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Neural network atomic potential to investigate the dislocation dynamics in bcc iron
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To design the mechanical strength of body-centered-cubic (bcc) iron, clarifying the dislocation dynamics
is very important. Using systematically constructed reference data based on density functional theory (DFT)
calculations, we construct an atomic artificial neural network (ANN) potential to investigate the dislocation
dynamics in bcc iron with the accuracy of DFT calculations. The bulk properties and defect formation energies
predicted by the constructed ANN potential are in good agreement with the reference DFT calculations. The
a0/2〈111〉{110} screw dislocation core structure predicted by the ANN potential is compact and nondegenerate.
The Peierls barrier predicted by the ANN potential is 35.3 meV per length of the Burgers vector. These results
are consistent with the DFT results. Furthermore, not only the Peierls barrier, but also the two-dimensional
energy profile of the screw dislocation core position predicted by the ANN potential are in excellent agreement
with the DFT results. These results clearly demonstrate the reproducibility and transferability of the constructed
ANN potential for investigating dislocation dynamics with the accuracy of the DFT. Combined with advanced
atomistic techniques, the ANN potential will be highly useful for investigating the dislocation dynamics in bcc
iron at finite temperatures.
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Iron is among the most useful structural materials in our
daily life. To reduce the environmental loads resulting from
manufacturing activities of humans, improving and designing
the mechanical strength of iron is very important. In general,
the dynamics of screw dislocations plays a critical role in the
mechanical behavior of body-centered-cubic (bcc) iron at low
temperature. Therefore, the structure and energetics of screw
dislocation cores in bcc iron have been well studied using
highly accurate density functional theory (DFT) calculations
[1–5]. However, owing to the high computational cost of
DFT calculations, the number of atoms that can be practically
handled by DFT is limited to a few hundred. Therefore, it is
not easy to directly investigate the dynamics of dislocations
at a finite temperature via DFT calculations. On the other
hand, molecular dynamics (MD) simulations on the scale of
millions of atoms with empirically parametrized potentials
enable more flexible modeling. In principle, however, the
accuracy of these potentials is limited by their function type.
Several types of potentials have been proposed, such as the
embedded atom method (EAM), modified EAM, and Tersoff
potential [6,7]. To the best of our knowledge, no potentials can
reproduce the dislocation core structure and energetics of bcc
iron with the accuracy of the DFT.

One strategy to directly investigate dislocation dynamics
with DFT accuracy is to construct an atomic potential based
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on an artificial neural network (ANN) framework [8,9]. By
the universal approximation theorem, the ANN can compute
any function with arbitrary accuracy [10]. Therefore, the
interatomic potential based on an ANN (ANN potential) is
expected to reproduce the potential energy surface (PES) of
calculations using sufficient reference DFT data sets. Ex-
cellent applications to various materials have already been
demonstrated, such as Si [11], Cu [12], and LixPOyNz [13].
An ANN has also been shown to predict not only the total
energy of a system but also the electronic density of states
from reference DFT data sets [14]. Thus, the ANN potential
is a sophisticated and promising tool for advanced materials
design. Recently, an interatomic potential based on Gaussian
process regression, known as the Gaussian approximation
potential (GAP), was proposed for bcc iron [15]. The GAP
has a highly flexible function form, same as the ANN. The
bulk properties and defect formation energies predicted by the
GAP are in excellent agreement with those from the reference
DFT calculations. However, the reproducibility and transfer-
ability of the GAP for the energetics of the dislocation core are
not sufficiently evaluated [15,16]. Furthermore, a discrepancy
remains between the GAP and DFT regarding the dislocation
core structure [17]. Therefore, in this work, we construct a
new ANN potential for investigating the dislocation dynamics
in bcc iron with the accuracy of DFT. To demonstrate the
reproducibility and transferability of this ANN potential, we
evaluate the a0/2〈111〉{110} screw dislocation core structure
and its energetics in detail. We also evaluate other nonscrew
dislocation core structures, which play important roles in
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dislocation dynamics owing to the reactions between them,
such as junction formation.

