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Systematic development of ab initio tight-binding models for hexagonal metals
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A systematic method for building an extensible tight-binding model from ab initio calculations has been
developed and tested on two hexagonal metals: Zr and Mg. The errors introduced at each level of approximation
are discussed and quantified. For bulk materials, using a limited basis set of spd orbitals is shown to be sufficient
to reproduce with high accuracy bulk energy versus volume curves for fcc, bee, and hep lattice structures, as well
as the electronic density of states. However, the two-center approximation introduces errors of several tenths of
eV in the pair potential, crystal-field terms, and hopping integrals. Environmentally dependent corrections to
the former two have been implemented, significantly improving the accuracy. Two-center hopping integrals
were corrected by taking many-center hopping integrals for a set of structures of interest, rotating them into
the bond reference frame, and then fitting a smooth function through these values. Finally, a pair potential
was fitted to correct remaining errors. However, this procedure is not sufficient to ensure transferability of the
model, especially when point defects are introduced. In particular, it is shown to be problematic when interstitial
elements are added to the model, as demonstrated in the case of octahedral self-interstitial atoms.
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I. INTRODUCTION

Atomistic simulations of most hexagonal metals and their
alloys have been dominated by two classes of models: density
functional theory (DFT) [1] and classical empirical poten-
tials [most notably embedded atom model (EAM) [2]]. DFT
models are effectively parameter free and transferable for use
over a large range of different systems [3]; however, they are
severely limited by the computational resources required for
a simulation, with system sizes only rarely exceeding 1000
atoms [4-6]. Empirical potentials, on the other hand, require
extensive parametrization, which may need to be redone with
the addition of new elements to the model, and are gener-
ally only applicable for a limited number of problems. For
instance, the Mendelev and Ackland EAM potentials for Zr
have one parametrization for reproducing the phase transition
from hcp to bee and another for modeling defects in hcp
Zr [7]. The empirical potentials also often exclude important
physical effects (such as charge transfer in the case of EAM),
which can result in poor accuracy when modeling chemical
reactions [8]. Due to the increasing recognition of the practical
importance of understanding complex phenomena, there is
a clear demand for models capable of accurate simulations
involving multiple atomic species and large numbers of atoms
(many thousands or more).

Tight-binding (TB) models lie on the boundary between
DFT and empirical potentials. They include an explicit rep-
resentation of electronic structure, and therefore bond forma-
tion, but are calculated in a more approximate (and therefore
faster) way than in DFT [9-17]. The use of a minimal basis
set of atomic orbitals means TB models are not an obvious
choice for free-electron-like metals. However, we find that
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using a basis set of s, p, and d orbitals is sufficient for many
properties of hexagonal metals and alloys. Note that the full
overlap matrix must be retained as there is significant overlap
of orbitals on neighboring sites.

In two-center TB, the numerical values of the integrals
describing each interaction can be precalculated before a sim-
ulation, as they only depend on the distance and orientation of
two orbitals, significantly improving the speed of subsequent
simulations [10,16,18,19]. However, for solids this is a signif-
icant approximation as three-center terms can be important
[12,14,20]. There is a range of methods for obtaining the
values of the required integrals. Semiempirical TB requires
the value of each of these integrals to be fitted to accurate data
(often found from DFT) in order to reproduce the electronic
states up to the Fermi level, the binding energies, and the
forces [9,10,18,21-26]. Since the calculation of the electronic
states involves a diagonalization of the entire Hamiltonian
matrix, all the integrals need to be fitted at the same time.
The more complex the underlying TB model (both in terms of
features included and number of atomic orbitals considered),
the larger the number of parameters required to describe the
variation of these integrals with distance, and the higher the
risk of not finding optimal values or overfitting. Moreover,
a large data set of DFT calculations is generally required
as target for this optimization [19,22,24]. In the end, these
methods have many of the same advantages as empirical
potentials, but also suffer from some of the same problems.
There can be a lack of transferability as they often need to be
refitted when adding new elements.

Another way to obtain the parameters is by calculating the
values of the integrals required directly [12,14,16]. Density
functional tight binding (DFTB) uses a more systematic ap-
proach based on full DFT calculations of the on-site energies,
hopping, and overlap for a dimer; crystal-field integrals are
sometimes also included [22]. A pair potential (often treated
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as purely repulsive) is then fitted to incorporate the ion-ion in-
teractions and to approximately compensate for missing elec-
tron repulsion and the many-center interactions [16]. Again,
target data from a more reliable calculation is needed, but this
time only energies and forces are required (not the electronic
structure) and fitting of a pair potential is much simpler. This
approach works well as long as the many-center interactions
do not have a significant effect on the electronic structure, and
has been successful in modeling many molecular systems, and
other open structures [16].

This method has been improved by the group of Cawkwell
using the tabulated DFTB values as a starting point, followed
by numerical optimization of the integrals for the electronic
structure to correct for many-center effects. This method gives
rise to models for molecules involving C, H, N, and O with
high accuracy in the predicted bond lengths and binding
energies [19]. Starting from a reasonable guess of parameters
reduces the demands on the optimization step in the process
and reduces the risk of overfitting.

The main disadvantage of all methods where terms are
dropped and compensated for by fitting is the lack of trans-
parency of the different sources of error. When modeling
systems where many-center interactions are important, for
example, an interstitial defect in a close-packed metal, it is
hard to predict the performance of a particular TB model and
the error due to the approximations. As a result, it is difficult to
predict the suitability of a TB model for a given simulation or
even material, and predict which physical phenomena might
be causing the model to fail. Establishing the reasons for
errors, and hence what needs to be done to correct them, is
one of the aims of this work.

Another more recent class of TB models worth mentioning
takes a more systematic approach to obtaining two-center
hopping integrals directly from DFT simulations of periodic
systems [23,27-29]. This approach mainly focuses on the
hopping integrals for particular perfect crystal systems with
one or two elements, and does not address the question of
transferability for metals with defects. However, for defects
and dislocations in silicon it has been found that many-center
interactions can be too large for a two-center model to be
suitable [30].

The approach taken here to building a two-center TB model
involves four steps: selection of an appropriate basis set;
tabulation of the two-center overlap, hopping, and crystal-
field integrals as well as an initial pair potential using the
DFTB approach; the application of many-center corrections
for each of these terms; and pair-potential fitting. For the
crystal field and the pair potential, an embedding term based
on the electron density overlaps is used. Fitting directly to
DFT integrals [23] (as opposed to band structure) is used to
correct the hopping integrals; a pair potential is subsequently
fit to reproduce plane-wave structural results. The errors in-
troduced in each step of the approximation are evaluated for
both perfect crystals and defects.

Our choice of metals used in the analysis of TB is governed
by our interest in corrosion. Corrosion is a complex process
that can only be simulated at the atomic scale by methods
that treat electrons explicitly. DFT has been employed, but

TB might enable a deeper understanding to be acquired as
its computational efficiency enables larger numbers of atoms
and longer timescales to be reached. However, the models
need to be robust. Here, we look at TB models for two
materials for which corrosion is a key concern at the present:
Zr and Mg. Cladding of of water-cooled nuclear reactor
fuel currently uses Zr alloys; consequently, understanding the
corrosion behavior of its alloys under irradiation is of current
importance to the nuclear industry. Systems beyond the size
attainable by traditional plane-wave DFT are needed to model
the defects introduced by the radioactive environment and
their interaction with the alloying elements, as well as their
influence of the corrosion rate and hydrogen pickup [31,32].
Mg is the lightest structural metal available, and thus could
be used to reduce fuel consumption by making trains, planes,
and cars lighter. However, it is prone to corrosion, and our
understanding of what happens when it corrodes is far from
complete [33].

