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Thermal conductivity and its relation to atomic structure for symmetrical
tilt grain boundaries in silicon
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We perform a systematic study of thermal resistance and conductance of tilt grain boundaries (GBs) in Si
using classical molecular dynamics. The GBs studied are naturally divided into three groups according to the
structural units forming the GB core. We find that, within each group, the GB thermal conductivity strongly
correlates with the excess GB energy. All three groups predict nearly the same GB conductivity extrapolated
to the high-energy limit. This limiting value is close to the thermal conductivity of amorphous Si, suggesting
similar heat transport mechanisms. While the lattice thermal conductivity decreases with temperature, the GB
conductivity slightly increases. However, at high temperatures it turns over and starts decreasing if the GB
structure undergoes a premelting transformation. Analysis of vibrational spectra of GBs resolved along different
directions sheds light on the mechanisms of their thermal resistance. The existence of alternating tensile and
compressive atomic environments in the GB core gives rise to localized vibrational modes, frequency gaps
creating acoustic mismatch with lattice phonons, and anharmonic vibrations of loosely bound atoms residing in
open atomic environments.
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I. INTRODUCTION

Thermal conductivity of dielectric materials plays an im-
portant role in many technological applications [1–8]. In
nano- and microelectronic devices, it is often desirable to
have a high thermal conductivity in order to quickly remove
the Joule heat from critical components. On the other hand,
thermoelectric efficiency of energy conversion devices can be
improved by increasing the thermal resistance of the material
without (or with as small as possible) reduction in the electric
carrier mobility.

In dielectric materials, the thermal conductivity is primar-
ily due to atomic vibrations, by contrast to metals where
the electronic mechanism dominates. It is well established
that the thermal resistance of semiconductor materials can be
increased by creating a high density of internal interfaces,
such as grain boundaries (GBs) and heterojunctions [1,3–
12]. This approach is especially efficient in thin films, where
the film surfaces serve as additional interfaces for phonon
scattering. While high-frequency phonons scatter primarily
at point defects (such as vacancies and dopant atoms), it is
the low-frequency (long-wavelength) acoustic phonons that
are scattered most effectively by interfaces. To be able to
control the thermal resistance of materials, it is important
to understand the microscopic mechanisms involved in the
phonon scattering at interfaces. This work is focused on
thermal resistance of GBs, which is often referred to as the
GB Kapitza resistance.

The nature of phonon scattering at GBs is poorly under-
stood, especially with respect to the relationship between the
GB structure and the thermal resistance. It is recognized that
a GB is not simply a barrier that can either reflect or transmit

phonons, but a layer of matter that has its own structure,
vibrational modes, and thus mechanisms of heat transport.
Unfortunately, experiments do not provide information de-
tailed enough to understand the role of the GB structure.
The existing theories, such as the acoustic mismatch model
(AMM) [13] and the diffuse mismatch model (DMM) [9]
capture the physics of the two materials but not of the interface
[14]. Both usually disagree with experiment on a quantitative
level. For symmetrical GBs, the AMM is not even applicable
because the grains have the same acoustic properties and the
model predicts perfect transmission. The DMM treats GBs as
structurally amorphous, and even then, works only for high-
frequency phonons [14]. Furthermore, it has been argued that
phonon scattering by interfaces cannot be properly described
using only the vibrational modes that exist in the two bulk
materials separated by the interface [15]. Simulations based
on the Boltzmann transport equation [16] and other continuum
approaches do not capture the role of the GB structure either.
At best, an average/effective thermal resistance of GBs in a
polycrystalline sample can be treated in the effective medium
approximation [17].

At present, classical molecular dynamics (MD) simulations
offer the most effective way to establish the link between
the bicrystallography and atomic structure of GBs, on one
hand, and the GB thermal resistance, on the other [14,18–
27]. Specifically for Si GBs, which are the subject of this
paper, the previous MD studies were focused on twist GBs
[14,19,20,25,28,29] and were not very systematic. Tilt bound-
aries were recently studied in SiC [30]. For pure silicon,
however, we are aware of only two MD studies. One was
conducted by Maiti et al. [18] for [001] symmetrical tilt
�5 and �13 boundaries (� being the reciprocal density of
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coincident sites in the coincident site lattice theory [31]). In
the second, Chen et al. [23] investigated the heat resistance of
three [011] symmetrical tilt GBs (�3, �9, and �19) by heat
pulse propagation from a point source.