To construct an ANN potential for investigating the dis-
location core structure, we use the ANN method proposed
by Behler and Parrinello [8]. In this method, the output of
the ANN is the atomic energy εANN

i of the ith atom, and the
total energy EANN of the target system is expressed as the
contribution of the atomic energy:

EANN =
N∑

i=1

εANN
i [G(Ri )], (1)

where N is the number of atoms in a target system; G is the
vector set of descriptors, which describes the local atomic
environment around the ith atom; and Ri represents the atomic
position around the ith atom. The descriptor transforms the
atomic positions around the ith atom to an adequate input
vector set. To investigate the crystal structure, the descriptor
is required to satisfy the translational, rotational, and permu-
tation invariance of the atomic energy. We use the Chebyshev
descriptors proposed by Artrith et al. [18]. In this method, the
two-body radial contribution is described as

Gpair
α =

∑
j �=i

Tα

(
2ri j

Rc
− 1

)
fc(ri j ), (2)

where ri j is the atomic distance between atoms i and j, Rc is
the cutoff radius, and Tα is the Chebyshev polynomial of the
first kind [18]. The Chebyshev polynomials Tn are defined by
a recurrence relation as

Tn+1(x) = 2xTn(x) − Tn−1(x), (3)

where T0(x) and T1(x) are 1 and x, respectively. Because of the
introduction of the cutoff function fc(ri j ), only atoms within
the cutoff radius Rc are considered in the sum of Eq. (2),
and the calculation cost remains O(N ). To smoothly truncate
both the value and its first derivative, we use a cosine cutoff
function defined as

fc(ri j ) =
{

1
2

[
cos

(
πri j

Rc

)
+ 1

]
(ri j � Rc)

0 (ri j > Rc).
(4)

In this work, we use Rc at 0.65 nm. The three-body angle
contribution is described as

Gtriple
α =

∑
j �=i,k �=i, j

Tα

(
1

2
(cos θi jk + 1)

)
fc(ri j ) fc(rik ), (5)

where ri j , rik , and r jk are the atomic distances between atoms
i, j, and k, and θi jk is the angle defined by the three atoms. We
use 9 radial functions and 19 angular functions. Hence, the
total dimension of the input vector set of descriptors is 28. We
set ten neurons in each layer in the hidden layer of the ANN
potential, and used a hyperbolic tangent with a linear twisting
function as the activation function of the hidden layers [19].
To train the ANN potential, the cost function C is defined as
follows:

C({w, b}) = 1

2

Ns∑
t=1

[
EANN

t ({w, b}) − EDFT
t

]2
, (6)

where Ns is the number of structures in the data set, and EANN
t

and EDFT
t are potential energies of the t th structure of the ANN

potential and the DFT calculation, respectively. The matrix
w and vector b are fitting parameter sets, termed the weight
matrix and bias vector, respectively. Using ∂C

∂w and ∂C
∂b by the

back-propagation technique [19], both the weight matrix and
bias vector are optimized to minimize the cost function. To
optimize the weight matrix and the bias vector, we use the
limited memory Broyden-Fletcher-Goldfarb-Shanno method
[20]. For the ANN potential training, we use the Atomic En-
ergy Network (ænet) package by Artrith and Urban [9]. First,
we consider 100 000 training steps to optimize the weight
matrix and bias vector. We then check the phonon dispersion
of bcc iron, defect formation energies, and relaxed atomic
configurations of defects predicted by the ANN potential,
applying the weight matrix and bias vector every 10,000 steps.
In the training procedure, information on the force (gradient
of potential energy) is not used. Therefore, the above protocol
may be suitable for checking overfitting. We found that the
weight matrix and bias vector at the 50 000th step are best
fits.