II. TB FORMALISM
A. Harris-Foulkes DFT

The first approximation central to all TB models is the use
of a basis set of atom-centered orbital wave functions ¢, (7)
to represent the electron wave functions, and hence the density
n(7), of the system. The molecular orbitals of the system are
expanded in this set of atomic orbitals ¢y,

Vp(F) = Cpratpra(®), ey
lo

where ¢, j, is an expansion coefficient, / is an index that
runs over the atoms, and « indexes the atomic orbitals on
each atom. The density is then computed from the molecular
orbitals

n(®) =Y [lv), )
P

where f), is the occupancy of molecular orbital ,. The total
energy of the system is then given by the Kohn-Sham energy:

hz
Elnl=) f / w;m(—%vz)wp(?) dr
p
+ EHarwee[11] + Eexc[n] + Exc[n], 3)

where the first term is the kinetic energy, with 7 being Planck’s
constant, m the mass of an electron, Epaue. the average
electron-electron repulsion, E.; the electron-ion and ion-ion
interaction energies, and Ey. the exchange and correlation
energy. The ground-state electronic energy is then calculated
by finding the coefficients ¢/, ;, that minimize the Kohn-Sham
energy.

Now, the Hohenberg-Kohn energy (which is equal to the
Kohn-Sham energy for a given electron density) can be ex-
panded in powers of ¢(¥) = n(¥) — n”(#) where n¥ is some
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reference electron density:

Eln] = E[n®] + /
——

Eo

q(F)dr

Sn(7) n©

// 5n(r)5n( 9

E>

=Ey+E +E+---.

“

q(P)q(F)d? d7 +
o)

The closer n® is to the ground-state electron density of the
system studied, the smaller the higher-order terms are, and the
more accurate low-order approximations to the final energy
are.

The sum of atom-centered spherical electron densities
ny(7) is used as the reference density: that is, n® =", n,
where I runs over the atoms. In this case, the individual
terms in the energy expansion have a clear physical meaning.
The first term E( corresponds to the energy of collections of
atoms in the absence of electronic relaxation; this is similar
in content to a Lennard-Jones potential. The second term E|
corresponds to the charge redistribution associated with the
formation of covalent bonds, i.e., the first-order electronic
structure contribution; this becomes clearer when expressed
in terms of atomic orbitals as shown below. The third term
E, becomes important when significant charge transfer occurs
in the system, as happens when atoms with very different
electronegativities are present. In this paper we will mainly
focus on Ej and E, as charge transfer between atoms in pure
metals without defects is relatively small. However, E, can
become important when defects or additional elements are
present. In the rest of this section, E; and higher-order terms
will be neglected. Note that terms higher than E, are purely
from the exchange and correlation energy.

For a given n¥), E, can be calculated simply by evaluating
Eq. (3), where everything except the exchange and correlation
can be represented exactly as a sum of one- and two-center
integrals. Now, the ground-state density corresponds to the
value of ¢(7) that minimizes the total energy. Thus, if we
neglect E> and higher terms, we can can find the correspond-
ing ground-state density by making E; stationary. However,
the resulting energy will not necessarily be above the true
minimum [11,13,34]. Note that to perform this variational
calculation we need to evaluate the different energy contri-
butions. Using the Kohn-Sham expression for E|,

0)
Z Ia 1/3 pla,]ﬂ - ;Om,jﬁ)a (5)
la,J B

where pro.7p =2 ), fuCpr 14Cnup is the density matrix, n la-
bels the eigenstates of H ,(2) 15 the factor of 2 accounts for spin

degeneracy, pl(g? 15 18 the density matrix for the free atoms, and
the Hamiltonian matrix is given by

OF
¢]0{ >
n(r

— / b1a(T + Vics Oy dF, ©)

(0)
Hla J,B

¢Jﬁ dr
(0)

where T = —% is the kinetic energy operator, and
Vksln, 7] = ‘”E%(f.[)"] is the Kohn-Sham potential, and Eyxc =
Exartree + Eext + Exc. The eigenstates of H, ,(a) 1p are found from

Z o ,,3Cn,1ﬁ =€, Zsla,Jﬁcn,Jﬂa @)

Jp

where €, is the eigenvalue for state n. The matrix elements of
H© are referred to as hopping integrals if / # J, and on-site
terms (formed from an atomic contribution and crystal-field
integrals) if / = J. The overlap matrix is defined by

Stagp = /¢1a¢Jﬁ dr. (¥

Just as for Ey, everything except the exchange and correlation
part of the hopping and crystal-field integrals can be evaluated
exactly as a sum of one-, two-, or three-center integrals.

B. Basis-set generation

The discussion that follows presupposes the use of an
atomic basis set. Here, we describe how we build these basis
sets. The reference electron density for each atom is formed
from the filled atomic orbitals of a free atom. For instance,
for Zr we use a 5s* 4d* 5p° configuration, and so only the 5s
and 4d orbitals contribute to the density, and hence to Ey. All
orbitals contribute to E; as electronic relaxation causes mixing
between orbitals. Atomic orbitals optimized for a solid will
generally be less extended than ones for a free atom, thus the
basis set is computed using an atom in a confinement potential

of the form [35]
r n
V0<_) ) (9)
ro

with Vy = 2 Ry and n = 6 [14]. The effect of this confining
potential on the orbitals of Zr is shown on Fig. 1. The orbitals
are constrained to zero at a radius r., > ro. The value for ry
is varied to obtain a basis set that gives properties comparable

Veont (1) =

5
0.14 -

= 1

© 0.12 1 HEES
c ! 3
g 0.101 , g
2 /I r3g
2 0.08 1 ! 3
g / s
= / £
‘S 0.06 A oA / L2 2
- / o
© . N\ / e
Q . B / =
£ 0.04 /2R, W, k / €
I T Y , o
° L/ ’ r1o
& 0.02 RN

0.00 = : — —— =4 0
0 1 2 3 4 5 6 7 8
r (ao)

FIG. 1. The effect of the confinement potential with ry = 7.0a,
and r. = 8.0ay (dashed line) on the atomic orbitals (solid line)
compared to those for a free atom (dotted line). In Zr, the 4d orbitals
(blue) are almost unchanged, while the shape of the longer-ranged 5s
(orange) and especially 5p (green) orbitals changes significantly.
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to a more complete plane-wave basis-set calculation, notably,
the correct equilibrium lattice parameters, energy ordering
of different structures at equilibrium, and electronic density
of states. It is possible to vary n, or even use a different
confinement potential for each atomic shell; however, simply
varying ro has often been found to be sufficient [12,36-38].
The range of the chosen basis set influences the computational
cost: longer-range basis sets mean more integrals need to be
calculated, and hence lead to slower calculations. Therefore,
we wish to choose the shortest-range basis set possible that
leads to reasonable properties. Unless stated otherwise, all
calculations in this paper use a single-¢ spd basis set.

The evaluation of the integrals needed to calculate the
different components of the energy is made more efficient
by expanding each atomic orbital and pseudopotential in a
series of Gaussian functions, a technique widely used in
chemistry DFT codes. The pseudopotentials used here are
the Goedecker type used in the CP2K code [39—41], which
are formed from Gaussian functions. This allows all integrals
needed to describe the kinetic energy, overlap matrix, and
electrostatic interactions to be evaluated analytically; only
the exchange and correlation integrals need to be computed
numerically.

For Mg we used the GTH-PBE-q2 pseudopotential for
which 10 electrons per atom were represented with a pseu-
dopotential. For Zr we used the GTH-LDA-q4 pseudopoten-
tial. The choice was mainly motivated by the desire for a small
basis set: the available PBE pseudopotentials for Zr include
semicore 4s and 4p states, that do not directly contribute
to bonding. The inaccuracies introduced by the use of this
local density approximation (LDA) pseudopotential mainly
manifest in calculations of self-interstitial defect formation
energies, as discussed below. The Perdew-Burke-Ernzerhof
(PBE) exchange and correlation functional is used throughout;
it has been shown to reproduce well the physical properties of
Mg and Zr alloys, including correctly predicting the lowest-
energy site for interstitial H in Zr [42]. We now consider
the approximations we make to the linear-combination-of-
atomic-orbitals (LCAO) DFT calculations to further improve
efficiency.

