
PHYSICAL REVIEW MATERIALS 4, 033801 (2020)

Adjusting the descriptor for a crystal structure search using Bayesian optimization
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We perform a crystal structure search using Bayesian optimization and evaluate its efficiency with a varying
parameter value in the descriptor. Applying the crystal structure search to crystalline silicon shows that the
efficiency of the search depends heavily on the parameter value. We find that the efficiency is linked to the
distribution of the descriptor. Therefore, we introduce an information measure of the distribution to estimate an
appropriate parameter value for performing the crystal structure search efficiently. The measure can also be used
to predetermine an appropriate parameter value. The validity of the measure is confirmed with its applications to
silicon oxide and yttrium-cobalt alloy.
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I. INTRODUCTION

Computational crystal structure searches are a major chal-
lenge in materials science [1]. They provide a powerful tool
for finding new materials and identifying uncertain crystal
structures. Crystal structure searches find the most stable
structure or acceptably low-energy structures for a given
chemical composition. From a mathematical perspective, this
is a global optimization problem, in which the global mini-
mum or local minima of an acceptably small value of a given
objective function is identified. In the crystal structure search,
evaluating an objective function corresponds to evaluating
the potential energy of a crystal structure and descending
to a local minimum during global optimization corresponds
to relaxing a crystal structure. We often use first-principles
methods for the structure relaxation and energy evaluation
to compute the potential energy surface accurately. However,
the first-principles calculation is quite heavy for some sys-
tems, and the calculation must be repeated during the global
optimization. Thus, to reduce the computational cost, it is
important to minimize the number of calculations performed
to find the global minimum.

Many global optimization techniques have been used in
crystal structure searches to reduce the number of structure
relaxations and energy evaluations, such as the random search
algorithm [2,3], evolutionary algorithm [4,5], and particle
swarm optimization [6,7]. In addition, a crystal structure
search method using Bayesian optimization (BO) [8] has
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been developed recently [9]. BO is a global optimization
machine learning technique for a black-box function that is
not explicitly given or requires a large amount of computation
to be evaluated. The objective function to be optimized is the
potential energy as a function of a crystal structure here. BO
suggests a candidate by balancing exploration of a domain far
from the obtained data and exploitation of good obtained data.

A crystal structure is represented by a numerical vec-
tor called a descriptor that is used to quantify how similar
structures are. The search space in BO is spanned by the
descriptor. The descriptor is evaluated from atomic coordi-
nates, although it is not a set of atomic coordinates itself,
to satisfy the following two requirements. One is to be the
same between identical structures to measure the similarity
correctly, which is, in other words, to be invariant under
translation and rotation of the system and under permutations
of atoms of the same chemical element. The other is to be
evaluated only from a crystal structure because the energy is
not available before executing BO. The mapping of a crystal
structure to a descriptor does not need to be injective, which
means that descriptors for different structures can be the same.
Many descriptors have been proposed, and they often have
parameters that must be predetermined [10–13]. Because the
parameters change the descriptors or the BO input, as shown
in Fig. 1, the parameters would affect the performance of
the crystal structure search. The presence of the parameters
in the descriptor raises the following two questions. (i) How
strongly does the efficiency of the crystal structure search
depend on the choice of values of the parameters? (ii) How
are the parameter values predetermined to provide an efficient
crystal structure search?

In this paper, to answer these two questions, we examine
the dependency of the efficiency of the crystal structure search
using BO on the parameter in the descriptor by case studies
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FIG. 1. Flowchart of the crystal structure search using Bayesian
optimization (BO). A crystal structure is represented by a descriptor
to be treated by BO. Parameters in the descriptor, numbers of atoms,
and a molecular dynamics code must be given by a user in advance.

and propose an information measure to determine parameter
values. The paper is organized as follows. First, we explain the
crystal structure search method and setup for evaluating the
efficiency in Sec. II. Next, in Sec. III, we clarify how much a
parameter in the descriptor affects the efficiency of the crystal
structure search and introduce a related information measure
by focusing on crystalline silicon as a model case. We show
that the measure can be used to decide a parameter value in
the descriptor prior to starting the crystal structure search. The
dependency of the efficiency on a parameter and validity of the
measure are revealed also for silicon oxide and yttrium-cobalt
alloy. Finally, we provide a summary in Sec. IV.