The QUANTUM ESPRESSO package [21] was used to con-
struct the reference DFT structure energy data sets for iron.
We generate two types of data sets for the reference DFT
dataset: an ideal crystal structure dataset and a perturbed struc-
ture dataset. The bcc, face-centered-cubic (fcc), hexagonal-
close-packed (hcp), and simple cubic structures are chosen
as the ideal crystal structures. We calculate the potential
energy at the equilibrium unit cell and the potential en-
ergies for systematically transformed unit cells. To cover
enough area of the reference PES, the perturbed structures
are generated by random displacement of the atomic posi-
tions to the initial structures in the range of ±0.05a0. We
choose the bulk bcc, point defects, and surface structures to
define the initial structures. As point defect structures, we
define the vacancy, divacancy, and self-interstitial structures.
As self-interstitial structures, the tetrahedral (T) -site, octa-
hedral (O) -site, [100]-dumbbell, [110]-dumbbell, and [111]-
dumbbell configurations are chosen. The (100), (110), (111),
and (112) surfaces are chosen as the surface structures. The
energy surface for the sliding of two adjacent atomic blocks
in a two-dimensional (2D) space, known as the generalized
stacking fault (GSF) energy surface, plays a critical role in de-
termining the dislocation core structure [2,15,22]. The (110)
and (112) planes, which are the most important slip planes of
bcc iron, are chosen as the GSF energy surface model. We
prepared 5751 atomic structure energy data sets of iron [23].
The bulk properties and defect formation energies predicted
by the constructed ANN potential are in excellent agreement
with those from the reference DFT calculation [23]. Thus, the
constructed ANN potential is expected to be a highly accurate
replica potential of the DFT.

Now, by using the constructed ANN potential, we evaluate
the a0/2〈111〉{110} screw dislocation core structure and its
energetics in bcc iron. For large-scale atomic modeling, we
modify the potential driver of ænet as a module in LAMMPS

[25]. We use the 22[112] × 38[110] × 1/2[111] bcc bulk
model, which is only periodic along the [111] direction. The
total number of atoms in the model is 5016. To create the
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FIG. 1. Schematic of bulk bcc model for creating the dislocation
core.

dislocation core structure at the center of the (111) plane of
the model, we apply to all the atoms the anisotropic elastic
solution of the displacement field. Subsequently, we optimize
the atomic position of the model except for the atoms, which
are located more than 6 nm away from the dislocation core,
as shown in Fig. 1. The criterion for optimization is set as
0.05 eV/nm for the subsequent calculations. Figure 2 shows
the atomic configuration of the screw dislocation core in a
stable state, known as the easy core, with the differential
displacement (DD) map [26]. We define the position of the
easy core as the centroid of three triangularly positioned
atoms indicated by the blue cross in Fig. 2 [1–3]. The core
structure predicted by the ANN potential has a compact and
nondegenerate structure. These results are in agreement with
previous DFT calculations [1,3–5]. We define the relative
position (P[112], P[110]) of the dislocation core from the easy
core in the (111) plane as

P[112] = 2
√

3

3

(
d2

[111] + d3
[111] − 2d1

[111]

)
,

P[110] = 2
√

6

3

(
d2

[111] − d3
[111]

)
, (7)

where di
[111] is the relative displacement of the atomic position

from the atomic position of the reference bulk model along the
[111] direction, and i = 1, 2, 3 indicate the atomic numbering
in Fig. 1 [1,3–5]. To control the position of these three atoms,

FIG. 2. Atomic configurations of the screw dislocation core with
the differential displacement (DD) map. Blue, red, and black crosses
indicate the positions of the easy core, hard core, and split core,
respectively. See text for details of the atomic numbering.

