particularly important. The rest of the paper is
organized as follows: after a presentation of the method in
Sec. II, we present results in Sec. III and our conclusions in
Sec. IV.

II. METHOD

The general equation of heat transport is

ρcp

[
∂T

∂t
+ (�v · ∇T )

]
= κ∇2T + q̇,

where v is the net mass velocity of atoms and molecules in the
material, κ is the thermal conductivity, q is the external heat
flux, T is the temperature, cp is the heat capacity at constant
pressure (P), and ρ is the density of the system. We compute
the thermal conductivity of a condensed system (either fluid
or solid) from its response to a perturbation. The latter is
expressed as a nonhomogeneous constant temperature profile,
which is maintained by a thermostat during a MD simulation.
The response of the system results in a nonhomogeneous
constant energy flux proportional to the Laplacian of the
temperature and to the thermal conductivity. The temperature
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FIG. 1. Energy [Q(t )] exchanged between the interior (blue) and exterior (red) partitions of a simulation cell as a function of time, in
a close-to-equilibrium molecular dynamics simulation (SAEMD) of liquid water under pressure (see text). The three panels show results
obtained by averaging over 2, 8, and 20 replicas. The shaded regions represent the uncertainty in the estimation of Q(t ). The black line is the
total energy exchanged between the two regions.

profile is defined as:

T (x, y, z) = T0 + �T

8

{[
1 − cos

(
2πx

L

)][
1 − cos

(
2πy

L

)]

×
[

1 − cos

(
2πz

L

)]
− 1

2

}
, (1)

where L is the length of the simulation cell chosen to represent
the system, and �T is the difference between the maximum
and the minimum temperature within the MD cell. When
the thermal conductivity is computed using the approach to
equilibrium method in a transient regime (SAEMD method),
q = 0 and the velocity term v is set to zero, to obtain

∂T

∂t
= κ

ρcp
∇2T .

In the case of solids, setting v = 0 is justified, since the atoms
are not free to move. However, in the case of liquids, atoms, or
molecules diffuse and the velocity term cannot be set to zero.
Hence, to generalize the SAEMD method to liquids, here we
solve the heat equation in the presence of a perturbation in the
steady state, where

0 = κ∇2T + q̇.

We partition the MD cell into two regions, an interior one
defined as the sphere centered in the middle of the cell and
containing half of its volume; the second region (exterior)
contains the remaining half of the cell. This partition is not
unique, and the system may be divided into more than two
regions, if needed. Our choice is motivated by the simplicity
of the configuration.

After the perturbation is applied, we monitor how much en-
ergy the thermostat is providing to the interior region, and how
much energy the thermostat removes from the exterior one.
This continuous energy exchange is necessary to maintain the
temperature difference between the two regions in the steady
state and the sum of the energy provided and removed must
be zero when a steady state is reached. The time derivative of
the difference of the energy exchanged (q̇) is the key quantity
necessary for the calculation of the thermal conductivity.

Under the assumption that the thermal conductivity (κ) of
the system is isotropic and independent on position, we can
obtain κ from the ratio of q̇ and the difference in the integrals

over the two regions (internal and external) of the Laplacian
of the temperature We note that, depending on the size of
the chosen simulation cell and hence on the temperature
gradient created in the cell, the temperature profile obtained
during the simulation may turn out not to be identical to the
one specified by the perturbation imposed. Hence in order
to correct for this behavior,in our calculations we multiplied
the difference in the integrals of Eq. 2 by the ratio between the
expected temperature difference in the two regions and the one
observed during the simulation [19]:

q̇ = ∂ (qint − qext )

∂t
= κ

(∫
int

∇2T −
∫

ext
∇2T

)
. (2)

To obtain statistically meaningful data, in our simulations
we averaged over results obtained from multiple independent
replicas. We show the importance of using multiple replicas
in Fig. 1, where we report qint, qext and their estimated error
as a function of the simulation time using 2, 8, and 20 replicas
for the calculations of the thermal conductivity of water under
pressure, using cells with 512 water molecules at P = 9.7 GPa
and T = 1000 K.