It should be noted that all previous studies of Si GBs
utilized the interatomic potential developed by Stillinger and
Weber (SW) [32]. As any interatomic potential, the SW poten-
tial has its strengths and weaknesses, which were discussed
in detail in the recent literature [33,34]. While it reproduces
the lattice thermal conductivity reasonably well, its ability
to predict the correct GB structures is questionable. For this
reason, in this work we chose to use the recently developed
generalized and optimized Tersoff-type potential [33], which
we consider more reliable for the modeling of Si GB struc-
tures.

The goal of this work was to conduct a systematic atomistic
simulation study of thermal resistance of Si GBs with the
intention of (1) establishing the structure–thermal resistance
relationships and (2) better understanding the impact of the
GB structure on the phonon scattering. After introducing our
simulation methodology in Secs. II and III, we present the
equilibrium structures of a large set of [001] symmetrical
tilt GBs with misorientation angles spanning the entire range
of symmetrically distinct bicrystallographies (Sec. IV A). We
prefer to work with tilt GBs, rather than twist, because their
structures are generally simpler and experimental data are
available for comparison. By comparing the GB structures,
energies, free volumes, and other properties over a wide range
of temperatures up to the melting point, we find that all GBs
studied here naturally break into three categories or groups.
These groups are characterized by different combinations of
properties and distinct structural units forming the GB core.
We also find that some of the boundaries remain structurally
ordered up to the melting point, while others develop a signifi-
cant degree of structural disorder due to the premelting effect.
In Sec. IV B, we report on the calculated thermal resistance
and conductance of the GBs, showing that the three structural
groups mentioned above follow three different types of corre-
lation among the GB conductance, the GB thermal width, and
the GB energy. The thermal conductance also correlates with
the GB disorder, showing a marked dip at high temperatures
when the structure begins to premelt. To gain insights into
the physical mechanisms behind the structure-conductance
relationships, we compare the thermal conductivities and local
vibrational spectra of the GB core regions with those of
crystalline, amorphous and liquid Si at different temperatures
(Sec. IV C). In Sec. V, we summarize our findings, point to
unresolved problems, and discuss possible future directions.

II. METHODS OF THERMAL
CONDUCTIVITY CALCULATIONS

Two most common methods for computing the phononic
thermal conductivity of bulk phases via molecular dynam-
ics (MD) simulations are the nonequilibrium MD (NEMD)
and the Green-Kubo (GK) method. Both methods have been
previously applied to Si using different interatomic poten-
tials [35–39]. In the NEMD approach, a fixed temperature
differential is created across the material, which generates a
heat flux J. This flux and the temperature T initially vary in

time and space. After the steady state is reached, both J and
the temperature gradient ∇T become constant in time and
uniform across the system. In the small ∇T limit, the heat
transport follows the Fourier law

J = −κ∇T, (1)

where κ is the thermal conductivity and ρ = 1/κ is the ther-
mal resistivity of the material (both are scalars for an isotropic
material). Alternatively, a constant heat flux can be imposed
in the simulations, giving rise to a steady-state temperature
gradient. In either case, κ can be extracted from Eq. (1) using
the steady-state values of J and ∇T . Variations of the NEMD
method include the approach to equilibrium method [40] and
its sinusoidal version [41].

The GK formalism [42,43] tracks equilibrium fluctuations
of the heat flux to compute the ensemble-averaged heat
current autocorrelation function (HCACF) 〈J(0) · J(t )〉 as a
function of time t . The method is based on the fluctuation-
dissipation theorem [44] and expresses the thermal conduc-
tivity as the integral

κ = V

3kBT 2

∫ ∞

0
〈J(0) · J(t )〉dt, (2)

where V is the system volume and kB is Boltzmann’s constant.
This method is only applied to homogenous systems and
cannot be utilized to study GB phonon scattering.

Among other approaches, the phononic Boltzmann trans-
port equation can be solved in the mode-specific relaxation
time approximation [38,39,45]. This method combines lattice
dynamics or classical MD to compute the phonon relax-
ation times with quantum-mechanical treatment of the heat
capacity. In addition to being applicable to temperatures
below the experimental Debye temperature, this methods
has certain computational advantages over the NEMD and
GK approaches and is capable of providing more detailed
information about the physics of phonon scattering. It has
recently been applied to Si [38,39] in conjunction with the
Tersoff [46,47] and environment-dependent interatomic po-
tentials (EDIP) [48]. Ab initio methods have also been used
to extract the thermal conductivity [49–52].