FIG. 3. Peierls potential and migration path of dislocation core
(inset) along the reaction coordinate predicted by the ANN (sky
blue) potential and EAM (yellow) potential [24]. Blue, red, and black
crosses indicate the positions of the easy core, hard core, and split
core, respectively.

we can set the dislocation core at arbitrary positions. In
Fig. 2, we show the two important dislocation core positions,
known as the hard core and split core, and the DD map. We
evaluate the Peierls barrier, which is the activation enthalpy of
dislocations to migrate from one easy core position to another
adjacent easy core position [3–5,27]. Using the nudged elastic
band method [28,29], we calculate the energy profile along
the reaction coordinate, known as the Peierls potential. The
corresponding results are shown in Fig. 3. For reference,
by using the EAM potential [24], the Peierls potential is
also calculated, as shown in Fig. 3. The Peierls potential
predicted by the ANN potential is a single hump type. Thus,
from the value of the local maximum, the Peierls barrier is
evaluated as 35.3 meV/b, where b is the length of the Burgers
vector [b = (

√
3/2)a0]. Using Eq. (7), the minimum energy

migration path of the screw dislocation core is calculated, as
shown in Fig. 3. The sky-blue line and yellow line indicate the
migration paths predicted by the ANN and EAM potentials,
respectively. The path predicted by the ANN potential is
curved when approaching the hard core position, represented
by the red cross [3–5]. The DD map superimposed on the
path shows the transition state predicted by the ANN potential.
These results are in agreement with previous DFT calculations
[1,3–5]. On the other hand, the Peierls potential predicted
by the EAM potential is of the double hump type, and the
evaluated Peierls barrier is 11.3 meV/b. The migration path
predicted by the EAM potential is widely curved so that
it is close to the split core position, denoted by the black
cross. To evaluate the reproducibility and transferability of the
ANN potential for investigating the dislocation dynamics, we
calculate the potential energy profile as a function of the screw
dislocation core position, termed the 2D Peierls potential.
The 2D Peierls potential not only determines the Peierls
barrier and migration path of the dislocation core, but also
controls the energetics of double kink formation, which plays
an important role in the mobility of the screw dislocation at a
finite temperature [30,31]. For the threefold symmetry of the
bcc lattice, the 2D Peierls potentials are characterized by the
energy profile along the cross-sectional line between the hard
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FIG. 4. Energy profile along the cross-sectional line between the
hard core and split core positions predicted by the ANN and EAM
potentials [24] and the GAP [15] with reference DFT calculations
from Ref. [3].

core and split core positions [3–5]. Figure 4 shows the energy
profile predicted by the ANN potential along with the previous
DFT calculations from Ref. [3]. For reference, by using the
GAP [15] and EAM [24], the energy profiles are calculated
and displayed in Fig. 4. The Peierls potentials at the hard core
and split core positions are 36.7 and 111.1 meV/b, respec-
tively. The energy profiles predicted by the ANN potential
are in excellent agreement with those from the previous DFT
calculations [3–5]. On the other hand, the Peierls potentials
predicted by the EAM potential decrease with the shift from
a hard core to a split core, from 176.9 to 3.1 meV/b at the
hard core and split core positions, respectively. This result is
a general trend in the EAM potentials. The Peierls potentials
at the hard core and split core positions predicted by the GAP
are 98.6 and 94.7 meV/b, respectively. Compared with DFT
results, the local minimum of the energy profile predicted by
the GAP widely shifts to the split core and is 60.1 meV/b,
which is almost the same as the Peierls barrier predicted by
the GAP in a previous study (64 meV/b) [15]. We emphasize
that the constructed ANN potential is the first interatomic
potential which correctly predicts the energy profile between
the hard core and the split core with the accuracy of the DFT
without electronic state evaluation. We also directly calculate
the formation energy for the double kink pair nucleation of
screw dislocations in bcc iron using the ANN potential. We
use the 22[112] × 38[110] × 30[111] bcc bulk model. The
total number of atoms in the model is 300 960. First, we
make a straight screw dislocation using the same procedure as
shown in Fig. 1. Then, to create a double kink pair, we shift the
dislocation cores in the middle 30b layer to the next adjacent
easy core position along the [112] direction and optimize the
atomic configuration of the model. The formation energy for
the nucleation of the double kink pair is 0.94 eV, which is
consistent with the estimated values from the line tension
model based on the DFT dataset: 0.73–0.86 eV [3,32].