The thermal conductivity computed from MD simulations
using periodic boundary conditions (pbc) suffers from finite-
size effects for two reasons: (i) the cell size (and hence number
of atoms) chosen to represent the heat propagation in the
system is of course finite; this approximation is present in
all methods and it is the only source of finite-size effects in
equilibrium simulations based on GK; (ii) the need to keep
different parts of the system at different T , to monitor the flow
of energy; this approximation affects the NEMD and SAEMD
approaches, but clearly not GK.

Due to the presence of finite-size effects, an extrapolation
of simulation results obtained for different cell sizes is usually
necessary to obtain a converged value of κ . In solids, the
extrapolation of simulation results as a function of size is
obtained using models for phonon mean free paths [20,21].
In liquids, simple models of vibrational modes and their mean
free path are not available. We derived approximate formulas
to extrapolate the results of our simulations for water based
on the phenomenological model of heat transport presented in
reference [22], where the contribution of all pairs of molecules
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up to a distance r to the heat flux (J) is written as

J (r) = Cρ2
N

∫ r

0
Q̇(r′)g(r′)r′3r′−mdr′. (3)

Here g is the radial distribution function of the liquid, C is
a constant, ρN is the number density; r−m accounts for the
fact that the interaction between molecules is a many-body
interaction, rather than pair-wise. For liquid water in the range
300–600 K, using MD simulations Ohara [22] found that
Q̇(r′) = Q0/r3 for r > 0.7 nm and that a value of m = 2 best
describes the heat flux of water at ambient conditions. In the
limit of large r, g(r) = 1 and we rewrite Eq. (3) as

J (L) = J∞ − C′
∫ ∞

L
Q0r−2dr = J∞(1 − λ/L), (4)

where J∞ is the extrapolated value of the heat current for L −→
∞ and C and λ are constants. In our simulations we observed
that the autocorrelation function [A(τ )] of the current J (t )
can be expressed as a product of an oscillating function
independent on size [ f (τ )] multiplied by size dependent in-
tensities and we approximate it as A(τ ) � (JL )2 f (τ ). Hence,
the thermal conductivity is proportional to (JL )2 and using
Eq. (4) we write κ as

κ (L) = C′′J∞(1 − λ/L)2 = κ∞(1 − λ/L)2, (5)

where κ∞ is the extrapolated value of the thermal conductivity
for L −→ ∞ and C′′ is a constant. As we will see below, using
Eq. (5) we can accurately fit our simulation results at ambient
conditions and thus determine the value of κ∞. However, as
expected, Eq. (5) is not appropriate to fit our high T and P
results, since the value m = 2 used in Eqs. (4) and (5) was
derived for water at ambient conditions. Hence, we rewrote
Eq. (5) by treating m as a fitting parameter and we found that a
value of m = 4 appeared to fit our simulation results relatively
well. For m = 4 Eq. (5) becomes to leading order in 1/L,

κ (L) = κ∞(1 − (λ/L)3), (6)

and as shown below it fits accurately our high pressure results.
We note that Eq. (5) is equal to leading order in L to an
equation [23] derived from hydrodynamics arguments and
used to describe finite-size effects in the calculations of the
diffusivity of fluids, including water. We now turn to the
presentation of our results.

III. RESULTS

In this section we present our results for the thermal
conductivity of water at ambient conditions (T = 300 K, ρ =
1 g/cm3) and under pressure (T = 1000 K, ρ = 1.57 g/cm3).
Structural properties under pressure were recently investi-
gated [16] with ab initio MD using the PBE functional [24],
and we chose one snapshot from the trajectories reported in
the ab initio study to start our simulations. Water at ambient
conditions was described with the TIP4P-2005f force field
[25]. This empirical potential turned out to be numerically
unstable at high T and P; in particular, we found non physical
dissociation events in our simulations. At high P we then used
the SPCE-Fl force field [26], which describes the OH bonded
interaction with a harmonic potential and by construction
cannot lead to any dissociation. Note that we used flexible

