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Modeling of dendritic growth using a quantitative nondiagonal phase field model
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The phase field method has emerged as the tool of choice to simulate complex pattern formation processes
in various domains of materials sciences. For the phase field model to faithfully reproduce the dynamics of a
prescribed free-boundary problem with transport equations in the bulk and boundary conditions at the interfaces,
the so-called thin-interface limit should be performed. For a phase transformation driven by diffusion, the kinetic
cross-coupling between the phase field and the diffusion field has recently been introduced, allowing a control on
interface boundary conditions in the general case where the diffusivity in the growing phase DS neither vanishes
(one-sided model) nor equals the one of the disappearing phase DL (symmetric model). Here, we investigate
the capabilities of this nondiagonal phase field model in the case of two-dimensional dendritic growth. We
benchmark our model with Green’s function calculations (sharp-interface model) for the symmetric and one-
sided cases, and our results for arbitrary DS/DL allow us to propose a generalization of the theory by Barbieri
and Langer [Phys. Rev. A 39, 5314 (1989)] for finite anisotropy of interface energy. We also perform simulations
that evidence the necessity of introducing the kinetic cross-coupling and of eliminating surface diffusion. Our
work opens up the way for quantitative phase field simulations of phase transformations with diffusion in the
growing phases playing an important role in the pattern and velocity selections.

DOI: 10.1103/PhysRevMaterials.4.033802

I. INTRODUCTION

The phase field (PF) method has emerged in the last
30 years as one of the most powerful tools to tackle free
boundary problems in various fields [1–5]. While in free
boundary problems, different bulk domains where transport
equations hold are separated by interfaces with boundary
conditions, the PF models describe continuous fields obeying
the same evolution equations everywhere in space, with the
spatial variations of the so-called PF (nothing but an order pa-
rameter) representing the interfaces. The latter thus possesses
a certain width which is a numerical parameter that has no
physical meaning. To simulate extended systems, the interface
width needs to be chosen orders of magnitude larger than the
physical width of the interface (of the order of the atomic
distance). Since, of course, the field dynamics are influenced
by the interface width, special care thus has to be taken for the
PF model to reproduce a desired free boundary problem.

In Ref. [6], an asymptotic analysis linking the classical PF
model (model C in the Hohenberg-Halperin nomenclature [7])
and the free boundary problem was introduced and named
the thin-interface limit. On the one hand, the thin-interface
analysis provides the influence of the parameters of the PF
model on the conservation equation at the moving interface
(Stefan condition). On the other hand, it provides the link with
the kinetic coefficients describing the deviation from local
equilibrium at the interface. In particular, the thin-interface
analysis allows one to choose the PF model parameters so
as to reproduce local equilibrium boundary conditions that
are relevant to usual solidification experiments as well as
industrial processes such as casting.

While designed for a transformation driven by heat diffu-
sion in a pure material with equal diffusivity in both phases
(symmetric model), the thin-interface limit was later on per-
formed in the case of alloys with a vanishing diffusivity in
the growing solid phase (one-sided model) [8]. Equilibrium
boundary conditions were then shown to require the addition
of a so-called anti-trapping current in the equation for the
alloy concentration. However, in the general case where the
diffusivity of the growing phase DS neither equals the one
of the disappearing phase DL nor vanishes, the thin-interface
analysis of the classical PF model shows that equilibrium
boundary conditions may not be achieved without altering
the thermodynamics of the interface with some unphysical
adsorption [9]. Only recently, this problem has been solved
[10] by the introduction of the kinetic cross-coupling between
the PF and the diffusion field [11]. In the constitutive force-
flux relations of the PF model, cross terms are then present,
and are parametrized by the same new parameter, according
to Onsager’s symmetry. This new parameter provides the
additional degree of freedom to achieve equilibrium boundary
conditions at the interface. We note that these cross terms have
been shown to also be responsible for the Ehrlich-Schwoebel
effect in the nondiagonal PF model for molecular-beam-
epitaxy [12].