C. Two-center TB

In two-center TB we calculate all relevant quantities as a
sum of pairwise contributions. The pairwise approximation to
Ey corresponds to a low-order cluster expansion, given by

E), =E [Z n1:|
1

2 J J
1 I1#J

This has the form of atomic terms plus a pair potential, which
can be tabulated as a function of distance between two atoms.
The error in the pair potential is solely a result of exchange
and correlation.

Matrix elements of the Kohn-Sham potential can also be
approximated using a cluster expansion, giving

/ P10 Vies |:Z nKi| ¢spdr7
K

{f braVicslng + njlgypdi, T #1T

~
~

11
Yok S OraVkslnklgigdr, 1 =1. (i

This allows the integrals to be computed from a set of
precalculated tables, which leads to rapid building of the
Hamiltonian. For crystal-field terms (I = J), all the errors
arise from many-center effects in the exchange and correlation
potential. For hopping terms (I # J) there are errors both from
neglect of three-center neutral atom potential terms and the
exchange and correlation terms.

D. A many-center correction for E,

The many-center cluster expansion for E,.[n®] can be
written as

Exc |:an] = ZExc[nI] + % Z(Exc[nl +nJ]
1 1

1£)
— Exc[ng] — Exc[ng]) + AE, (12)

where AE,. is the correction term we need. To estimate
this correction we employ the approximation of Sankey and
Niklewski [12], namely, that the exchange and correlation
energy per particle varies slowly in space. This allows us to
include multisite terms approximately, but in a computation-
ally efficient way. Unfortunately, it is currently limited to the
local density approximation (LDA). In the LDA we have

ELDA {Z n,} -y / 11 (Péxe (Z n,(?)) dr,  (13)
1 1 J

where €, is the exchange and correlation energy per electron
for a uniform electron gas. We now perform a Taylor expan-
sion of €x.(n) about an average value 7i; to get

ELPA |:Z n1:| = Z / ny(7) |:€xc(ﬁ1) + €, (7iy)
1 1
x <Z ny(7) — ﬁ;) + - } dr. (14
J

If we let Z; = [ 'n;(F)dF, iy; = 7 [ m(F)ny(F)dF, and ity =
>, iy, then Eq. (14) simplifies to

EXN [Z nz} ~ Y Ziexe(n). (15)
1

1

We can tabulate 71;,, allowing for efficient evaluation of
Eq. (15).
Substituting Eq. (15) into Eq. (12) we get

AEXC ~ Z AExc,l’ (16)
1
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where

1
AEy 1 ~ Zjex[iif] — Ziexclii 1] — 7 Z Zilexc(yr + g )
J(ED

- ch(ﬁl,l) - Exc(ﬁI,J)]o

We will refer to this as the uniform density correction.

E. Correcting crystal-field terms

Two-center crystal-field terms would be exact if it were
not for their neglect of many-center exchange and correlation
terms. We note that crystal-field terms not only affect the
diagonal terms (by shifting the on-site energies), but can also
produce nonzero off-diagonal terms, allowing hopping of an
electron between two orbitals on the same atom. In practice,
many of the off-diagonal contributions either cancel out due
to the symmetry of the lattice, as is the case for cubic lattices,
or are much smaller than the diagonal terms, as is the case for
hcp lattices. Thus, we focus on just the diagonal terms.

If vy varies slowly in space, using a Taylor expansion, we
can expand around an effective density value (7i;osp) for the
generic matrix element vy 7478:

ch,[ot]ﬂ[n(O)] ~ /(ﬁ]a(?)[vxc[ﬁlajﬂ] + v;c[ﬁlozlﬁ](n(())(?)

— Tlaig) + - - 1psp(F) dF. (17

For the diagonal crystal-field terms (/ =J and o = 8) we
can make the first-order term to go to zero, and minimize the
second-order term, by expanding around iy, ;, Where

ota = [ @O b i = Y mas (19
J

and nyy = [ ¢1o(F)ny (F)¢ro (F) d7. Further, if we neglect the
off-diagonal terms, we get

Uxc,lalB [n(O)] = Uxc (Z nloz]) 8rxﬁ~ (19)

J

This is the Sankey-Niklewski (SN) approximation [12]. Equa-
tion (19) treats many-center, as well as one- and two-center,
contributions approximately. The SN correction requires only
two-center integrals.

We can now get the SN many-center correction to the two-
center crystal-field integrals by subtracting the two- and one-
center contributions from Eq. (19):

Avxc,locloz ~ vxc[ﬁl(x,la] - ch[flla,l]
= selfras + fra k] = Veelfira]). (20)
K#I

We may also choose to only subtract the one-center terms, and
remove the exact dimer contributions, effectively using the SN
approximations for both two- and many-center integrals, in
which case we end up with an expression very similar to the
MCWEDA method [43].

F. Correcting hopping integrals

The easiest way to compare the hopping integrals com-
puted using the two-center approximation with the exact

results is to rotate all integrals so that their reference frame
lies along the bond between the pair of atoms (the bond
frame). When using the two-center approximation, these are
conventionally written as Vs, Vipo, Vopo s Vppr > €C.

In order to transform between the bond frame and the
simulation frame, we need the relevant rotation matrices for
the orbitals: these are the ones used to determine the Slater-
Koster tables. The matrices D;,,; are given by the overlap
between spherical harmonics in the bond frame (|/72) in Dirac
notation) and in the simulation frame (|/m)), hence,

|Im) = Dy |17) @1

The matrix elements of the Hamiltonian H between orbitals
in the simulation frame for a pair of atoms ({(I'm'n’| H |lmn),
where n and n’ index the radial parts of the atomic orbitals)
are related to the corresponding matrix elements in the bond
frame ({{'m'n’| H |linn)) by

(U'm'n'| H |Imn) = ZD,,m,,h,D,m,;, (Ui | H |lmn) . (22)

'

Let us suppose we know the Hamiltonian matrix elements
in the simulation frame by directly calculating them using a
full calculation. We can now find the integrals in the bond
reference frame using

(I'm'n'| H |linn) = ZE]’,;,’m/Elmm ('m'n'|H [lmn), (23)

m,m’
where

Elrhm = D71

Imin

=D}, (24)

Two-center integrals in the bond frame can be found from
their values in the simulation frame exactly by using the
Slater-Koster tables. This is not necessarily true for the many-
center integrals, as the surrounding atoms can break the sym-
metry of the bond. For example, there is no guarantee that the
bond-frame matrix elements (p.|H |p,) and {p,| H |p,) will
be the same, even though these should both equal V,,,, or that
(s| H |px) or {s| H |p,) will be zero. For each nonzero bond,
an average value of the Slater-Koster projections was used
in these cases. We will refer to this technique as the inverse
Slater-Koster method.

G. Fitting tabulated integrals

The hopping integrals and the pair potential were fitted
in this work. We represent the integrals using an analytical
function adapted from Krishnapriyan’s work [19]. The form
used is a product of four terms:

f(r) = fol (NPT (r), (25)

where fj is a constant corresponding to the value of f(r) ata
reference position ry, ¢ () is a radial decay function, N(r) is
a function that introduces nodes into the integrals, and 7 (r) is
a tail function that ensures that f(r) decays smoothly to zero
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at the cutoff value r.. The forms for these functions are

P
£(r) = exp (ZAi(r - ro>">,

i=1
Mnodes
r—r,
Ny =T] :
ro — Ty

n=1

d
T(r):exp(r_r ), (26)

where d = 0.5ay, A; are adjustable parameters, rj is a refer-
ence bond length, and r, are the node positions. The number
of nodes is taken from the initial tabulated (dimer) integrals. In
all cases, the starting parameters (A; and r,,) were taken from
a fit to the initial tabulated integrals.