FIG. 2. Thermal conductivity (κ) of water at 300 K as a function
of the linear size (L) of the cubic simulation cell and the number
of water molecules. Results obtained with Green-Kubo (GK) and
close-to-equilibrium molecular dynamics simulations (SAEMD) are
represented by red and black dots, respectively. Solid lines were
obtained by fitting the data with Eq. (5). We also show a fit of
SAEMD results using Eq. (6) (dotted black line). All simulations
were performed with the TIP4P-2005f force field. GK results are
slightly offset on the x axis to avoid overlap with SAEMD results.

potentials to avoid spurious effects in the calculations of heat
transfer brought about by the presence of constraints in MD
simulations with rigid water molecules [27]. As discussed in
the conclusions, it would be desirable to use more realistic
force fields and ultimately conduct ab initio simulations;
however as reported below, the time scales required for the
simulations of heat transport in water make the use of ab initio
MD prohibitive and point at the future use of machine-learned
first principle potentials as a viable alternative. In our work we
chose to use empirical potentials to demonstrate the accuracy
and robustness of the method proposed here, as compared to
GK simulations, and to test finite-size scaling and the required
simulation times.

We compare below (Figs. 2 and 3) results obtained with
GK and SAEMD simulations. In the former case, for each
replica we carried out simulations for 800 000 steps (200 ps)
under NVT conditions (initializing the calculation with differ-
ent initial velocities in different replicas), followed by NVE
simulations to collect data to compute the thermal conductiv-
ity. When discussing simulation time we only refer to this part
of the simulation. For each cell size we used eight replicas and
600 ps long simulations, except for the 13 824 molecule cell,
where we run four replicas.

The SAEMD simulations included three steps: (i) equili-
bration of the system at constant temperature; (ii) applica-
tion of a temperature perturbation; we carried out relatively
long simulations of about 100 ps in this transient regime
but several tests indicated that if needed, this time may be
decreased by up to one order of magnitude, the exact simula-
tion time depending on the system; (iii) collection of results
to compute κ . As in the case of Green-Kubo simulations,
we averaged over multiple independent replicas and when
discussing simulation time we only refer to the final part of the
simulation.

Figure 2 shows our results for the thermal conductivity
of water at 300 K, 1 g/cm3 using the TIP4P-20005f potential,
computed using Green-Kubo and SAEMD simulations. Both
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FIG. 3. Thermal conductivity (κ) of water at 1000 K and a
density of 1.57 g/cm3 as a function of the linear size (L) of the
cubic simulation cell and the number of water molecules. Results
obtained with Green-Kubo (GK) and close-to-equilibrium molecular
dynamics simulations (SAEMD) are represented by red and black
dots, respectively. Solid lines were obtained by fitting the data with
Eq. (6). All simulations were performed with the SPCE-Fl force field.
GK results are slightly offset on the x axis to avoid overlap with
SAEMD results.

methods yield almost identical extrapolated values of the ther-
mal conductivity, within error bars: we obtained 0.98 ± 0.01
for GK and 0.95 ± 0.02 for SAEMD when using Eq. (6) to fit
the data and 1.04 ± 0.01 when using Eq. (5) to fit only three
points. GK results were extrapolated using Eq. (5). We note
that GK simulation results exhibit a weaker dependence on
size: for example in simulations with 512 water molecules,
the GK value of κ is about 10% lower than κ∞, while that
obtained with SAEMD is about 16% lower. We emphasize
that while GK appears to be the method of choice when using
empirical potentials, due to its weaker size dependence, the
SAEMD approach offers the promise of efficiently perform-
ing simulations with neural-network-derived potentials and
possibly using forces derived from DFT, since it does not
require any calculation of the heat flux or of energy densities
but only of energies and forces.

In Fig. 3 we present our results for water at 1000 K, and
9.7 GPa using the SPCE-Fl force field. The values of the
thermal conductivity extrapolated using Eq. (6) are 2.47 ±
0.04 and 2.36 ± 0.06 for GK and SAEMD, respectively. As
in the case of water at ambient conditions, size effects are
more severe when using SAEMD, although in this case the
two methods give the same results within statistical error bars
for 512 molecule simulations. The increase of more than a
factor of 2 of the thermal conductivity found here at extreme
conditions is consistent with the observed increase of thermal
conductivity of water with respect to pressure [28].