II. METHODS

A. Crystal structure search using Bayesian optimization

We perform the crystal structure search by using the
CrySPY code [14], in which an algorithm using BO is im-
plemented [9]. Figure 1 shows the flowchart for the structure
search. The code searches for the minimum-energy structure
within a pool of crystal structures by using a descriptor and
the total energy of a crystal structure as the explanatory
and response variables, respectively. Once we give a pool of
crystal structures that have identical chemical compositions
and the number of atoms per unit cell, the code repeats alter-
nately picking candidates from the pool by BO and relaxing
the structures of the candidates. Before performing BO, the
descriptors are evaluated for all the structures, and then the
descriptors are standardized, namely linearly transformed so
that each dimension has a mean of zero and a variance of one.

FIG. 2. Schematic view of Bayesian optimization (BO). The
descriptor is multidimensional. The circles indicate the training data
or descriptors and total energies of already relaxed crystal structures.
The opacity of the shading represents the predicted probability of
the total energy and the solid line is the mean. Each dotted line
indicates a descriptor of a crystal structure that is not yet relaxed. BO
predicts total energies for the remaining structures in a probabilistic
manner and suggests candidates. A candidate is chosen based on the
predicted mean and variance, or expectation value and uncertainty.

We use the F -fingerprint [11] as the descriptor. A schematic
of the BO procedures is shown in Fig. 2.

The CrySPY code uses the common Bayesian optimiza-
tion library (COMBO) [15] to conduct BO. Candidates are
selected according to an acquisition function. We use that
based on Thompson sampling [16]. The acquisition function
is computed from the training data set with the descriptors and
total energies already obtained through the Gaussian process.
The kernel function in the Gaussian process is the Gaussian
kernel with the Euclidean distance, in which hyperparameters
are automatically determined by the type II maximum likeli-
hood estimation each time before picking candidates.

The CrySPY code also calls a molecular dynamics code
to relax the crystal structures of the selected candidates. The
crystal structure relaxation is the most time-consuming part
in CrySPY. The CrySPY code can access both ab initio
and classical molecular dynamics codes. In this study, we
use SOIAP [17] and the Vienna Ab initio Simulation Pack-
age (VASP) [18]. The ZRL potential [19] is employed in
calculations by SOIAP. See Appendix C for details of the
ZRL potential. Use of the classical potential, ZRL, reduces
computational costs and does not matter to the main aim of
the present work of clarifying the dependence of the crystal
structure search efficiency on a parameter in the descriptor.

B. Setup for evaluating the efficiency
of the crystal structure search

First, we prepare a pool of crystal structures, which con-
sists of 1000 structures generated randomly using the CrySPY
code. Next, we repeat alternately performing BO and crystal
structure relaxation until we find the minimum-energy struc-
ture. BO picks 5 candidates from the pool at a time. Thus,
we evaluate the number of structures examined until we find
the minimum-energy structure; the fewer the number of struc-
tures, the more efficient the crystal structure search. Because
the search for the minimum-energy structure is stochastic, we
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perform 100 minimum searches independently using the same
pool of crystal structures and extract summary statistics to
evaluate the efficiency.