Hopping integrals are optimized to reproduce results from
inverse-SK calculations on perfect crystals. Therefore, no
reference data are obtained for bond lengths below 7y, ~
5.3ay for Zr and ryy, ~ 5.8ay for Mg. To account for this we
built the objective function from two parts: one measuring
goodness of fit to the dimer integrals below 7y, and one
measuring goodness of fit to the inverse-SK results. This was
necessary to ensure reasonable values occurred below ryip.
The goodness of fit to inverse-SK results was weighted by a
factor of 100, in order to prioritize a good fit to these results.
The numbers of adjustable parameters A; vary between the
hopping integrals, but are always between 3 and 5.

Pair potentials were fit to the equilibrium volume (Vj) and
bulk modulus (By) of hcp and bece structures from plane-
wave DFT calculations (only the hcp structure was fit to for
Zr). This was carried out using the same functional form
as for fitting the hopping integrals, with four adjustable A;
parameters. The goodness of fit (GOF) for each quantity
was calculated using a relative root-mean-square deviation
function. For example, for V; we have

(Vo — V)’
GOF = w~——c——, 27)
75

where w is a weighting factor, that was set to 10.0 for V; and
1.0 for By. The objective function is the sum of goodness-of-fit
values for these properties.

The shortest bond length included in the fits (both hopping
integrals and pair potential) was 5.8a, for Mg and 5.3a, for Zr.
As a result, we found that, for Mg, an unphysically attractive
potential occurred at short separations after the fitting process.
To fix this, we made the pair potential highly repulsive at
distances r < 4.5ay by fitting an exponential decay function
to the dimer dissociation curve between 4.4ay and 1.5a¢ [the
decay function was multiplied by T'(r) with r, = 4.5ay to
ensure this did not affect interactions beyond this point]. The
objective function was set such that the energy at 4.4a, sepa-
ration matched the LCAO value, while the model interaction
energy was greater than or equal to the LCAO value at all
shorter distances (i.e., so the model is always at least as
repulsive as LCAO at short distances).

H. Convention for naming approximations

We used a range of approximations in this work, and hence
need to define a system to identify them. The summary of all
the models used in this paper is shown on Fig. 2. LCAO is the
label given to the method whereby we use the Harris-Foulkes
functional up to first order and calculate all terms exactly. For
other methods we approximate hopping integrals, crystal-field
integrals, and the pair potential. Each method label is therefore
made up of three components: hopping (H), crystal field (XT),
and the pair potential (PP). These labels are followed by
the approximations used for that contribution to the energy:
for example, the method H_2b_XT_2b_PP_2b represents the
case where we used tabulated dimer integrals (2b) with no
correction to calculate all terms.

For hopping integrals, the two approximations are the
dimer integrals (2b) or fitted integrals (fit). For crystal-field
terms the approximations are the dimer integrals (2b), the
dimer integrals plus the SN correction for many-center terms
(2b_mbSN), or using the SN correction for two- and many-
center terms ( 2bSN_mbSN). For the pair potential the possi-
ble options are dimer integrals (2b), dimer integrals plus the
uniform density approximation (2b_uden), and a fitted pair
potential (fit). The most complex method (in terms of naming)
used in this paper is H_fit_XT_2b_mbSN_PP_fit_uden: this
method uses fitted hopping integrals, dimer integrals plus the
SN many-center correction for crystal-field terms and a fitted
potential plus the uniform density approximation to represent
the pair potential.

III. RESULTS

We now consider specific models we have generated, and
assess their merits. We used a 20 x 20 x 12 k-point grid for
the hcp unit-cell calculations and equivalent for other struc-
tures. For the plane-wave calculations we used the CASTEP
code with cutoffs of 450 eV for Zr and 500 eV for Mg [44]. We
explicitly modeled semicore states in plane-wave calculations
(but not LCAO calculations); plane-wave pseudopotentials
with core charges of 10 and 12 were used for Mg and Zr,
respectively. For LCAO calculations we used the PLATO TB
code [45]. Further methodological details can be found in the
ESI [46].

A. Basis-set selection

We first assess the effectiveness of the chosen basis sets for
non-self-consistent calculations without any further approxi-
mations (see Table I). We wish to choose basis sets that best
reproduce plane-wave structural properties. However, we also
want r, to be as small as possible: a smaller value of r, means
fewer integrals to compute and therefore greater computa-
tional efficiency, as well as fewer many-center interactions.
We find that there is a minimum range that the basis set
needs in order to be able to represent the electronic structure
of hexagonal metals accurately, and which is transferable to
other lattice structures. This transferability is important for the
study of point defects, stacking faults, and dislocations.

Table I shows that the general effects of varying the radius
of the confinement potential 7, are similar for both Mg and
Zr. It was found that as r. increases, so does the equi-
librium lattice parameter of the resulting crystal structures.
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FIG. 2. A summary of the models compared in this paper. The final two-center tight-binding models for Zr and Mg are highlighted in green.

Furthermore, the energy ordering of the fcc and hep structures
is relatively independent of the confinement potential chosen
(see ESI [46]). However, the bcc lattice becomes (relative to
fcc and hep) more stable as shorter-ranged orbitals were used.

The higher sensitivity of the structural energy difference
between hcp and bcc in Zr can be understood from the
electronic densities of states (Fig. 3): the bcc density of states
shows only a small variation with the range of the basis
set, while the close-packed structures show a much better
agreement with the plane-wave basis set for basis sets with
ro = 6 ag than for shorter-ranged basis sets (see Fig. 3).

Basis sets with 7. < 7.0ag lead to poor structural properties
for both Zr and Mg, and are therefore unsuitable. We chose
to use basis sets with r, = 7.3ay for both Mg and Zr since
these give a good compromise between accuracy and speed.

See Fig. 4 for the resulting energy against volume curves for
the main structures.

The reduced sensitivity of the bee structure to the basis-set
range in Zr can be explained by considering the effect of the
range of the 5p orbitals on E;. The smaller the range of the
confinement potential, the higher the on-site energy is of the
empty atomic p orbitals, while the filled 5s and 4d orbitals are
significantly less affected. However, when calculating E), the
electronic structure states are a mix of these atomic orbitals.
Therefore, raising the energy of the 4p orbitals will raise
the energy of the electronic states containing them. In the
bee structures the majority of the filled electronic states have
very little p orbital contribution compared to close-packed
structures. This leads to E; for close-packed structures in-
creasing more for a shorter-ranged basis set than for an

TABLE I. Dependence of physical properties on the confinement potential 7. used to generate the basis set for Mg and Zr. The value of ry
appearing in the confinement potential was r. — 1.0ay for Zr and r. — 1.5a, for Mg.

Vegm (hep) (a3 per atom)

Bulk modulus (hcp) (GPa)

AE (bee-hep) (eV per atom)

7. (ao) Zr Mg Zr Mg Zr Mg
6.0 139.4 144.0 145.4 62.5 —0.089 0.014
6.5 147.8 145.9 118.8 59.8 —0.020 0.014
7.0 153.7 153.2 100.1 45.9 0.021 0.025
7.3 156.9 155.9 95.4 41.8 0.038 0.029
7.5 155.6 157.4 90.2 39.8 0.032 0.030
8.0 157.7 160.3 84.0 38.7 0.068 0.031
Plane 157.8 154.4 90.7 36.0 0.082 0.029
wave
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FIG. 3. The effect of the range of the confinement potential on the electronic density of states of hcp Zr. The longer-ranged LCAO orbitals
offer a significantly better agreement with the plane-wave basis-set calculation.

equivalent bec structure, and hence bce becomes relatively
more stable.