Assuming a finite diffusivity in the growing phase differing
from the one in the disappearing phase is also highly relevant
to pure materials for which the thermal diffusivity is gener-
ically different in the different phases. In alloys, where the
chemical diffusion coefficient is usually much smaller in the
solid than in the liquid for a substitutional solute, but it may be
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of the same order in solid and liquid for an interstitial solute
such as carbon in steels. Moreover, for alloys in general, solid-
state transformations such as the eutectoid reaction are best
described using a finite contrast of the diffusion coefficient
[13,14].

In this paper, we apply the nondiagonal PF model to the
problem of two-dimensional dendritic growth. The dendritic
problem represents an archetype of a pattern formation pro-
cess described by nonlinear dynamics, and it represents a
kind of standard benchmark problem for PF models. The
development of the dendritic theory comprised two stages.
First, Ivantsov described a parabolic dendrite tip in absence of
interface energy [15]. Within this frame, the relation between
the undercooling and the Péclet number (product of the tip
radius and the steady-state velocity) is found, ensuring the
conservation of energy around the parabolic tip. Second, it
was shown around 30 years later that a solution exists, i.e.,
the tip radius and the velocity selected separately, only in
the presence of interface energy anisotropy (see Ref. [16]
and references therein). Some time was additionally required
to solve the problem in three dimensions [17,18]. These
studies were performed within a symmetric model where the
diffusivity is the same for both phases. In Ref. [19], the
selection theory was extended to arbitrary ratios of diffusivity
μ = DS/DL. The μ dependence of the velocity was found
analytically in the limit of vanishing anisotropy, while for
larger anisotropies, a numerical resolution of the boundary
integral equation [Green’s function (GF) method] is needed.
However, until now, these numerics were performed only for
the symmetric (μ = 1) and the one-sided (μ = 0) models,
for which the integral equation simplifies drastically. Here,
using Green’s function calculations for μ = 0 and μ = 1,
we come up with a μ dependence of the velocity to which
we confront our PF simulations for different μ. We find
that the nondiagonal PF model reproduces quantitatively the
Green’s function results for μ = 0 and μ = 1, and matches
well the suggested μ dependence, when the undercooling
is small enough. Also, we evidence the importance of the
kinetic cross-coupling using simulations within the classical
PF model. Finally, we additionally confirm the importance of
the procedure for eliminating surface diffusion, as described
in detail in Ref. [20].

II. NONDIAGONAL PHASE FIELD MODEL

In the present paper, the main difference to the PF model
described in Refs. [10,20] concerns the angular dependence
of the interface energy, responsible for the existence of the
dendritic solution. In two dimensions, the normal direction
n to the interface is a function of the space coordinates x
and y, and only one parameter describes the anisotropy of
interface energy. In terms of the PF model, this anisotropy
enters the interface width through the partial derivatives of the
PF φ(x, y) [6]:

W (n) = W0(1 − 3ε)

[
1 + 4ε

1 − 3ε

(∂xφ)4 + (∂yφ)4

|∇φ|4
]
.

ε represents the strength of the fourfold anisotropy and W0

indicates the average value of the interface width.

Then, Eq. (9) in Ref. [10] is rewritten as

Det(n)τ (n)φ̇ = H

{
φ(1 − φ2) + ∇ · [W 2(n)∇φ]

+ ∂x

(
|∇φ|2W (n)

∂W (n)

∂ (∂xφ)

)

+ ∂y

(
|∇φ|2W (n)

∂W (n)

∂ (∂yφ)

)}

− p′(φ)

2
u + M(n)W (n)D(φ)∇φ · ∇u (1)

and the second equation for the diffusion field u (Eq. (10) in
Ref. [10]) reads

u̇ = ∇ · {D(φ)[∇u + M(n)W (n)φ̇∇φ]} + p′(φ)

2
φ̇. (2)