A component of the descriptor is

FAB(rα ) =
A,unit cell∑

i

B∑
j( �=i)

δσ (rα − ri j )

4πr2
i j (NANB/V )�r

− 1, (1)

where A and B are chemical elements in a crystal structure,∑A,unit cell
i is the summation over A atoms within the unit

cell,
∑B

j( �=i) is the summation over B atoms including periodic
replicas other than atom i, NA and NB are the numbers of A
and B atoms in the unit cell, respectively, V is the volume
of the unit cell, ri j is the Euclidean distance between atoms
i and j, rα = rmin + (α − 1)�r, α = 1, . . . , Npoint, Npoint =
�(rmax − rmin)/�r� + 1, �·� is the floor function, and δσ (r)
is the delta function approximated by the probability density
function of the normal distribution with a mean of zero and
variance σ 2. If a system is a simple substance, e.g., Si16,
the αth component of a descriptor is FSiSi(rα ). If a system
contains multiple chemical elements, a descriptor is a vector
constructed by concatenating FAB(rα )’s of all element pairs.
For instance, a descriptor of Si6O12 has 3Npoint components
whose first Npoint components are FSiSi(rα )’s, middle Npoint

components are FSiO(rα )’s, and last Npoint components are
FOO(rα )’s. The four parameters, rmin, rmax, �r, and σ , must
be given to evaluate the descriptor from a crystal structure.
We evaluate the efficiency of the crystal structure search by
varying the values of these parameters. The same pool of
crystal structures is also used for different parameter values.

III. RESULTS AND DISCUSSION

A. Dependence of efficiency on a parameter in a descriptor

In this and the next subsection, we discuss crystalline
silicon, Si16, as a model case. The structure relaxation is per-
formed by SOIAP with the ZRL potential. The diamond-type
structure has the lowest energy after relaxing all the structures
in the pool. There is only one crystal structure relaxed into the
diamond-type structure.

Figure 3 shows the number of structures examined until the
minimum-energy structure is found with respect to parameter
σ for fixing the remaining parameters, rmin, rmax, and �r. The
number depends heavily on the value of σ . The minimum
search requires a large number of examinations for small and
large σ . As a matter of fact, at worst, it is larger than the mean
number for the random search of 500.5. The variance of the
number is also large in these regions, indicating that efficiency
depends strongly on the stochastic process of BO. Such
behavior is undesirable for the performance of the crystal
structure search. This result demonstrates that the parameters
in the descriptor should be adjusted to conduct the crystal
structure search efficiently. The mean number is smallest at
σ = 16/15 Å, which is comparable to half of the bond length
between Si atoms. This correspondence is probable because
σ is the broadening width of the delta function at an atomic
position. The broadened delta function can be regarded as
an existence probability of a fluctuating atom. In this sense,
the descriptor of Eq. (1) represents a crystal structure with

FIG. 3. Number of structures examined until the minimum-
energy structure is found with respect to parameter σ in the descrip-
tor. The minimum search is performed for a pool of crystal struc-
tures consisting of 1000 randomly generated structures of Si16. The
diamond-type structure has the lowest energy after relaxing all the
structures in the pool, and there is only one crystal structure relaxed
to the diamond-type structure. The minimum search is performed
100 times independently for the same pool. The solid line, inner filled
region, and outer filled region indicate the median, lower to upper
quartile, and minimum to maximum, respectively. The open circles
indicate the means. Parameters other than σ are set as rmin = 0.5 Å,
rmax = 20 Å, and �r = 0.2 Å.

fluctuating atoms. The fluctuation would be on the order of a
bond length from a physical point of view.

When σ is small, function F (r) in Eq. (1), from which
the descriptor is sampled, is spiky; therefore, the descriptors
are substantially different, even if the crystal structures are
similar. In contrast, when σ is large, F (r) is broad, and
thus the descriptors are similar even if the crystal structures
are substantially different. Thus, parameter σ changes the
distribution of the descriptors. These results can also be found
in an analysis by agglomerative hierarchical clustering (see
Appendix B).