These results demonstrate that it is possible to get good
structural and electronic properties for hcp metals using the
Harris-Foulkes functional to first order combined with a
single-¢ basis set. However, as we discuss below, the self-
interstitial energies are found to be significantly too small
for Zr.

B. Importance of self-consistency for defects

The way in which our basis sets were chosen (by com-
parison with a self-consistent plane-wave DFT calculation)
means that the effects of self-consistency on equilibrium

AE per atom (eV)
[=} [=}
) >

©
N
1

©
=
1

o
o
1

140 160 180 200

Volume per atom (a3)

120

FIG. 4. A comparison of the energy versus volume curves for dif-
ferent lattice structures in Zr for LCAO with ry, = 7.3 ag (non-self-
consistent calculation) and a plane-wave basis set (from CASTEP).
Solid lines represent plane-wave (reference) data while dashed lines
are LCAO data.

volumes are already implicitly accounted for. However, this
self-consistency is not accounted for in defect energies, which
are expected to be sensitive to self-consistency. We investi-
gated this by carrying out LCAO calculations with full self-
consistency using Kohn-Sham DFT with our small basis sets.
The geometry for the relaxed defect calculations was found
using plane-wave DFT and used in other methods without
allowing for further relaxation.

Self-consistency has only a minimal effect on defect en-
ergies for Mg (changes in energies no more than 0.03 eV)
but has a more significant effect on Zr (see Table II). This
dependence is reflected in the amount of charge transfer
occurring in these structures; for Mg defects (both interstitial
and vacancy) each Mg atom has an absolute Mulliken atomic
charge of less than 0.02e while Zr atoms have charges up to
0.05¢ in the relaxed interstitial.

The differences between plane-wave and self-consistent
LCAO calculations must result from the use of small basis
sets. For both Mg and Zr the vacancy energies are overesti-
mated (i.e., the vacancies are spuriously destabilized). This
is what would be expected based on basis-set superposition
errors (BSSE): the vacancy structure has fewer basis functions
per volume than the perfect structure, which will likely spuri-
ously destabilize it [47]. This effect may also contribute to the
underestimation of the Zr interstitial energy: BSSE is expected
to spuriously stabilize interstitials as there are extra orbitals
available in the region around the interstitial. The implicit
representation of semicore states using a pseudopotential may
also contribute to the remaining errors in self-interstitial ener-
gies [48].

When studying defects in LCAO DFT, a much larger basis
set would typically be used. The split-valence multiple-¢ basis
set with explicitly included 4p states and a core correction
used in SIESTA gives reasonably good agreement with plane-
wave results for defects in Zr [49]. This basis set includes 13
localized functions, compared to the 9 used in this work [50].

We have tried splitting the basis set for Zr using the
procedure implemented in SIESTA [37] with 5s and 4d or-
bitals being double-¢. While this does lower all total energies
calculated, the predicted lattice constants were consistently
about 2% lower than the ones predicted by plane-wave code.
Furthermore, the cohesive energies in compression were about
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TABLE II. Selected structural and defect results for the methods tested. While plane-wave results are listed for reference, the accuracy
of each approximation should be compared to LCAO as all other methods are approximations to this. A missing value means it could not be

computed. The naming of the methods is explained in Sec. II H.

Unrelaxed vacancy Relaxed octahedral

Volume (ag) energy (eV) self-interstitial energy (eV)
Method Zr Mg Zr Mg Zr Mg
LCAO 156.9 155.9 2.56 1.08 1.97 2.61
H_2b_XT_2b_PP_2b 443.89 0.76 —240.64 —138.79
H_2b_XT_2b_MbSN_PP_2b 289.90 0.23 —122.64 —32.67
H_2b_XT_2bSN_MbSN_PP_2b 231.99 —0.01 —68.89 0.32
H_fit_XT_2b_PP_2b 225.1 31.27 —1.16 45.80 —1.17
H_fit_XT_2b_MbSN_PP_2b 224.5 0.97 —0.98 —1.58 —0.94
H_fit_XT 2bSN_MbSN_PP_2b 217.5 1.57 —1.14 —0.55 —0.54
H_fit_XT_2b_MbSN_PP_2b_uden 226.8 0.26 —1.24 —1.36 —1.25
H_fit_XT_2bSN_MbSN_PP_2b_uden 166.6 220.3 0.86 —1.40 —-0.32 —0.84
H_fit_XT_2b_MbSN_PP_fit_uden 155.0 1.35 2.19
H_fit_XT_2bSN_MbSN_PP_fit_uden 157.0 1.34 1.74
Self-consistent LCAO 155.2 158.7 2.67 1.06 2.71 2.58
Plane wave 157.9 154.5 2.13 0.81 3.03 2.49

0.5 eV lower than in plane-wave calculations, and the equi-
librium cohesive energy of the bce structure was lowered.
The lower cohesive energies are probably a consequence of
a combination of the LDA optimized pseudopotential used
and the absence of the semicore states or a core correction.
Since the predicted lattice constants were incorrect, further
investigation using the split valence basis set was not pursued,
and the single-¢ basis set was used.

C. Two-center TB

The simplest way to build an ab initio TB model is
to take the integrals calculated from a dimer and use
these in a purely two-center manner: we label this method
H_2b_XT_2b_PP_2b. In this case an integral between two
atoms is computed by finding the distance between those two
atoms, looking up a value in the relevant integral table and
applying Slater-Koster rules to account for rotations. This
method means that all many-center effects are neglected;
interactions between two atoms are assumed to be completely
unaffected by any neighboring atoms.

Table II shows a selection of physical properties calculated
with a range of methods. The H_2b_XT_2b_PP_2b method
leads to a completely unphysical description of both Zr and
Mg metallic systems; no minimum volume could be identified
while self-interstitials are predicted to be very stable (e.g., the
formation energy is —161.9eV for Mg). These errors come
primarily from the E; terms, as high-energy exact LCAO
states are spuriously stabilized by the neglect of many-center
effects. This can be seen visually in the density of states for
the compressed hcp structures (see Fig. 5 for Zr and ESI
[46] for Mg). For Zr the LCAO valence band states appear
to have been shifted to ~10eV above the Fermi energy for
the H_2b_XT_2b_PP_2b method. In the case of Mg, valence
band states are present more than 20 eV below the Fermi level
for the H_2b_XT_2b_PP_2b method, compared to about
8 eV for the exact LCAO method. The filled states correspond

to states with large contribution from the p states, which then
collapse to very low energies.

The failure of the H_2b_XT_2b_PP_2b method has two
causes: errors in the Hamiltonian matrix elements and the
small eigenvalues in the overlap matrix, which were calcu-
lated without approximation. For example, for the compressed
Zr hep structure used in Fig. 5, eigenvalues of the overlap
matrix were as low as 0.005, which means the basis set
produces states that are nearly linearly dependent. These small
eigenvalues in the overlap matrix amplify errors in the Hamil-
tonian matrix elements when used to find eigenvalues. Similar
problems have previously been discussed in the context of
germanium semiconductors, suggesting this problem is not
specific to hcp metals and will likely occur for other densely
packed systems requiring a long-ranged basis set [51].

To gain greater accuracy than the H_2b_XT_2b_PP_2b
method we need to either reduce errors in the Hamiltonian
matrix elements or choose a basis with larger eigenvalues
for the overlap matrix. Using shorter-ranged basis functions
would lead to larger overlap eigenvalues, but we have already
chosen the shortest-ranged basis set that gives reasonable
results due to considerations of computational efficiency. We
will therefore initially focus on corrections for E; terms,
namely, the hopping and crystal-field integrals.