In Fig. 4 we show the thermal conductivity as a function
of the total simulation time in a SAEMD simulation, when
using 512 water molecule cells at 1000 K, computed by
averaging over 20 replicas, each simulated for 500 ps. We
found that for a total simulation time equal to or larger than
5 ns, the results are approximately converged. In Fig. 5 we
show the relative error in the thermal conductivity of water
at 1000 K using 512 molecules as a function of the number
of replicas used and of the simulation time. The figure shows
that, after a short simulation time of 100 ps, the error can be

FIG. 4. Thermal conductivity (κ) of water at 1000 K and a
density of 1.57 g/cm3 computed with a 512 molecule cell by close-
to-equilibrium molecular dynamics simulations, as a function of
the total simulation time. All simulations were performed with the
SPCE-Fl force field.

reduced by either increasing the simulation time or the number
of replicas. While the total simulation time is the same for
the same relative error, the option of increasing the number
of replicas allows for independent parallel runs and shorter
sequential times.

In Table I we summarize available results for the thermal
conductivity of water at ≈ 300 K and 1 atm. None of the
values reported in the table, except those obtained here, were
extrapolate to obtain κ∞ although some studies did increase
the number of molecules in the cell in the direction of heat
transport to test finite-size effects. Overall we expect the
values obtained with small cell sizes to be an underestimate
of the extrapolated value for a given force-field; hence the
apparent agreement with experiments is not necessarily rep-
resentative of the accuracy of the force field or in general of
the description of the interaction chosen in the simulations.

FIG. 5. Average relative error (σ ) in the computed thermal con-
ductivity of water at 1000 K and density of 1.57 g/cm3, as a function
of the number of replicas. Simulations were carried out with 512
molecule cells and the close-to-equilibrium approach, using the
SPCE-Fl force field.
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TABLE I. Measured (Exp) and computed values of the thermal conductivity [κ (W/mK)] of water at density of � 1 g/cm3, obtained using
different force fields (first column). All computed values were obtained using molecular dynamics with the Green-Kubo (GK), nonequilibrium
(NEMD), or close-to-equilibrium (SAEMD) approach (see second column) at a temperature [T (K)] given in the third column. The maximum
number of molecules (Nmol) in the unit cell, the simulation time per replica (ts), and the number of replicas (Nrep are given in columns 5, 6, and
7, respectively.

Force field Method T κ Nmol ts Nrep Ref.

TIP4P-2005f [25] GK 300 K 0.98(1) 13 824 600 ps 4 This work
TIP4P-2005f SAEMD 300 K 0.95(2) 13 824 500 ps 4 This work
SPC [29] NEMD 298 K 0.88(2) 900 2 ns 1 [30]
SPC NEMD 298 K 0.776(19) 2180 1 ns 1 [31]
SPC GK 298 K 0.802(16) 2180 1 ns 1 [31]
SPCE [32] NEMD 298 K 0.930(16) 900 2 ns 1 [30]
SPC f [29,33] NEMD 300 K 0.7(1) 27 036 300 ps 1 [33]
SPCE-F [34] GK 300 K 0.970(9) 180 40 ns 1 [35]
SPC-Fw [36] GK 300 K 0.854(104) 2180 1 ns 1 [31]
SPC-Fw NEMD 300 K 1.011(6) 2180 1 ns 1 [31]
SPC-Fd [37] GK 300 K 0.793(105) 2180 1 ns 1 [31]
SPC-Fd NEMD 300 K 0.977(12) 2180 1 ns 1 [31]
TIP3P [38] NEMD 298 K 0.880(19) 900 2 ns 1 [30]
TIP4P-2005 [39] NEMD 298 K 0.910(14) 900 2 ns 1 [30]
TIP5P [40] GK 298 K 0.668(31) 2048 15–20 ns 6 [41]
TIP5P NEMD 298 K 0.680(7) 900 2 ns 1 [30]
TIP5P-Ew [42] NEMD 298 K 0.620(7) 900 2 ns 1 [30]
PBE [24] GK 385 K 0.74(12) 64 90 ps 1 [7]
PBE [24] NEMD 353 K 0.79 480 150 ps 1 [43]
Exp 300 K 0.609 [44]
Exp 300 K 0.6096 [45]