For a pure material, u = (T − TM )cP/L measures the devia-
tion of the temperature T from the melting temperature TM ,
with cP and L being the specific heat and latent heat, respec-
tively. Similarly, for the solidification of a binary alloy at a
given temperature, u = (C − CL )/(CS − CL ) measures the de-
viation of the concentration C from the liquidus concentration
CL, with CS being the solidus concentration. On the right-hand
side of Eq. (1), the term parametrized by the dimensionless
H comes from the φ dependence of the thermodynamics
of the system. The first term is inherited from the double
well potential, with minima at φ = ±1 and a maximum at
φ = 0, while the second, third, and fourth terms represent the
n-dependent penalization of φ variations. Here, in comparison
to Refs. [10,20], the relaxation time τ , the cross-coupling
parameter M and, as a consequence, the determinant (that
has to be positive) Det = 1 − (MW ∇φ)2D(φ)/τ , present an
explicit dependence on the orientation of the interface. This
dependence is related to the choice of interface conditions
that we aim to reproduce with the PF model, whose dynamics
is highly influenced by W as mentioned in the Introduction.
Our model is called nondiagonal owing to the existence of the
terms parametrized by M. In opposition, for a diagonal model,
one has M = 0. These additional contributions appear as a
consequence of nondiagonal terms in the force-flux Onsager
relations describing the dynamics of the system. They yield
a kinetic cross-coupling between the nonconserved field φ

and the conserved field u. The Onsager relations give the
proportionality between two fluxes (flux of heat and flux of
matter across the interface for the thermal model, diffusion
flux, and interface velocity for the alloy model) and two driv-
ing forces (temperature gradient and jump of free energy at the
interface for the thermal model, gradient of diffusion chemical
potential, and jump of grand potential for the alloy model)
[12]. Only one of the two fluxes exists in the bulk, but both
exist at the interface, leading to a 2 × 2 matrix of interface
kinetic coefficients. As will be shown explicitly later, a finite
value M is necessary to reproduce equilibrium conditions at
the interface when the diffusion coefficients are finite in both
phases and different. One should note that, when the diffusion
flux vanishes in the bulk solid (one-sided case with DS/DL =
0), the Onsager symmetry may not be invoked because the two
fluxes at the interface are not linearly independent. This gives
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the possibility to introduce the term parametrized by M only
in Eq. (2), presented as an antitrapping term by Karma [8].

At equilibrium (u = 0), the one-dimensional PF profile
reads φeq(x) = −φeq(−x) = tanh(x/

√
2W ). In the following,

we assign the equilibrium value φ = 1 to the growing phase
(solid phase) and φ = −1 to the disappearing phase (liquid
phase). Within this frame, the orientation-dependent capil-
lary length, reflecting the orientation dependence of interface
energy, is d (n) = αHW (n) where α = W

∫ ∞
−∞ dx[φ′

eq(x)]2 =
2
√

2/3 is independent of n. For a pure material, the func-
tion p(φ) interpolates between the values at the melting
temperature of the solid and liquid entropies [10]. For a
binary alloy, p(φ) interpolates between the equilibrium values
of the concentration field [12]. We choose an odd func-
tion p(φ) = −p(−φ) = 15(φ − 2φ3/3 + φ5/5)/8 for which
p(φ = ±1) = ±1. The oddness of p(φ) ensures the absence
of undesired adsorption effects at the interface.

The diffusivity is phase dependent (DS in solid and DL in
liquid) through its φ-dependence. Some of the authors have
shown [10] that to reproduce equilibrium boundary conditions
at the interface, one may use a diffusivity that reads

1

D(φ)
=

(
1

2DS
+ 1

2DL

)
+ g(φ)

(
1

2DS
− 1

2DL

)
, (3)

where the odd function g(φ) = −g(−φ) also obeys g(±1) =
±1. In addition, in order not to alter the heat/mass conserva-
tion equation at the moving interface with a surface diffusion
flux, g(φ) should incorporate some contribution parametrized
by a coefficient a that depends on μ = DS/DL, and chosen
such that

∫ ∞
−∞ dx{D[φeq(x)] − DS/2 − DL/2} = 0 [9]. As in

Ref. [20], we choose a function g of the form g(φ) = φ[1 +
a(1 − φ2)]. Then for each μ, one should find the coefficient
a∗ such that the above-mentioned integral vanishes.