B. Information measure for efficiency estimation

Because the efficiency of the crystal structure search de-
pends strongly on the parameter values, an appropriate value
must be determined prior to starting the crystal structure
search. The results in Sec. III A suggest that the crystal
structure search works efficiently if similarities between pairs
of the descriptors are widely distributed from low to high.
This implication is also supported by another analysis by
agglomerative hierarchical clustering. Therefore, the unifor-
mity of a distribution of similarity between descriptors can
be a measure of the efficiency of the crystal structure search,
or more specifically, can be used to choose an appropriate
parameter value.

We define such a measure in terms of the descriptor
�x, which we call the similarity-based information measure
(SIM), as

S({�xi}) = E[{si j}], (2)

033801-3



NOBUYA SATO et al. PHYSICAL REVIEW MATERIALS 4, 033801 (2020)

FIG. 4. Similarity-based information measure (SIM) with re-
spect to parameter σ in the descriptor. The set of descriptors is the
same as that used in Fig. 3 for each value of σ .

where {�xi} is a set of standardized descriptors, E[·] is the
cumulative residual entropy (CRE) [20], and {si j} is a set of
similarities. The similarity between �xi and �x j is defined by

si j = exp

(
− d2

i j

2Var[{di′ j′ }]

)
, (3)

where di j = ‖�xi − �x j‖2 and Var[·] denotes the variance, which
is motivated by the Gaussian kernel used in BO. The CRE is
one of the information measures extended from the Shannon
entropy. If Y follows a non-negative discrete uniform distribu-
tion that has a nonzero probability at N points y1 < · · · < yN ,
the CRE is expressed as

E[Y ] = −
N−1∑
k=1

�yk

(
1 − k

N

)
ln

(
1 − k

N

)
, (4)

where �yk = yk+1 − yk . See Appendix A for details of the
CRE. It is practically important that the SIM can be evaluated
only from a set of crystal structures without computing their
energies. The SIM is one possible definition and there can be
other definitions for measuring the efficiency.

Next, we check whether the SIM can be used as a measure
of efficiency. Figure 4 shows the SIM with respect to param-
eter σ . The maximum of the SIM corresponds to the most
efficient point, or the minimum of the number of examined
structures in Fig. 3. This suggests that we can use the SIM as
a measure of efficiency and choose an appropriate parameter
value.

C. Application of the information measure
for adjusting a parameter

1. Another parameter

Because the SIM measures information about the distri-
bution of descriptors rather than about parameter σ , it is
expected that the correspondence of the measure to the ef-
ficiency holds also for parameters other than σ . To test this
prediction, we use the SIM to adjust �r under fixed rmin,
rmax, and σ/�r as an example. In this case, the number of

FIG. 5. Adjustment of parameter �r in the descriptor for Si16.
(a) Similarity-based information measure (SIM) with respect to
parameter �r and (b) number of structures examined until the
minimum-energy structure is found. The solid line, inner filled
region, and outer filled region indicate the median, lower to upper
quartile, and minimum to maximum, respectively. The open circles
indicate the means. Parameters other than �r are set as rmin = 0.5 Å,
rmax = 20 Å, and σ = 16�r/3. Other setups are the same as those of
Fig. 3.

dimensions of the descriptor is different for each �r, and a
good choice for the value is not as clear as the choice for σ .

Figure 5(a) shows SIMs evaluated along �r. This result
suggests that �r should be set to 0.2 Å, where the SIM reaches
its maximum. We can confirm that the recommended value
gives high efficiency [Fig. 5(b)]. This implies that the SIM is
generally a good measure for determining parameters in the
descriptor.