IV. CONCLUSIONS

We presented a method for the calculation of the thermal
conductivity of liquids which relies on molecular dynamics
simulations conducted close-to-equilibrium conditions, in the
steady state. Similar to nonequilibrium molecular dynamics,
and unlike equilibrium simulations based on GK, the method
only requires the calculation of forces and total energies
and the evaluation of heat fluxes and energy densities is
not necessary. The close-to-equilibrium approach requires
in general shorter simulation times than NEMD and thus
allows one to take better advantage of parallel computing
architectures. However, the cell-size dependence found in the
present work is still less favorable than that observed with
GK simulations. Hence, when using empirical force fields,
for which the calculation of energy densities is straightfor-
ward and does not add any computational complexity, GK
simulations should be the method of choice for homogeneous
systems, from the standpoint of efficiency. Instead, in cases
when computing energy densities and heat fluxes amount to
additional, expensive calculations (as, e.g., in the case of
first-principles simulations), SAEMD is expected to be the
most efficient method for solid and the method presented here
the most efficient one for liquids. We note, however, that, at
least in the case of liquid water and ambient and extreme con-
ditions studied here, the cell sizes and especially simulation
times required for convergence still rule out the possibility of
carrying out converged first principles simulations (and the
same is true for GK). We expect that the ionic component of
the thermal conductivity of liquid metals and possibly other
fluids at elevated temperatures may be computed using the

method presented here and DFT derived forces. An interesting
direction to explore is the use of the approach in conjunction
with deep-MD potentials based on first principles forces [46].
In fact, we have successfully conducted a simulation of a
512 molecule cell of water molecules at high pressure and
temperature using the deep-MD potential developed with the
method of Ref. [46] and the close-to-equilibrium approach.
Work is in progress to perform simulations with the same po-
tential for several other conditions under pressure, so as to pre-
dict the thermal conductivity of water at extreme conditions,
where experiments are still rather challenging to perform. The
results obtained here with empirical potentials show a more
than two-fold increase of the thermal conductivity of water
when going from 300 K to high pressure and temperature
conditions (P � 10 GPa and T � 1000 K). Finally, we note
that in the case of water, especially at ambient conditions,
proton quantum effects are likely to play a significant role
in determining the value of the thermal conductivity and
that close-to-equilibrium simulations are expected to be more
straightforward to couple to a path integral formulation than
simulations based on the Green-Kubo formalism.

Data and workflows are available at [47].

ACKNOWLEDGMENTS

We thank F. Gygi, L. Zhang, and R. Car for helpful
discussions. This work was supported by MICCoM, as part of
the Computational Materials Sciences Program funded by the
U.S. Department of Energy, Office of Science, Basic Energy
Sciences, Materials Sciences and Engineering Division.

053801-5



MARCELLO PULIGHEDDU AND GIULIA GALLI PHYSICAL REVIEW MATERIALS 4, 053801 (2020)

[1] S. V. Garimella, T. Persoons, J. A. Weibel, and V. Gektin, IEEE
Trans. Compon. Packag. Manuf. Technol. 7, 1191 (2017).

[2] E. Pop, Nano Res. 3, 147 (2010).
[3] A. Ndiaye, A. Charki, A. Kobi, C. M. Kébé, P. A. Ndiaye, and

V. Sambou, Sol. Energy 96, 140 (2013).
[4] S. Tembhurne, F. Nandjou, and S. Haussener, Nature Energy 4,

399 (2019).
[5] Y. Zhu, J. Xie, A. Pei, B. Liu, Y. Wu, D. Lin, J. Li, H. Wang,

H. Chen, J. Xu, A. Yang, C.-L. Wu, H. Wang, W. Chen, and
Y. Cui, Nat. Commun. 10, 2067 (2019).

[6] A. G. Whittington, A. M. Hofmeister, and P. I. Nabelek, Nature
458, 319 (2009).