To achieve equilibrium boundary conditions, the relaxation
time and the cross-coupling coefficient read

τ (n) = βW 2(n)

4α

(
1

2DS
+ 1

2DL

)
, (4)

M(n) = χW (n)

2α

(
1

2DS
− 1

2DL

)
, (5)

where β = ∫ ∞
−∞(dx/W ){1 − p2[φeq(x)]} � 1.40748 and χ =∫ ∞

−∞(dx/W ){1 − p[φeq(x)]g[φeq(x)]}. Here, we note the ne-
cessity of introducing a nondiagonal model to simulate DS �=
DL with DS and DL being finite, while a diagonal model with
M = 0 is sufficient when DS = DL. Since g(φ) varies with μ

through the variation of a∗, the value of χ also depends on μ.
In Fig. 1, we present a∗ and χ in the range of μ that the present
model allows us to investigate. Indeed, due to the condition of
positiveness of the determinant Det, we have an upper bound
for the absolute value of M, that in turns sets the lower bound
to the ratio μ (here close to 0.06) for which we are able to
achieve equilibrium boundary condition and elimination of
surface diffusion [10,20]. It is also important to notice that
a∗ and χ obey a∗(μ) = a∗(1/μ) and χ (μ) = χ (1/μ).

As mentioned in the Introduction, in this paper we are also
interested in the one-sided case where μ = 0. Then, one has to
use another definition of the diffusivity than Eq. (3). Instead,

0 0.2 0.4 0.6 0.8 1
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0.8
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0.95

1

1.05

1.1

1.15

1.2

1.25

FIG. 1. Selected value a∗ of the parameter a in the function
g(φ) such that surface diffusion is eliminated, and corresponding
value of χ .

we write

D(φ) = Dos(φ) = DL(1 − φ)/2. (6)

In Ref. [12], the equilibrium boundary conditions have been
reproduced when (please pay attention to the fact that in
Ref. [12] we use a double well potential yielding equilibrium
values for the PF φ = 1 and φ = 0)

M(n) = Mos(n) = ζW (n)

2αDL
, (7)

τ (n) = τos(n) = λW 2(n)

4αDL
, (8)

where ζ = ∫ ∞
−∞(dx/W ){1 + φeq(x) − 2p[φeq(x)]}/[1 − φeq

(x)] � 2.12132 and λ = 2
∫ ∞
−∞(dx/W ){1 − p2[φeq(x)]}/[1 −

φeq(x)] � 3.42778. Here, we note that surface diffusion
is suppressed with the choice in Eq. (6) since∫ ∞
−∞ dx{Dos[φeq(x)] − DL/2} = 0.

III. BOUNDARY INTEGRAL EQUATIONS

As mentioned in the Introduction, we also have performed
boundary integral calculations in this paper. The boundary
integral technique consists of writing an integro-differential
equation for the steady state of interface shape yint(x). While
for an arbitrary shape of the interface, the diffusion field is
obtained through an integral over the interface of a kernel
involving the GF of the diffusion equation, the solution yint(x)
is determined by imposing the value uint of the diffusion
field u at the interface, here with the Gibbs-Thomson local
equilibrium condition,

uint = � − d0(1 − 15ε cos 4θ )κ. (9)
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� represents the value of the dimensionless diffusion field
at infinity ahead of the growing dendrite, d0 represents the
average value of the capillary length (related to the parameters
of the PF model through d0 = αHW0), ε is the anisotropy
parameter in Eq. (1), and κ = −y′′

int/(1 + y′2
int )

3/2 is the cur-
vature of the interface. Here, the factor 15 comes from the
definition of the interface stiffness for a cubic crystal [16],
where θ is the angle between the normal to the interface
and the direction along which the growth is favored, i.e., the
direction of minimum stiffness.

For the sake of readability, we refrain from giving fur-
ther details on the boundary integral methods and refer to
Refs. [21,22] and references therein for additional informa-
tion. We mention that, apart from the shape of the interface,
the steady-state velocity V is found, using the Ivantsov rela-
tion � = √

πP exp(P)erfc
√

P, where P = ρV/(2DL ) with ρ

being the radius of the Ivantsov parabola [15]. The boundary
integral technique has, up to now, only been used for the
symmetric model (μ = 1) and for the one-sided model (μ =
0). This is probably due to the fact that for other values of
μ, the number of unknowns that have to be found is doubled.
Indeed, in addition to the shape of the interface, the normal
gradient of the diffusion field at the interface should also
be found self-consistently. However, the boundary integral
equation was analyzed by Barbieri and Langer in Ref. [19],
and it was shown that, in the limit of small anisotropy (in
addition to being in the limit of small driving force � as usual
in theoretical descriptions of weakly out-of-equilibrium den-
dritic growth), i.e., when the correcting term to the capillary
length parametrized by 15ε in Eq. (9) is small, the steady-state
velocity depends on μ in the following way:

V (μ = 1)

V (μ)
= 1 + μ

2
. (10)

IV. RESULTS AND DISCUSSION

In this section, we present our results for an anisotropy
strength ε = 0.04. We benchmarked our nondiagonal PF
model with GF calculations within the symmetric and one-
sided models, for different values of the driving force �. The
nondiagonal PF and chemical potential evolution equations
presented in Eqs. (1) and (2) were iteratively solved in a
two-dimensional simulation domain with a uniform grid spac-
ing �x = �y = 0.4W0 by using an explicit finite-difference
method. The sizes of the simulation domain were set to
Lx × Ly = 768�x × 768�y to 2048�x × 2048�y. To save
the simulation time, only 1/4 dendrite was predefined at
the left corner of the simulation domain with the far-field
boundary condition u → �, and also a moving-frame method
and GPU acceleration were employed in the present paper.
Furthermore, we note that for the symmetric model where
DS/DL = 1, the diffusivity is a constant, the cross-coupling
parameter M vanishes and the classical PF model is recovered.
For the one-sided case where DS/DL = 0, the diffusivity is
given by Eq. (6), and the PF parameters are given by Eqs. (7)
and (8).

In Table I, we gather our PF and GF results. We see that the
PF model reproduces the GF results within 5% error, which is
quite satisfactory, and no particular trend arises concerning the

TABLE I. Dimensionless steady-state velocity from the phase
field simulations (VPF) and from the Green’s function calculations
(VGF). Here ε = 0.04.

� μ
VPFd0

DL

VGFd0
DL

Error (%)

0.65 1 0.0393 0.0399 1.5
0 0.0573 0.0543 5.5

0.60 1 0.0238 0.0237 0.4
0 0.0360 0.0344 4.7

0.55 1 0.0141 0.0139 1.4
0 0.0219 0.0212 3.3

0.50 1 0.00817 0.00800 2.1
0 0.0132 0.0126 4.8

0.45 1 0.00457 0.00443 3.2
0 0.00744 0.00722 3.0

dependence of the error on �. On the other hand, we may state
that the deviation shows a tendency to be larger for μ = 0 than
for μ = 1.

In the case ε = 0.04, the correction to the capillary length
in Eq. (9) is not much smaller than unity, and we see that the
relation between the steady-state velocities for μ = 0 and μ =
1 does not follow Eq. (10). In Fig. 2, we present

� = V (1)

V (μ)

2

1 + μ
(11)

as a function of μ for our PF simulations (crosses), and for the
analytical theory in Ref. [19] (horizontal black dashed line).
The interface width for the PF simulations is chosen such
that the velocity has converged with respect to the increas-
ing ratio d0/W0, and the latter ranges from d0/W0 = 0.139
for the smallest velocities to d0/W0 = 0.554 for the largest
ones.

0 1 2 3 4

0.8

1.0

1.2

1.4

1.6

µ

Δ = 0.65
Δ = 0.60
Δ = 0.55
Δ = 0.50
Δ = 0.450.0 0.1 0.2

1.10

1.20

1.30

1.40

1.50

Ω

FIG. 2. Crosses: Rescaled ratio of velocities � [see Eq. (11) for
definition] obtained from PF simulations as a function of μ, for
different values of �; dashed colored lines: representation of Eq. (12)
based on GF results for μ = 0 and μ = 1; black horizontal dashed
line: Barbieri-Langer theory [19], i.e., Eq. (10).
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We see that, although our PF simulations get closer to
the analytical theory when � decreases, a large deviation
remains, illustrating the breakdown of the assumptions made
in Ref. [19]. Let us note that a relatively good agreement was
found with the analytical theory for ε = 0.02 and � = 0.55
in Ref. [23]. However, the PF model developed in this paper,
that was designed to account for diffusion in the growing
phase, imposes an unjustified linear relationship between the
fluxes at the interface and the interface velocity in addition
to the conservation equation, and this model is therefore not
consistent on the thermodynamic level.