Heat transport across interfaces is best modeled by the
NEMD method. Suppose the material contains a planar inter-
face of width w whose normal vector points in the heat flux di-
rection y. The steady-state temperature profile T (y) across the
material is expected to be linear in the bulk regions on either
side of the interface. However, the interface usually acts as a
thermal resistor to the heat flux, causing a sharp increase in the
temperature gradient within the interface region. On the length
scale much larger than w, the temperature profile appears to
be discontinuous at the interface [14,18]. By Fourier’s law,
the magnitude of the temperature discontinuity (jump) �T is
proportional to the heat flux through the interface:

J = σK�T = κK

w
�T . (3)

Here, σK is the Kapitza conductance of the interface, RK =
1/σK is the Kapitza resistance, and κK is the average Kapitza
conductivity in the interface region. (The Kapitza resistance
was first discovered in 1941 by Peter Kapitza while studying
the superfluidity of helium [53,54].) Knowing J and �T ,
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Eq. (3) can be used to extract the Kapitza conductance. The
average interface conductivity can be then evaluated using
a reasonable estimate of the interface width w. This NEMD
approach will be applied in this work.

Phonon scattering by interfaces has also been studied by
simulating incident wave packets representing phonons [14].
Examining the packet scattering process it is possible to
compute the energy transmission coefficient as a function
of phonon frequency, which provides information about the
ability of different boundaries to inhibit the propagation of
different types of phonon. While the wave-packet simulations
can provide physical insights as well as input data to other
models, extracting the Kapitza conductance directly from the
simulations is extremely challenging. Another approach to
studying the boundary scattering is offered by the coherent
phonon pulse method [55–57], in which a heat pulse gen-
erates a flux of coherent and diffuse phonons scattered by
GBs. This method leverages the regular MD by introducing
the concurrent atomistic-continuum approach [56]. The latter
gives access to larger length scales and thus helps overcome
the wavelength truncation effect arising in regular MD simula-
tions due to the small computational model size. The method
was successfully applied to study the GB Kapitza resistance
in Si [23] and a two-dimensional (2D) Lennard-Jones material
[22]. These studies have demonstrated the roles of the phonon
frequency, ballistic or diffusive character, GB structure, and
other factors in the boundary resistance to heat fluxes. Despite
the advantages in gaining a more detailed understanding of
the scattering process, this method is not designed to deliver
precise values of the Kapitza resistance.

III. SIMULATION METHODOLOGY

A. Computational methods

Atomic interactions in Si were modeled using an optimized
Tersoff-type potential [33] that was fitted to both experimental
and first-principles data. The potential accurately predicts
many Si properties, including the elastic constants, the phonon
density of states, point defects, surfaces, and many other
properties. The melting temperature predicted by the potential
is 1687 K, which perfectly matches the experimental value.
This potential will be denoted throughout this work as MOD2.
For comparison, some of the simulations were repeated with
other potentials as will be discussed later. The software
package LAMMPS (Large-Scale Atomic/Molecular Massively
Parallel Simulator) [58] was utilized for both 0 K structural
minimization and MD simulations at finite temperatures. We
used some of the built-in commands of LAMMPS, including the
commands for computing the radial distribution function, the
heat flux J, the velocity autocorrelation function, the bond-
order parameter Q6, and on-the-fly binning and averaging of
the simulation results. Visualization and structural analysis
were performed with the OVITO software package [59].

Unless otherwise stated, all simulations used periodic
boundary conditions in all three directions and a 1-fs inte-
gration time step. For simulation blocks containing a GB,
such boundary conditions imply the existence of two GBs
in each block. To achieve a physically accurate mechanical
state during equilibrium GB simulations, we enforce a fixed

cross-sectional area in the plane of the GB with zero stress
in the GB normal direction. To this end, we utilize a variant of
the NPT ensemble, which we denote NPyT . In this ensemble,
the system temperature is regulated by a thermostat and the
dimensions of the simulation block in the x and z dimensions
are held constant (constant GB cross-sectional area), while the
y dimension (normal to the GB) is allowed to vary to ensure a
zero y component of stress (Py = 0). Most of the simulations
were performed for crystalline Si with the diamond cubic
structure. This crystalline structure will be referred to as c-Si,
or simply Si if no confusion can arise. Before carrying out
the c-Si simulations at elevated temperatures, the temperature
dependence of the equilibrium lattice constant was computed
by stress-free NPT MD simulations at temperatures ranging
from 100 K up to the melting point at 50-K increments. To
eliminate thermal stresses in the lattice during MD simula-
tions, the lattice was pre-expanded to the equilibrium lattice
constant at the respective temperature prior to the simulation.
This was done for all simulation runs that utilizes the NV T ,
NPyT , or NV E ensembles.