[7] A. Marcolongo, P. Umari, and S. Baroni, Nat. Phys. 12, 80
(2015).

[8] C. Carbogno, R. Ramprasad, and M. Scheffler, Phys. Rev. Lett.
118, 175901 (2017).

[9] D. A. Broido, M. Malorny, G. Birner, N. Mingo, and D. A.
Stewart, Appl. Phys. Lett. 91, 231922 (2007).

[10] M. Puligheddu, F. Gygi, and G. Galli, Phys. Rev. Mater. 1,
060802 (2017).

[11] M. S. Green, J. Chem. Phys. 20, 1281 (1952).
[12] M. S. Green, J. Chem. Phys. 22, 398 (1954).
[13] R. Kubo, M. Yokota, and S. Nakajima, J. Phys. Soc. Jpn. 12,

1203 (1957).
[14] R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).
[15] F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).
[16] V. Rozsa, D. Pan, F. Giberti, and G. Galli, Proc. Natl. Acad. Sci.

USA 115, 6952 (2018).
[17] R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of

Gases and Liquids (McGraw Hill, New York, NY, 1987).
[18] Z. M. Geballe and V. V. Struzhkin, J. Appl. Phys. 121, 245901

(2017).
[19] We note that, depending on the size of the chosen simulation

cell and hence on the temperature gradient created in the cell,
the temperature profile obtained during the simulation may turn
out not to be identical to the one specified by the perturbation
imposed. Hence, to correct for this behavior, in our calculations
we multiplied the difference in the integrals of Eq. (2) by the
ratio between the expected temperature difference in the two
regions and the one observed during the simulation.

[20] P. K. Schelling, S. R. Phillpot, and P. Keblinski, Phys. Rev. B
65, 144306 (2002).

[21] H. Zaoui, P. L. Palla, F. Cleri, and E. Lampin, Phys. Rev. B 94,
054304 (2016).

[22] T. Ohara, J. Chem. Phys. 111, 6492 (1999).
[23] I.-C. Yeh and G. Hummer, J. Phys. Chem. B 108, 15873 (2004).

[24] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[25] M. A. González and J. L. F. Abascal, J. Chem. Phys. 135,
224516 (2011).

[26] J. López-Lemus, G. A. Chapela, and J. Alejandre, J. Chem.
Phys. 128, 174703 (2008).

[27] T. M. Yigzawe and R. J. Sadus, J. Chem. Phys. 138, 044503
(2013).

[28] B. Chen, W.-P. Hsieh, D. G. Cahill, D. R. Trinkle, and J. Li,
Phys. Rev. B 83, 132301 (2011).

[29] W. F. v. G. H. J. C. Berendsen, J. P. M. Postma and J. Hermans,
in Intermolecular Forces, edited by B. Pullman and D. Reidel
(D. Reidel Publishing Company, The Netherlands, 1981).

[30] Y. Mao and Y. Zhang, Chem. Phys. Lett. 542, 37 (2012).
[31] T. W. Sirk, S. Moore, and E. F. Brown, J. Chem. Phys. 138,

064505 (2013).
[32] H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys.

Chem. 91, 6269 (1987).
[33] W. Evans, J. Fish, and P. Keblinski, J. Chem. Phys. 126, 154504

(2007).
[34] J. Alejandre, G. A. Chapela, F. Bresme, and J.-P. Hansen,

J. Chem. Phys. 130, 174505 (2009).
[35] L. Ercole, A. Marcolongo, and S. Baroni, Sci. Rep. 7, 15835

(2017).
[36] Y. Wu, H. L. Tepper, and G. A. Voth, J. Chem. Phys. 124,

024503 (2006).
[37] L. X. Dang and B. M. Pettitt, J. Phys. Chem. 91, 3349 (1987).
[38] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey,

and M. L. Klein, J. Chem. Phys. 79, 926 (1983).
[39] J. L. F. Abascal and C. Vega, J. Chem. Phys. 123, 234505