Beyond reporting our PF results for the μ dependence
of the dendrite-tip steady-state velocity, we propose now a
generalization of the relation Eq. (10). This generalization
aims at expressing the μ dependence of velocity for strengths
of anisotropy for which the correction to the capillary length
due to anisotropy in Eq. (9) is not small compared to unity,
i.e., when 15ε � 1. In view of the linear dependence of the
ratio V (μ = 1)/V (μ) in Eq. (10), we write

V (1)

V (μ)
= V (1)

V (0)
+ μ

[
1 − V (1)

V (0)

]
. (12)

This expression depends, apart from μ, on the ratio
V (1)/V (0). This ratio, that equals 1/2 when Eq. (10) is
recovered at small enough ε, is estimated for ε = 0.04 using
the velocities VGF(μ = 1) and VGF(μ = 0) obtained with the
GF calculations for the symmetric and the one-sided model
reported in Table I. In Fig. 2, Eq. (12) is then represented by
the dashed colored lines, with each color corresponding to a
different value of �. We clearly see that our PF calculations
converge to Eq. (12) when � decreases. For � = 0.45, the
deviation between the PF results and Eq. (12) does not exceed
2%. When one additionally looks at the details of the curve
in the neighborhood of μ = 0 (in the inset), we observe that
our PF results for � > 0.45 exhibit an unexpected behavior.
For μ = 0.1 and 0.2, our PF results lie above Eq. (12), but
they lie below for μ = 0. We suspect that the form of the
diffusivity function in Eq. (3), that involves the parameter
a chosen such that surface diffusion is eliminated (let us
note that other strategies have been used for such a purpose
[24]), plays a role. Indeed, this function is nonmonotonous
and the magnitude of its variations, that are restricted to
region of width W , increases when the deviation of μ from
unity increases. In comparison, for μ = 0, the diffusivity in
Eq. (6) provides the elimination of surface diffusion while
being monotonous. Anyway, the PF results for the smallest
value of � suggest that this unexpected behavior disappears
when � is small enough.

The quality and robustness of the PF results presented
above are supported by two other sets of simulations. For that,
we have investigated the behavior of the PF model in the range
0 < μ < 1 when (1) the kinetic cross-coupling is turned off,
i.e., when M = 0; and (2) the procedure to eliminate surface
diffusion is turned off, i.e., when a = 0. We present in Fig. 3
the results for � = 0.55 and � = 0.45, together with the
corresponding results already shown in Fig. 2. Let us note
that the reference velocity V (μ = 1) is the same for case 1
(M = 0) and for case 2 (a = 0) because the diffusivity is a
constant, i.e., 1/(2DS ) − 1/(2DL ) = 0 in Eqs. (3) and (5). In
both cases, we see that the results deviate from the PF results

µ

Δ = 0.55
Δ = 0.45

M = 0
a = 0

Ω

0.0 0.5 1.0

1.0

1.2

1.4

1.6

FIG. 3. Comparison between the nondiagonal PF results pre-
sented in Fig. 2 (crosses) and PF simulations with (1) squares: M = 0
and (2) triangles: a = 0. We evidence here the importance of the
kinetic cross-coupling and the elimination of surface diffusion.

presented in Fig. 2. This deviation systematically increases
when the deviation of μ from unity increases and when �

increases. For example, for � = 0.45, μ = 0.2, this deviation
approaches 20% when M = 0 and is larger than 10% when
a = 0. These results therefore emphasize the necessity of
using the nondiagonal PF model with elimination of surface
diffusion. While the usage of a nondiagonal Onsager matrix
of forces-flux relations is the elimination of surface diffusion
is, here, necessary to achieve a quantitative agreement with
the GF calculations in which surface diffusion is not included.
In general, however, surface diffusion, in the sense of a
tangential flux driven by variations of chemical potentials
along the interface and leading to a normal motion of the
latter (see Ref. [20] for more details), is allowed and takes
place. Nevertheless, in the limit of small undercooling where
the interface radius of curvature is large compared to the
capillary length, the effect of surface diffusion is expected
to be weak owing to the high order of the spatial derivatives
that are involved in its description. The elimination of surface
diffusion in the PF model, through the choice of a vanishing
surface diffusion coefficient, is thus mainly designed so as to
suppress effects that are enhanced due to the diffuseness of the
interface.