B. Structure generation

1. Grain boundary structures

To conduct a systematic study of the effect of misorienta-
tion angle on the GB thermal conduction, it was necessary to
prepare a set of equilibrium GB structures by carefully min-
imizing their energies. We chose to focus on the (hk0)[001]
family of symmetrical tilt GBs, where [001] is the tilt axis
and (hk0) is the GB plane. For such boundaries, the tilt angle
θ is given by θ = 2 tan−1(k/h) and the reciprocal density
of coincident lattice sites � is obtained from the relations
h2 + k2 = � or h2 + k2 = 2� [31]. The 31 tilt angles studied
in this work covered the entire interval 0◦ � θ � 90◦ of
symmetrically distinct misorientations. Since the tilt axis is
fixed and the boundaries are symmetrical, we can refer to
them by the Miller indices of the respective GB plane. For
example, the �5(210)[001] (θ = 53.1◦) GB can be referred to
as simply (210) boundary. For clarity, we emphasize the dif-
ference between the misorientation angle θ used in the present
work and the disorientation angle θ̃ , which is often used in
the GB literature. For the simple class of [001] tilt GBs,
the disorientation angle can easily be recovered from θ by
θ̃ = θ for θ � 45◦ and θ̃ = 90◦ − θ for 45◦ < θ � 90◦. The
coordinate axes x, y, and z were aligned along the [kh0], [hk0],
and [001] crystallographic directions, respectively. Thus, the
y direction was normal to the GB plane and the z direction
was parallel to the tilt axis. The dimensions of the simulation
block varied according to the type of simulation, as will be
detailed below.

The GBs were created by standard geometric constructions
in which the lattice was aligned relative to the coordinate
system according to the crystallographic orientation of the
lower grain (y < 0), followed by 180◦ rotation of the upper
half of the block (y > 0) around the y axis. To equilibrate
the GB structure, multiple rigid translations parallel to the
GB plane were applied to one of the grains and the total
energy was minimized with respect to atomic displacements
by the conjugate gradient method. The GB structure with the
smallest excess energy γ was taken as closest to equilibrium.
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In some cases, the translations were followed by heating the
system to a high temperature and briefly annealing it before
the conjugate gradient minimization. The anneal temperature
and time were typically 1500 K and 25 ps, respectively, but
could vary from one GB to another in search of the lowest
energy.

It has recently been demonstrated that adding or removing
atoms to or from the GB region can reveal new structures with
even lower energies than those obtained by closed-system
simulations [60–66]. Motivated by these findings, we applied
the atomic removal methodology developed in our recent
work [66] to a subset of the Si GBs. The method computes the
GB energy as a function of the fraction λ of atoms removed
from the GB core. The function γ (λ) obtained can have local
minima corresponding to stable or metastable GB structures.
The method is computationally expensive and could only be
implemented for a limited number of boundaries.

2. Liquid and amorphous structures

Liquid and amorphous Si structures, referred to as l-Si and
a-Si, respectively, were included for comparison with GBs.
The l-Si structure was generated by carrying out a 20-ps NPT
MD run at 3000 K starting from c-Si, which produced a
fully melted structure. This structure was then equilibrated
by longer NPT MD runs at several different temperatures,
before performing production runs to determine the thermal
conductivity at respective temperatures.

To obtain a-Si structure, an l-Si sample was cooled down
by a 500-ps NPT MD run in which the temperature was
decreased from 3000 to 300 K as a linear function of time.
This run was short enough to avoid recrystallization but
long enough to allow for some local atomic relaxation. The
structure obtained was further annealed in the NPT ensemble
for 2 ns at 300 K to allow for additional atomic relaxation.
This structure was used as the starting point for the sub-
sequent simulations at several other temperatures. At each
chosen temperature, the equilibrium volume was determined
by a stress-free NPT simulation, followed by a production
run in the NVT ensemble at the equilibrium volume. To
demonstrate that the amorphous structure was stable, the mean
square displacement (MSD) of atoms was determined during
the simulations. At temperatures below 500 K, the MSD
was found to be small and time independent, showing that
long-range atomic diffusion was negligible. Above 500 K,
MSD began to increase as a linear function of time, signaling
the onset of atomic diffusion. Based on this observation, the
thermal conductivity of a-Si was only computed below 500 K
when the heat transport could be cleanly separated from mass
transport.