D. Hopping integrals

The two-center approximation for hopping integrals has
been used widely, and with considerable success. Importantly,
its accuracy can be improved over an initial DFTB estimate
through numerical optimization [19], though it is not guar-
anteed that this is always possible. This procedure is only
valid when, for a given bond length, the environmental effect
on the bond is similar for all relevant structures. Here, we
examine the magnitude and nature of the errors introduced by
excluding the three- and higher-center integrals, but allowing
for optimization of the two-center form.
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FIG. 5. Density of states for a compressed (V & 11543 per atom) hcp Zr structure using various methods. In each case, the Fermi level is
at 0 eV. The subfigures show the effects of approximating and correcting the hopping integrals without correcting the crystal-field integrals (a),
the two corrections for the crystal-field terms only (b), (c), and the corrections to both hopping and crystal-field integrals (d).

The inverse-SK method described above allows us to ob-
tain the optimal two-center hopping integrals for a given struc-
ture. Comparing these with integrals from a dimer (referred to
as dimer integrals below) allows us to better understand the
errors in hopping integrals.

Figure 6 shows the inverse-SK hopping integrals for per-
fect Zr lattices alongside the dimer hopping integrals. The
many-center interactions are strongest for the most extended
orbitals (s and p for Zr) and for lattices in compression,
and is reflected in the large differences between dimer and
inverse-SK hopping integrals. This is as expected. An in-
creased number of many-center interactions will be present
if the lattice is compressed or if orbital ranges are increased;
either case will lead to each bond effectively having more
neighbors. In general, the magnitude of hopping integrals is
underestimated by the dimer approximation. In particular, in
the case of Zr p orbitals, this underestimation leads to some
elements of the Hamiltonian matrices being too small. In com-
bination with the underestimation of crystal-field terms (see
below) and the small eigenvalues of the overlap matrix, this
causes a very severe collapse of the band structure resulting
in the spurious appearance and filling of very low-energy
states.

In a periodic system, the eigenstates are Bloch states, and
a Hamiltonian needs to be diagonalized at each k point. For a
given k, the Bloch transformed Hamiltonian matrix element is

given by

Hiogp(R) =Y Hyg 58,6 (28)
L

where ﬁL is the vector between the unit cells with atom / and
a periodic image of atom J in cell L. At the gamma point,
k = 0, and the diagonal components are then given by

Hla,la (6) = Z H1a6,1a1€L' (29)
L

When R, =0, this corresponds to the crystal-field terms
combined with the atomic orbital energies, while the other
terms in the sum are the different hopping integrals between
an orbital on the atom / and its periodic images.

The propagation of errors in hopping integrals to calculated
eigenvalues can be demonstrated most easily for single-atom
unit cells. For the gamma point of an fcc lattice under 10%
hydrostatic compressive strain (where all nondiagonal compo-
nents are zero, making the eigenvalue calculation trivial), the
difference between the components corresponding to py-py
bonds in the two-center model and the many-center LCAO
calculation is —4.61 — 0.32 = —4.93 eV. The difference be-
tween the corresponding on-site terms (and therefore crystal-
field terms) is 2.57 — 3.93 = —1.36 eV, which accounts for
only 28% of the error in the Hamiltonian and therefore the
corresponding eigenvalue; the remaining 72% is due to error
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FIG. 6. The two-center hopping integrals for a dimer (solid lines) compared to the equivalent projections of these hopping integrals from
a full many-center calculation in perfect Zr crystals (hcp, bee, and fce) with lattice constants varying from 90% to 110% of their equilibrium

values.

in the hopping integrals. Because of the small value of the rel-
evant overlap matrix terms, 0.0146, this causes the eigenvalue
at this k point to be 337 eV lower in the two-center model
compared to LCAO.

A method of correcting the hopping integrals, while keep-
ing the two-center approximation, has been proposed pre-
viously, including a successful application to titanium band
structure [28]: a curve is fit through the hopping integral
projections from an LCAO DFT calculation, which corre-
sponds to fitting to inverse-SK results in our case. This method
relies on the hopping integrals being similar between all
environments of interest since it still involves a single hopping
integral for each separation. The spread in the inverse-SK
results (i.e., how much the values vary for a single separation)
is therefore an important factor in assessing the viability and
limitations of this method.

For perfect periodic lattices, the spread in hopping integrals
is the largest for o bonds and for bonds between the most
extended orbitals (see Fig. 6). A key problematic feature is the
spread in the values for tails of these functions, i.e., for bond
lengths larger than 10ay. The bonding integrals for lattices in
compression in this region are much larger than for equivalent
bond lengths for a lattice in tension. The individual contri-
butions of these long bonds are relatively small compared to
nearest neighbors and next-nearest neighbors, but there are a
large number of neighbors at these distances, plus they make

finding a smooth functional fit to the hopping integrals more
difficult.

To find the origin of this spread in the hopping integrals,
and then find a way to correct it, it is useful to look separately
at the electrostatic plus kinetic energy contributions (including
the nonlocal part of the pseudopotential, Fig. 7), and the
exchange and correlation contributions (Fig. 8). Note that the
kinetic energy term is exactly described by the two-center
approximation. Figure 7 shows that the average shift of the
electrostatic part of the hopping integrals is small compared
to an equivalent dimer; however, the spread can be large com-
pared to this shift. Some exact hopping integrals were larger
in magnitude than the equivalent dimer and some smaller; the
only general rule is the more compressed the lattice, the larger
the deviation from the dimer value. The o hopping integrals
show the largest spread in the tails.

By contrast, the exchange and correlation contributions to
the hopping integrals behave more predictably (see Fig. 8).
Their absolute magnitude was larger than that of the corre-
sponding kinetic plus electrostatic hopping integrals, so their
contribution is far from negligible. However, the sign of the
error was constant across the range of volumes and structures
(e.g., the exchange and correlation inverse-SK integrals were
always too negative for dso, while the electrostatic inverse-
SK was either too positive or too negative). When adding the
two contributions together, the spread from the electrostatic
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contributions dominates the tails, while the overall increase
in magnitude from exchange and correlation dominates the
shorter bonds. The spread for shorter bonds is a result of a
relatively equal combination of both contributions, which can
sometimes partially cancel out.

Table II shows how calculated properties are affected by
fitting to inverse-SK hopping integrals (details of the fit
process are given in Sec. IIG ). The H_fit_XT_2b_PP_2b
method provides a direct comparison with the simplest ab
initio TB scheme. Fitting to inverse-SK results led to a marked
improvement in calculated properties; for Zr the absolute
vacancy and interstitial energies decrease by an order of
magnitude while for Mg a minimum volume is obtained and
the (spuriously negative) self-interstitial energy has increased
by two orders of magnitude, though it is still spuriously
stable. This improvement in physical properties is reflected
in the more accurate electronic structure, as shown by the
density of states in Fig. 5 and ESI [46]. States which were
previously 10 eV above the Fermi energy are shifted to
the top of the valence band after fitting the hopping inte-
grals, leading to a much improved (though still relatively
poor) agreement with LCAO results. Mulliken population
analysis shows a reduction in p-orbital population from
2.71e (H_2b_XT_2b_PP_2b) to 1.77¢ (H_fit_XT_2b_PP_2b)
after fitting hopping integrals (for a two-atom hcp unit
cell). This is consistent with the Zr p inverse-SK hop-

ping integrals showing large deviations from the dimer
integrals.