We have also analyzed the dendrite tip region for � =
0.45, ε = 0.04. In Fig. 4(a), we present the steady-state den-
dritic shape obtained from PF simulations and from GF calcu-
lations for the symmetric and the one-sided cases. As expected
from the small deviations reported in Table I, the dendrite
shapes calculated by PF simulations in symmetric and one-
sided cases agree perfectly with GF results. In Fig. 4(b),
we present the dendritic shape close to the tip together with
the Ivantsov parabola, for the simulation data presented in
Fig. 2. For each μ, we rescale the dendrite shape by ρ,
the radius of the Ivantsov parabola. The latter is obtained
by plugging the growth velocity V obtained from simulation
into the inverse Ivantsov relation, giving P = ρV/(2DL ) as a
function of �. When we focus on a small region at a distance
of approximately 1.5ρ behind the tip, we see that the scatter
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-150

-100

-50
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FIG. 4. (a) Comparison of the steady-state dendritic shapes obtained from PF simulations and the GF results for � = 0.45 and ε = 0.04
in symmetric and one-sided cases. (b) Interface position in the dendrite tip (x = 0) region scaled by the Ivantsov radius ρ for different values
of μ and at � = 0.45 and ε = 0.04. The tip radius is weakly depending on μ when expressed in units of ρ.

of the position of the interface is rather small compared to
the distance to the Ivantsov parabola. In comparison, in a
simulation with ε = 0.01, the position of the interface was
much closer to the Ivantsov parabola, which is in line with
the classical dendritic theory for which the tip converges to
the Ivantsov parabola when the anisotropy of interface energy
decreases. We may thus conclude from our study that the
tip radius depends only weakly on μ when expressed in
units of ρ.

Let us finally give a short remark on the case of large devia-
tions from equilibrium. The one-sided PF model was recently
investigated in the perspective of fast solidification [25], for
which the boundary conditions for the chemical potentials
jumps across the interface deviate from linear kinetics. Such
an investigation would be valuable for the present model with
diffusion in both phases. However, one should have in mind
that our problem here is more complex that in the one-sided
case. Indeed, in the latter, the absence of diffusion flux in the
growing solid phase provides a constraint that is not present
here (see the introduction in Ref. [10] for a more detailed
discussion).

V. CONCLUSIONS

We have studied the capabilities of the nondiagonal PF
model for the simulation of two-dimensional dendritic growth
in the case where the diffusivity in the growing phase DS

neither vanishes nor equals the one of the disappearing phase
DL. While we have benchmarked our PF results with GF
calculations (sharp-interface model) for μ = DS/DL = 0 and
μ = 1, our calculations for other values of μ show significant
deviations from the theory by Barbieri and Langer [19], in
accordance with the expected breakdown of their assumptions
for the strength of interface energy anisotropy that we have
used in our simulations. In view of our results, we then pro-
pose a generalization of the prediction. We also have shown
that an agreement between the PF model and GF method
requires the kinetic cross-coupling and the elimination of

surface diffusion. Our work opens up the way for quantitative
PF simulations of phase transformations where diffusion in
the growing phases plays an important role in the pattern and
velocity selections.

Especially, assuming DS �= 0 and DS �= DL is adapted to
the solidification and melting in pure materials, but also in
interstitial alloys. The most obvious illustration for the latter
case is given by the dendritic solidification of the δ ferrite in
steels (see, for example, the recent Ref. [26]), for which the
diffusion coefficient of interstitial carbon is comparable to the
diffusion coefficient of carbon in the liquid phase. At lower
temperatures, the diffusion of carbon in the δ ferrite drives
the peritectic transformation, for which the austenite grows at
the expense of the δ ferrite. For such a transformation, a PF
model with a finite contrast of diffusion coefficient such as
the one studied in this paper should be used. More generally,
at temperatures well below the melting temperature, alloys
usually present regions in their phase diagram where several
solid phases coexist, and solid-state transformations such as
eutectoid ones involve diffusion in all phases. In particular, it
was shown that diffusion in the growing phases may have a
significant influence on the eutectoid transformation velocity
in the case where all diffusion coefficients are equal [14]. Our
model thus provides the possibility to study such dependence
in the general case with generically different nonvanishing
diffusion coefficients.
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