2. Binary systems

To test whether the measure is applicable to systems other
than crystalline silicon, we extend a target of the parameter
adjustment to binary systems. Crystal structures of binary
systems are basically more complicated than that of crys-
talline silicon. Therefore, the descriptor needs more dimen-
sions and the crystal structure search is harder. We perform the
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FIG. 6. Adjustment of parameter σ in the descriptor for Si6O12.
(a) Similarity-based information measure (SIM) with respect to pa-
rameter σ and (b) number of structures examined until the minimum-
energy structure is found. The minimum search is performed for
a pool of crystal structures consisting of 1000 randomly generated
structures of Si6O12. There is only one crystal structure relaxed to the
minimum-energy structure. The minimum search is performed 100
times independently for the same pool. The solid line, inner filled
region, and outer filled region indicate the median, lower to upper
quartile, and minimum to maximum, respectively. The open circles
indicate the means. Parameters other than σ are set as rmin = 0.5 Å,
rmax = 20 Å, and �r = 0.2 Å.

parameter adjustment for Si6O12 and Y2Co17, which have
primarily different bonding natures.

Figure 6 shows the results for Si6O12. The structure re-
laxation is performed by SOIAP with the ZRL potential. The
minimum-energy structure in this pool is not α-quartz which
is known to be most stable, although the energy difference
between them is less than 1 meV/SiO2. There is only one
crystal structure relaxed to the minimum-energy structure.
We can confirm also for this system that the parameter value
where the SIM reaches its maximum gives high efficiency.

Figure 7 shows results for Y2Co17. The structure relaxation
is performed by VASP. The minimum-energy structure in this
pool is Th2Zn17 type, which is known to be most stable.
There are four crystal structures relaxed into the Th2Zn17-type

FIG. 7. Adjustment of parameter σ in the descriptor for Y2Co17.
(a) Similarity-based information measure (SIM) with respect to pa-
rameter σ and (b) number of structures examined until the minimum-
energy structure is found. The minimum search is performed for
a pool of crystal structures consisting of 1000 randomly generated
structures of Y2Co17. There are four crystal structures relaxed into
the Th2Zn17-type structure. The minimum search is performed 100
times independently for the same pool. The solid line, inner filled
region, and outer filled region indicate the median, lower to upper
quartile, and minimum to maximum, respectively. The open circles
indicate the means. Parameters other than σ are set as rmin = 0.5 Å,
rmax = 20 Å, and �r = 0.2 Å.

structure. The SIM has a peak at σ = 32/15 Å and the crystal
structure search is most efficient at that σ . From these two
case studies, we found that the SIM could be useful also for
a binary system to predetermine a value of a parameter in the
descriptor.

As shown in Fig. 7, however, the SIM is highest at σ =
2048/15 Å and that of the most efficient point is almost
equal to but slightly lower than the maximum value. SIMs at
these σ ’s are comparable because distributions of the distance
between descriptors, di j in Eq. (3), are almost the same
[Fig. 8(a)]. Meanwhile, di j itself is different between these
σ ’s as shown in Fig. 8(b). This means that distributions of
descriptors are different, hence the different efficiencies.
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FIG. 8. Distribution of the distance between descriptors for Y2Co17. (a) Histograms of the distance at typical σ ’s and (b) correlation of the
distance between σ = 32/15 and 2048/15 Å. The distance is defined as di j = ‖�xi − �x j‖2, where �xi and �x j are the standardized descriptors.

Although the SIM fails to estimate an appropriate parame-
ter value in the case of Y2Co17, another information measure
based on agglomerative hierarchical clustering succeeds (see
Appendix B). Agglomerative hierarchical clustering takes
account of intercluster distances such as a pair-pair distance
other than the pairwise distance. Such a many-body corre-
lation might be important to characterize a distribution of
descriptors in the case of Y2Co17.

We recommend, however, using the SIM rather than the
information measure based on clustering. There are several
methods for measuring the intercluster distance. The result of
clustering depends on the method, and therefore, an estimated
parameter value does. In a practical situation, we might be
able to estimate an appropriate value by the SIM even in a
failed case by finding a local maximum before it is saturated.