Despite the large improvements in results after fitting the
hopping integrals, this was insufficient to get a stable model
for either Mg or Zr. One limitation of our method is that our
functional forms were designed to have very small values
in the tails, which is not necessarily true for the inverse-
SK integrals. While we could use more flexible forms, this
comes with the risk of overfitting. Another limitation is that
the spread in inverse-SK hopping integrals means that the
fitted integrals are a compromise between those that would be
ideal for each of the individual structures. This is especially
noticeable in the ppo hopping integrals for both Mg and Zr
between 6ag and 8ag, where the inverse-SK results are clearly
discontinuous (Fig. 6). The discontinuous nature is partly due
to the discontinuity between first and second neighbors in
bee structures, which is a well-known effect caused by the
very different environments around these two bonds [52,53].
If interstitials were included, this discontinuity would be even
more severe. Figure 9 shows inverse-SK results for self-
interstitials alongside results from perfect crystals and the
dimer hopping integrals. For bond lengths of 6ay and above,
there are significant differences in the results from perfect
crystals and self-interstitial structures; in some cases even
the sign of the correction (relative to the dimer integrals) is
different between the two data sets.
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FIG. 9. The projected ppo hopping integrals from a full LCAO
calculation (markers) compared to the two-center dimer approxima-
tion (solid line) for various structures of Zr. Perfect crystals include
hep, bee, and fce with lattice constants varying from 90% to 110%
of their equilibrium values.

E. Crystal-field integrals

The on-site terms in the Hamiltonian have two parts: a
contribution from the atom on which the orbitals are centered
(the atomic term) and the contributions from the neighboring
atoms (the crystal-field terms). The electrostatic contributions
to the crystal field are strictly pairwise, while the exchange
and correlation contribution includes many-center contribu-
tions. Our starting point for the discussion of the exchange and
correlation contribution to the crystal field is the two-center
approximation whereby the only error is from the missing
many-center exchange and correlation contributions.

Consider the results for Zr shown in Fig. 10. The two-
center approximation for crystal-field integrals (solid lines
in Fig. 10) leads to underestimation of the on-site energies,
which gets more severe as volume decreases. This effect
is largest for the most extended orbitals (s and p), which
is unsurprising as longer-ranged orbitals will participate in
more many-center interactions for a given volume. The orbital
dependence of these errors causes a relative stabilization of
states containing s and p orbital contributions, which con-
tributes to the significant differences in the density of states
between LCAO and H_2b_XT_2b_PP _2b22. The decrease
in on-site energies, with decreasing volumes, also provides a
spurious stabilization to low-volume structures, which con-
tributes to the instability of many of the tested tight-binding
models (Table II).
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legend in the figure.

The direct effects of the crystal-field approx-
imations are best shown by comparison of the
H _2b_XT 2b_mbSN_PP_2b (dashed lines) and
H_2b_XT_2bSN_mbSN_PP_2b (dotted lines) methods with
the uncorrected H_2b_XT_2b_PP_2b method (solid lines) in
Fig. 10. Both correction schemes greatly reduce the volume
dependence of on-site errors and, consequently, compression
of perfect structures does not lead to spurious stabilization
of the diffuse orbitals when using these corrections for the
strained perfect crystals.

For Zr, using the SN correction for both two-center and
many-center terms appears to lead to the best results. This is
reflected in the reduced volume dependence seen in Fig. 10,
and the improved density of states for compressed hcp rel-
ative to LCAO shown in Fig. 5. The improved DoS for
H_2b_XT_2bSN_MDSN over H_2b_XT_2b_MDbSN is likely
due to the former correction overestimating on-site matrix
elements, leading to a spurious destabilization of states, which
cancels out with the spurious stabilization due to the hopping
integrals. Thus, the SN correction will be used for both two-
center and many-center crystal-field effects for Zr henceforth.

The corresponding results for Mg can be found in the
ESI [46]. For Mg, the volume dependence of both crystal-
field corrections was similar. However, in this case the
H_2b_XT_2b_MDbSN method led to smaller absolute errors in
on-site energies and was therefore chosen in the final model.

In summary, we have shown that treating crystal-field
terms using a two-center approximation leads to strongly
volume-dependent errors (as smaller volumes mean more
neglected many-center interactions). However, these errors
can be largely mitigated using the SN correction. Applying
this correction can be expected to lead to a more accurate TB
model at no significant extra computational cost.
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FIG. 11. The error in Ej (model minus LCAO), for hcp (blue),
fcc (green), and bee (orange) Zr crystals.

F. Corrections to the pair potential

As noted above, the two-center approximation for £y only
introduces an error in the many-center exchange and corre-
lation contributions. For both perfect Zr and Mg crystals E
is consistently underestimated (too negative) when the pair
potential from a dimer is used: for example, for Zr this error
is as large as 1.8 eV/atom under a 10% compression (see
Fig. 11). Since the errors are largest in compression, this
would result in all lattice parameters being too small, if it was
the only source of error.

Remarkably, we find the error from the pair approximation
is mostly structure independent, and mainly varies with the
volume occupied by each atom (see Fig. 11). There is a slight
structural dependence for Mg, with bce being destabilized by
the dimer pair potential, but this still only leads to an increase
of less than 0.01 eV /atom for the relative equilibrium energy.
We note that a pair-potential expression for energy cannot
differentiate between an fcc lattice and a hcp lattice with
an ideal c/a ratio. The energy difference between these two
close-packed structures is therefore primarily determined by
the higher-order terms. We note that E is crucially needed to
stabilize hcp.

Having established that a pair potential is insufficient, we
now seek a correction. Figure 11 shows the effect of adding
the nearly uniform density approximation correction (de-
scribed in Sec. II D ) for Zr (see ESI [46] for Mg). This correc-
tion reduces the error in compression to below 0.5 eV/atom
(see Fig. 11) for Zr. Furthermore, this correction shows a
far weaker volume dependence than using a pair potential
alone. Another option for reducing the error in Ey would be
to fit a pair potential, as is commonly done in TB models.
However, our uniform density correction is expected to be
more transferable as it is a purely ab initio correction and is
environmentally dependent. This environmental dependence
does not add any significant computational overhead since
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FIG. 12. Calculated energy against volume curves using plane-

wave DFT (solid lines) compared to those calculated using our TB
model for Zr (dashed lines).

the correction still only relies on tabulated two-center terms.
Furthermore, it is possible to combine this correction with a
fitted pair potential; this may provide greater transferability
than a standard fitted pair potential without losing accuracy
on the systems of most interest, and is the approach we take
below.

G. Final TB models

Combining the most accurate individual approximations
from above leads us to the tight-binding models presented
in this paper. The model consists of using fitted hopping
integrals, the SN correction for crystal-field terms, and the
uniform density approximation to correct Ey. However, all
these approximations together were still insufficient to pro-
duce a model as accurate as we would like, i.e., a reason-
able approximation to LCAO DFT. Therefore, we also fit
a pair potential to the models, and the resulting methods
are labeled H_fit_XT_2b_mbSN_PP_fit_uden for Mg and
H_fit_XT_2bSN_mbSN_PP_fit_uden for Zr. The objective
function was a combination of hcp (also bce for Mg) V, and
By values, as described in Sec. II G.

Figure 12 and ESI [46] show that the models with fitted pair
potentials show good agreement for the energy against volume
curves; Vy for the hep structure is given in Table II. This
is unsurprising due to relevant terms being in the objective
function for fitting the pair potential, and these structures
being used to fit the hopping integrals. However, it is worth
noting that the fcc structural parameters were not included
in the pair-potential fit, and that none of the differences in
energies between structures were fit (bce structural parameters
were also not included for Zr).

Both Mg and Zr models show reasonable agreement with
plane-wave results for the unrelaxed elastic constants (see

the ESI [46]) the average relative root-mean-square deviation

(Tt b (CT“ <)’ ) was 0.29 and 0.25 for Mg and Zr models, respec-
tlvely “For comparison, previous tight-binding models for Mg
and Zr led to values of 0.38 and 0.23, respectively (for relaxed
elastic constants compared to experiment) [25,54].

For the unrelaxed hcp(0001) surface energy the Zr model
leads to good agreement with both LCAO and plane-wave
results (0.0275 eV a; 2 for the final model compared to 0.0296
eVa, 2 for plane-wave results, see the ESI [46]). Note that this
good agreement likely stems partly from error cancellation
between missing self-consistency effects and effects of our
limited basis; this is shown by the LCAO method leading
to better agreement with the plane-wave method than the
self-consistent LCAO method. In contrast to Zr, the Mg model
significantly overestimates the surface energy compared to
plane-wave and LCAO methods (0.0246 eV a,? for the final
tight-binding model compared to 0.0098 eV q, 2 for plane-
wave results).