(2005).
[40] M. W. Mahoney and W. L. Jorgensen, J. Chem. Phys. 112, 8910

(2000).
[41] N. J. English and J. S. Tse, J. Phys. Chem. Lett. 5, 3819 (2014).
[42] S. W. Rick, J. Chem. Phys. 120, 6085 (2004).
[43] E. Tsuchida, J. Phys. Soc. Jpn. 87, 025001 (2018).
[44] R. W. Powell, C. Y. Ho, and P. E. Liley, NIST Reference Data

130 (1966).
[45] M. L. V. Ramires, C. A. Nieto de Castro, Y. Nagasaka, A.

Nagashima, M. J. Assael, and W. A. Wakeham, J. Phys. Chem.
Ref. Data 24, 1377 (1995).

[46] L. Zhang, J. Han, H. Wang, R. Car, and W. E, Phys. Rev. Lett.
120, 143001 (2018).

[47] M. Puligheddu and G. Galli, “Atomistic simulations of the
thermal conductivity of liquids”, https://paperstack.uchicago.
edu/paperdetails/5eb086e8e092384bb26754dc (2020).

053801-6

https://doi.org/10.1109/TCPMT.2016.2603600
https://doi.org/10.1109/TCPMT.2016.2603600
https://doi.org/10.1109/TCPMT.2016.2603600
https://doi.org/10.1109/TCPMT.2016.2603600
https://doi.org/10.1007/s12274-010-1019-z
https://doi.org/10.1007/s12274-010-1019-z
https://doi.org/10.1007/s12274-010-1019-z
https://doi.org/10.1007/s12274-010-1019-z
https://doi.org/10.1016/j.solener.2013.07.005
https://doi.org/10.1016/j.solener.2013.07.005
https://doi.org/10.1016/j.solener.2013.07.005
https://doi.org/10.1016/j.solener.2013.07.005
https://doi.org/10.1038/s41560-019-0373-7
https://doi.org/10.1038/s41560-019-0373-7
https://doi.org/10.1038/s41560-019-0373-7
https://doi.org/10.1038/s41560-019-0373-7
https://doi.org/10.1038/s41467-019-09924-1
https://doi.org/10.1038/s41467-019-09924-1
https://doi.org/10.1038/s41467-019-09924-1
https://doi.org/10.1038/s41467-019-09924-1
https://doi.org/10.1038/nature07818
https://doi.org/10.1038/nature07818
https://doi.org/10.1038/nature07818
https://doi.org/10.1038/nature07818
https://doi.org/10.1038/nphys3509
https://doi.org/10.1038/nphys3509
https://doi.org/10.1038/nphys3509
https://doi.org/10.1038/nphys3509
https://doi.org/10.1103/PhysRevLett.118.175901
https://doi.org/10.1103/PhysRevLett.118.175901
https://doi.org/10.1103/PhysRevLett.118.175901
https://doi.org/10.1103/PhysRevLett.118.175901
https://doi.org/10.1063/1.2822891
https://doi.org/10.1063/1.2822891
https://doi.org/10.1063/1.2822891
https://doi.org/10.1063/1.2822891
https://doi.org/10.1103/PhysRevMaterials.1.060802
https://doi.org/10.1103/PhysRevMaterials.1.060802
https://doi.org/10.1103/PhysRevMaterials.1.060802
https://doi.org/10.1103/PhysRevMaterials.1.060802
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1700722
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1063/1.1740082
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.1203
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1143/JPSJ.12.570
https://doi.org/10.1063/1.473271
https://doi.org/10.1063/1.473271
https://doi.org/10.1063/1.473271
https://doi.org/10.1063/1.473271
https://doi.org/10.1073/pnas.1800123115
https://doi.org/10.1073/pnas.1800123115
https://doi.org/10.1073/pnas.1800123115
https://doi.org/10.1073/pnas.1800123115
https://doi.org/10.1063/1.4989849
https://doi.org/10.1063/1.4989849
https://doi.org/10.1063/1.4989849
https://doi.org/10.1063/1.4989849
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.65.144306