IV. CONCLUSION

We performed a crystal structure search using BO for
crystalline silicon as a case study. We revealed that the number
of structures examined until the minimum-energy structure
was found, namely the efficiency of the crystal structure
search, depends heavily on a parameter in the descriptor. The
efficiency was worse than that of the random search in some
cases; therefore, the value of the parameter should be chosen
carefully. To predetermine a parameter value in the descriptor,
we proposed the SIM as a measure of the efficiency. Because
BO uses the energy of a crystal structure as well as the descrip-
tor, no measure defined without the energy can predict the
efficiency perfectly. However, we confirmed by case studies
of crystalline silicon, silicon oxide, and yttrium-cobalt alloy
that the efficiency is high when the SIM reaches its maximum
for a parameter, while the most efficient point is located at a
local maximum in the case of yttrium-cobalt alloy. Hence, we
can adjust a parameter by searching for the maximum of the
measure.

In addition to the crystal structure search discussed here,
BO has recently been applied to some areas of materials
sciences, such as virtual screening of material databases [21].
A common issue in BO is the need to predetermine the
descriptor and its parameter. Once a descriptor is chosen,

the present work provides a promising way of determining a
suitable parameter value for the descriptor.
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APPENDIX A: PROPERTIES OF THE CRE

Because we define a measure for a discrete uniform distri-
bution, an information measure used in the definition should
be valid for the discrete probability distribution. The CRE is
one such information measure, which is defined for a non-
negative random variable X by

E[X ] = −
∫ ∞

0
dx F (x) ln F (x), (A1)

where F (x) = Pr(X > x) is the complementary cumulative
distribution function (CCDF). When X follows a discrete
uniform distribution, Eq. (A1) results in Eq. (4). The CRE
is valid for the discrete probability distribution owing to the
CCDF. In contrast, the differential entropy h[X ], which is
also an extension of the Shannon entropy, cannot be eval-
uated for the discrete probability distribution because it is
defined by using the probability density function f (x) as
h[X ] = − ∫

dx f (x) ln f (x). Although the Shannon entropy
H[X ] can be evaluated for the discrete probability distribution,
the value for a discrete uniform distribution depends only
on the number of points N as H[X ] = −∑N

i=1 Pr(X =xi )
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FIG. 9. Dendrograms for Si16 at typical σ ’s. The right-hand panels shows the cumulative distribution function (CDF) as a function of the
height of the branch point. Other parameters are set as rmin = 0.5 Å, rmax = 20 Å, and �r = 0.2 Å.

ln Pr(X =xi ) = ln N , and thus it is not suitable for use in the
definition of a measure.

The CRE is independent from the shift of a random vari-
able [22]. If random variable Y is the linear transformation of
random variable X as Y = aX + b with a > 0 and b � 0, the
CRE of Y is expressed as

E[Y ] = a E[X ], (A2)

which does not depend on shift b.
We show the following two examples of the CRE from

Ref. [20].
(1) E[X ] = a/4 if random variable X follows the continu-

ous uniform distribution supported on [0, a].
(2) E[X ] = 1/λ if random variable X follows the expo-

nential distribution with the mean 1/λ.
Both examples show that the CRE is large when the

variable is distributed over a wide range.

APPENDIX B: ANALYSIS BY AGGLOMERATIVE
HIERARCHICAL CLUSTERING

We introduce another measure for the efficiency of the
crystal structure search based on the dendrogram. Possible
crystal structure candidates in the pool used in BO are charac-
terized by a d-dimensional vector of the descriptor. The dis-
tance between these crystal structures is evaluated from the
descriptors, which depends on the parameters we use in the
descriptor. We perform agglomerative hierarchical clustering
of set {�xi/c} by the average linkage method with the Euclidean
distance, where �xi is the standardized descriptor of the ith can-
didate, c = √