Lastly, we evaluate other nonscrew dislocation core struc-
tures to check the reproducibility and transferability of the
ANN potential in detail. Recently, via DFT calculations,
Fellinger et al. determined four nonscrew dislocation core
structures, a0/2〈111〉{110} edge, a0/2〈111〉{110} 71◦ mixed,

FIG. 5. Atomic configuration of a0/2〈111〉{110} edge,
a0/2〈111〉{110} 71◦ mixed, a0〈100〉{110} edge, and a0〈100〉{100}
edge dislocations predicted by the ANN potential. The atomic
coloring and map show the error norm from the DFT results in
Ref. [17]. See text for details.

a0〈100〉{110} edge, and a0〈100〉{100} edge dislocations [17].
Not only their dynamics, but also the reactions between them
play important roles in the mechanical behavior of bcc iron.
These results also verified the accuracy and predictive ability
of various interatomic potentials including the GAP. They
show that the GAP fails to reproduce the a0〈100〉{110} edge
dislocation core structure. The atomic configurations of these
dislocation cores predicted by the ANN potential are shown in
Fig. 5. The atomic coloring and map indicate the error norm of
the atomic positions between results from the ANN potential
and DFT. We calculate the error norm ei of individual atoms
as

ei =
√∣∣rANN

i − rDFT
i

∣∣2
, (8)

where rANN
i is the position of the ith atom predicted by the

ANN potential, and rDFT
i is the position of the corresponding

atom from the DFT results. We consider the DFT atomic
configuration of the dislocation core and initial input con-
figuration to calculate the ANN potential from the available
data in Ref. [17]. All error norms are less than 0.015 nm.
Several error norms in the a0〈100〉{110} edge dislocation core
are slightly larger than others. However, the core structure
is still consistent with the DFT results. These results clearly
demonstrate the excellent reproducibility and transferability
of the constructed ANN potential. Note that the difference
in the predicted dislocation core structure and energetics
between the ANN potential and the GAP may arise from the
difference in the method for constructing the reference DFT
data. To cover enough area of the reference PES, we add
random displacements to the initial structures and sampled
each atomic configuration and total energy as reference data
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sets. On the other hand, to cover enough area of the reference
PES for the reference DFT data of the GAP, Dragoni et al.
performed MD simulations at various temperatures [15], and
sampled each atomic configuration and total energy as refer-
ence data sets. The sampling by random displacements might
be more efficient than the sampling by MD simulation.

In summary, we construct an atomic ANN potential to
investigate the dislocation dynamics in bcc iron. The bulk
properties and defect formation energies predicted by the
constructed ANN potential are in good agreement with those
from the reference DFT calculations. The a0/2〈111〉{110}
screw dislocation core structure and its energetics as well as
the nonscrew dislocation core structure, both predicted by the
ANN potential, are in excellent agreement with those from the
DFT calculations; this confirms the excellent reproducibility
and transferability of the constructed ANN potential. By using
MD simulation techniques, the constructed ANN potential
enables the large-scale direct investigation of dislocation dy-
namics with the accuracy of the DFT. Furthermore, combined
with advanced atomistic techniques, such as strain-boost hy-
perdynamics [33], diffusive molecular dynamics [34], and

ring-polymer molecular dynamics [35], the ANN potential
will be vital in investigating the dislocation dynamics in bcc
iron at finite temperatures. The computational time of the
ANN potential is approximately 5 ms/atom, which is approx-
imately 100 times longer than that of the EAM potentials.
However, recent progress in high-performance computing
might overcome this disadvantage soon. There is no limitation
on the descriptor type of the ANN potential. Hence, not only
the local atomic coordinates but also other physical quantities
can be adopted as input parameters. Our future work will
focus on constructing a new ANN potential integrated with
spin dynamics to investigate the magnetic effect in the phase
stability and dislocation mobility of iron at high temperatures.

The ANN potential module implemented in LAMMPS,
modified ænet for the LAMMPS library, and parameter file
of iron are freely available online [36].

This work was partly supported by the Priority Issue
(creation of new functional devices and high-performance
materials to support next-generation industries) using Post
“K” Computer, MEXT, Japan.
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