https://doi.org/10.1103/PhysRevB.94.054304
https://doi.org/10.1103/PhysRevB.94.054304
https://doi.org/10.1103/PhysRevB.94.054304
https://doi.org/10.1103/PhysRevB.94.054304
https://doi.org/10.1063/1.480025
https://doi.org/10.1063/1.480025
https://doi.org/10.1063/1.480025
https://doi.org/10.1063/1.480025
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1021/jp0477147
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.3663219
https://doi.org/10.1063/1.3663219
https://doi.org/10.1063/1.3663219
https://doi.org/10.1063/1.3663219
https://doi.org/10.1063/1.2907845
https://doi.org/10.1063/1.2907845
https://doi.org/10.1063/1.2907845
https://doi.org/10.1063/1.2907845
https://doi.org/10.1063/1.4779295
https://doi.org/10.1063/1.4779295
https://doi.org/10.1063/1.4779295
https://doi.org/10.1063/1.4779295
https://doi.org/10.1103/PhysRevB.83.132301
https://doi.org/10.1103/PhysRevB.83.132301
https://doi.org/10.1103/PhysRevB.83.132301
https://doi.org/10.1103/PhysRevB.83.132301
https://doi.org/10.1016/j.cplett.2012.05.044
https://doi.org/10.1016/j.cplett.2012.05.044
https://doi.org/10.1016/j.cplett.2012.05.044
https://doi.org/10.1016/j.cplett.2012.05.044
https://doi.org/10.1063/1.4789961
https://doi.org/10.1063/1.4789961
https://doi.org/10.1063/1.4789961
https://doi.org/10.1063/1.4789961
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1021/j100308a038
https://doi.org/10.1063/1.2723071
https://doi.org/10.1063/1.2723071
https://doi.org/10.1063/1.2723071
https://doi.org/10.1063/1.2723071
https://doi.org/10.1063/1.3124184
https://doi.org/10.1063/1.3124184
https://doi.org/10.1063/1.3124184
https://doi.org/10.1063/1.3124184
https://doi.org/10.1038/s41598-017-15843-2
https://doi.org/10.1038/s41598-017-15843-2
https://doi.org/10.1038/s41598-017-15843-2
https://doi.org/10.1038/s41598-017-15843-2
https://doi.org/10.1063/1.2136877
https://doi.org/10.1063/1.2136877
https://doi.org/10.1063/1.2136877
https://doi.org/10.1063/1.2136877
https://doi.org/10.1021/j100296a048
https://doi.org/10.1021/j100296a048
https://doi.org/10.1021/j100296a048
https://doi.org/10.1021/j100296a048
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.445869
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.2121687
https://doi.org/10.1063/1.481505
https://doi.org/10.1063/1.481505
https://doi.org/10.1063/1.481505
https://doi.org/10.1063/1.481505
https://doi.org/10.1021/jz5016179
https://doi.org/10.1021/jz5016179
https://doi.org/10.1021/jz5016179
https://doi.org/10.1021/jz5016179
https://doi.org/10.1063/1.1652434
https://doi.org/10.1063/1.1652434
https://doi.org/10.1063/1.1652434
https://doi.org/10.1063/1.1652434
https://doi.org/10.7566/JPSJ.87.025001
https://doi.org/10.7566/JPSJ.87.025001
https://doi.org/10.7566/JPSJ.87.025001
https://doi.org/10.7566/JPSJ.87.025001
https://nvlpubs.nist.gov/nistpubs/Legacy/NSRDS/nbsnsrds8.pdf
https://doi.org/10.1063/1.555963
https://doi.org/10.1063/1.555963
https://doi.org/10.1063/1.555963
https://doi.org/10.1063/1.555963
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://doi.org/10.1103/PhysRevLett.120.143001
https://paperstack.uchicago.edu/paperdetails/5eb086e8e092384bb26754dc