2 �[(d + 1)/2]/�(d/2), and �(·) is the gamma
function. The scaling factor, c, is the expectation value of
‖(X1 · · · Xd )T‖2 in the case that X1, . . . , Xd are independent
standard normal random variables. Figure 9 presents typical

examples of the dendrogram for three values of parameter
σ in the descriptor for Si16. Leaves under the same branch
point are a set of similar crystal structures within the dis-
tance determined by the height of the branch point in the
dendrogram. The tree structure of the dendrogram depends
strongly on the value of parameter σ . The branch point
decreases on average as the parameter values increases, mean-
ing that the distance between structures is smaller, and the
branch point is distributed in a narrower range with small and
large parameter values, meaning that the distances between
structures are almost identical. These features are also found
in the cumulative distribution function in the right-hand panels
of Fig. 9.

BO is expected to work efficiently when the distance be-
tween a pair of structures in the pool varies from short to long,
as mentioned in Sec. III A. As a measure of randomness of
the branch point, we define the dendrogram-based information
measure (DIM) as

D({�xi}) = E[{hk}], (B1)

which is the CRE of height hk of a branch point. As shown
in Fig. 10, DIMs reach their maximum around which the
efficiencies of crystal structure searches are highest. The DIM,
as well as the SIM discussed in Sec. III B, can also be used as
a measure of efficiency.

The agglomerative hierarchical clustering relies on the
linkage method and distance metric, which affect the resulting
dendrogram. Consequently, the value of the DIM and its
maximum depend on the details of the linkage method and the
metric employed. Furthermore, the DIM also depends on di-
mension d of the descriptors. Thus, when the parameter in the
descriptor changes d , an appropriate scaling of the descriptor
is necessary to compare DIMs for different parameter values.
Consequently, scaling factor c defined above is introduced.
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FIG. 10. Dendrogram-based information measure (DIM) for (a), (b) Si16; (c) Si6O12; and (d) Y2Co17. Setups are the same as those in the
main text.

This is in sharp contrast to the SIM. Therefore, we recommend
that the SIM rather than the DIM be used as a measure of
efficiency.

APPENDIX C: ZRL POTENTIAL

The ZRL potential [19] is an empirical interatomic po-
tential for the Si-N-O-H system derived from the Tersoff
potential. The energy is expressed as

E = 1

2

unit cell∑
i

∑
j ( �=i)

Vi j +
∑

I

NI E
0
I +

∑
i

E c
i , (C1)

where i and j are the indices of atoms, I is the index for
the chemical element of the ith atom, Vi j is the generalized
Morse potential, E0

I is the core energy of the Ith element,
NI is the number of atoms of the Ith element, and E c

i is the
penalty for under- and overcoordination of the ith atom. E c

i is
given by

E c
i = c(1)

I �zi + c(2)
I (�zi )

2, (C2)

where c(1)
I and c(2)

I are parameters,

�zi = zi − z0
I

|zi − z0
I |

fs
(∣∣zi − z0

I

∣∣) (C3)

is the deviation from the expected coordination number z0
I ,

and fs(·) is the switching function. Definitions not shown here
and values of parameters are given in Ref. [19].

We modify the original definition of the switching function
given in Eq. (17) of Ref. [19] to remove discontinuity and
nonmonotonicity. Our definition is given by

fs(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�z�, if {z} � zT − zB,

�z� + 1
2

[
1 + sin

(
π
2

{z}−zT

zB

)]
,

if zT − zB < {z} � zT + zB,

�z� + 1, if zT + zB < {z},
(C4)

where z � 0, zT and zB are parameters depending on the
chemical element, �·� is the floor function, and {z} = z − �z�
is the fractional part of z. The original form of fs(z) is
not continuous at z = zT ± zB, 1, 2, . . . and monotonically
decreases over z ∈ (zT − zB, zT − zB/2) and (zT + zB/2, zT +
zB), which causes discontinuity for the potential energy sur-
face in some situations. In contrast, Eq. (C4) is continuous
and monotonically increases for all z, resulting in a continuous
potential energy surface even for the case in which the original
form produces discontinuity.
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