Errors in vacancy energies are substantial (slightly over
1 eV for Zr), but similar to many previous TB models [55,56].
The relaxed self-interstitial energies show good agreement
with the LCAO results and also the plane-wave result for Mg.
However, the plane-wave Zr self-interstitial energy is substan-
tially underestimated as a result of our models lacking an ap-
proximation (either implicit or explicit) for self-consistency.
Note that neither the vacancy nor self-interstitial structures
were fit at any point, and their formation energies therefore
represent true tests of the transferability of the models.

A key step toward obtaining accurate structural properties
in these TB models was the fitting of the pair potential.
The fitted pair potential (ESI [46]) is more attractive than
the originally tabulated pair potential in the region around
6ap. This distance is that of first-neighbor interactions in
the crystal; therefore, E| appears to have underestimated the
interaction strength in this range. This is also the range where
the inverse-SK hopping integrals have largest spread of values
in the perfect crystal structures, and hence where the fit is
least good. This underestimation of first-neighbor interactions
can be used to rationalize the failures of models using fitted
hopping integrals but not a fitted pair potential. The overes-
timation of V| is expected if first-neighbor interactions are
spuriously repulsive. The vacancy structure contains fewer
first-neighbor interactions per atom than the perfect crystal,
and is therefore stabilized (relative to the perfect crystal) when
these interactions are too repulsive (meaning a spuriously
stabilized vacancy energy). Similarly, the relaxed interstitial
structure has fewer metal-metal interactions at about 6ag
compared to the perfect structure, hence, the overstabilization
before fitting the pair potential.

IV. DISCUSSION

Our results in this work first demonstrate the importance
which many-center terms have on the electronic and struc-
tural properties of hcp metals. Without accounting for these
terms, the models produced are inherently unstable, as the
band structure tends to acquire states with large negative
energies when the crystal is compressed. However, we pro-
duced two-center TB models that accurately reproduce struc-
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tural and electronic properties for near-equilibrium structures.
Nonetheless, it is important to be aware of the limitations of
these models.

As already noted, the models are not expected to work
well under high levels of compression. This is partly because
we only fit hopping integrals to near-equilibrium structures
and partly because we had to fit an unphysically repulsive
potential for Mg-Mg separations smaller than 4.5aq in order
to ensure the model’s stability (see Sec. IIG ). Even with
this restriction, we found that an unrelaxed octahedral self-
interstitial in Mg was spuriously stabilized (it had a formation
energy of —51eV). The situation for Zr is similar, with an
unrelaxed octahedral interstitial having a formation energy
of —28eV. While the activation energies of these structures
will likely mean they wont be accessible in most simulations,
this coupled with the very repulsive potential below 4.5a, for
Mg and the lack of a correction for self-consistency for Zr
means the models would not be appropriate for investigating
self-interstitial formation, and that care may be needed when
using them in general. We aim to address these concerns in
future work.

Overcoming the deficiencies of the models presented here
will require a different approach to the many-center contribu-
tions to the hopping terms. In particular, for studying defects,
these integrals need to have an explicit environmental depen-
dence: the optimal hopping integrals (from inverse-SK results)
show significant differences between perfect structures and
those with defects. There are (at least) two possible routes to
achieve this.

Empirically fitting hopping integrals to a screening func-
tion is a method which has been used successfully for a range
of systems including Cu, C, Mo, and Ge [57-61]. Particularly
relevant is the work on Ge where reasonable defect energies
were obtained despite only fitting to perfect crystal struc-
tures [58]: e.g., the vacancy formation energy was 2.82 eV
compared to 2.42 eV from DFT. Despite the success of this
method, it has drawbacks. First, calculation of screening func-
tions (different ones for each hopping integral) means a less
computationally efficient method. Second, a large number of
parameters are required that lead to the risk of overfitting and
makes the fitting process itself difficult, especially if fitting
to bulk-phase properties since all parameters need to be fit
simultaneously. These difficulties in fitting were overcome in
work by Goldman, whereby the screening function parameters
were fit to reproduce the hopping integrals for a series of
trimer structures [61]. This allows each hopping integral to be
fit independently of the others and transferability is expected
to be high. In our case, this would correspond to running
inverse-SK calculations on a series of trimers and fitting those.
However, in the work of Goldman it was still necessary to
manually tune (it was not specified how or to what extent) the
d-d integrals to reproduce bulk properties.

Previously used corrections involved multiplying the cal-
culated screening function by an environmentally independent
(e.g., our dimer integral values) hopping integral. This is prob-
lematic for our systems where the dimer hopping integrals
have multiple nodes in them at values where the many-center
hopping corrections are significant (e.g., the ppo integrals for
Zr). It is unclear how to apply a screening correction in this
case.

An ab initio approach could also be used, such as is
employed in the FIREBALL code, to provide environmental
dependence to hopping integrals [43,62]. In this case, the
neutral atom contributions to hopping integrals are calcu-
lated exactly, while the exchange-correlation contributions are
approximated using a framework based on a Taylor series
expansion around reference densities (i.e., similar to the SN
and uniform-density approximations used in this work). Com-
pared to the use of screening functions the lack of fitting
required in this method means it should be easier to apply,
especially when adding elements to a model, and is expected
to have greater transferability. However, this method has the
major disadvantage of requiring calculation of three-center
integrals (though in FIREBALL this is achieved with tables
of only two dimensions), and will therefore be significantly
slower than the approach in this paper.

V. CONCLUSIONS

The process of building a systematic TB model for hexag-
onal metals starting from the DFTB approximation was in-
troduced in this paper, with a focus on the errors introduced
and possible corrections. While the method could be equally
applied to other materials, the problems discussed are specific
to close-packed materials with highly delocalized orbitals.
In fact, the authors believe that for more suitable materials
(notably ones with an open structure), the method presented
could be used directly.

In the materials considered here (Mg and Zr), it has been
shown that fairly long-ranged orbitals are needed in order to
reproduce the electronic structure accurately and obtain the
correct lattice constants and structural stability. This leads
to important contributions from many-center terms in the
hopping, crystal-field, and pair-potential integrals tabulated
using DFTB. Without any corrections, the inaccuracies in
these integrals lead to unphysically low electronic energy
states associated with the most extended orbitals. System-
atic corrections to the exchange and correlation parts of the
crystal-field and pair-potential terms were introduced in the
form of an embedding function. Corrections for both these
terms significantly improved both Zr and Mg models for very
little additional computational overhead. All of the corrections
can be tabulated in terms of two-center terms.

The two-center approximation for hopping integrals intro-
duces the largest errors and needs to be structure dependent.
We have shown that while it is relatively easy to correct for
most of the many-center errors by using a list of selected
structures, even two bonds within the same structure of the
same length can have very different hopping integrals, as is
the case for an unrelaxed vacancy or interstitial, making it
incompatible with the two-center approximation. To a lesser
extent, the strained and compressed structures can also be
incompatible, as well as an equilibrium structure compared
to ones with relaxed point defects. Bonds will be strongly
affected by atoms near them, and correcting for this environ-
mental dependence in a computationally efficient way has not
been fully successful in this work.

Another limiting factor in the modeling of point defects
in Zr is the lack of semicore states. Self-consistency is also
necessary for the calculation of the defect formation energies
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as the charge transfer between the different atoms is signif-
icant (electrons are highly delocalized). While a larger basis
set is not in the spirit of TB, it is not difficult to add following
the same method as described above. Self-consistent TB is
also a fairly standard technique described extensively in the
literature [63].
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