C. The structural disorder quantification

To quantify the emergence of structural disorder in some
of the GBs at high temperatures, the Ql order parameters
introduced by Steinhardt et al. [67] were computed as func-
tions of temperature. Specifically, it was found that the single
parameter Q6 was sufficient for our purposes, being close to
zero inside the grains and positive in the GB. For computa-
tional reasons, the block sizes for the disorder quantification
runs were approximately 3.5 × 10 × 3.5 nm with periodic

boundary conditions in all dimensions. This block size was
sufficient for calculating the local structure within the core
regions of the various GBs, but is significantly smaller than
the simulation blocks used in the thermal conductivity calcu-
lations. At each temperature, the two GBs in the simulation
block were equilibrated by the usual procedures described
above and subject to a 12-ns-long MD run using the NPyT
ensemble. During the run, approximately 3000 snapshots
containing atomic positions and Q6 parameters of atoms were
saved at regular time intervals. At the postprocessing stage,
the order parameter profile Q6(y) was computer for each
snapshot by averaging over bins parallel to a given GB. The
peak arising at the GB was fitted by a Gaussian function and
the Q6 value averaged over a 0.5-nm window at the center
of the Gaussian was taken as the GB order parameter. Such
values were averaged across the snapshots to obtain the order
parameter of the GB. These order parameters were analyzed
as functions of temperature as will be discussed below. During
the Q6 calculations, the mean-square atomic displacements
within the GB cores were also computed to determine whether
atomic diffusion was occurring.

D. Nonequilibrium molecular dynamics simulations

The NEMD simulations utilized the approach [37,68,69]
in which a chosen heat flux was imposed across the GB and
the temperature jump �T was measured after the steady state
regime was confirmed. Prior to the simulation, the system,
which was periodic in all dimensions, was pre-expanded
according to the desired average temperature and thermalized
by running MD in the NPyT ensemble for 100 ps. The MD
ensemble was then switched to NPyH (fixed enthalpy and
constant cross-sectional area defined by the x and z direc-
tions), so as to continue enforcing Py = 0 while allowing for
a nonequilibrium temperature distribution in the simulation
block.

The heat flux normal to the GB was imposed by introduc-
ing hot and cold slabs (thermostats) parallel to the GB plane
and artificially transferring a fixed increment of kinetic en-
ergy, 2δK , between them by rescaling the atomic velocities at
each time step �t of the MD simulation. The number of atoms
in the two slabs was equal to ensure that the energy exchanges
were symmetric. These artificial exchanges of kinetic energy
resulted in a physical heat flux from the hot slab to the cold
with the magnitude J = δK/A�t , where A is the GB area. In
simulations with the average temperature below 1000 K, a J =
25 GW m−2 flux was imposed, which is comparable to fluxes
commonly reported in the literature [14,29]. In simulations
above 1000 K, a flux of J = 50 GW m−2 was applied, which
is somewhat larger than in previous work. This increase in the
flux was required to resolve the temperature jump, which at
high temperatures tended to be small. As a consistency check,
the actual flux was independently computed using the heat
flux function built into LAMMPS, and the results were found
to be in excellent agreement with the flux predicted from the
kinetic energy transfers.

The temperature profile T (y, t ) was computed by aver-
aging the local kinetic energy of atoms over an appropriate
timescale and relating it to temperature through the equipar-
tition theorem. (It should be noted that care is needed when
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FIG. 1. (a) Typical temperature profile for the (210) GB with the
mean temperature of 500 K. The hot and cold thermostats are located
at y = 0 and y = ±50 nm, respectively. GB-1 and GB-2 are two GBs
existing in the simulation block due to periodic boundary conditions.
(b) Enlargement of the encircled region showing the procedure for
computing the temperature jump �T . The black line is the fit by
Eq. (4). The blue lines are the linear portions of the fitted function
given by Eqs. (6) and (7).

defining temperature in this way, especially when dealing with
short time intervals in which the concept of “instantaneous”
temperature becomes ill defined [70,71].) This calculation
utilized LAMMPS’ internal commands to partition the simula-
tion block into narrow bins parallel to the GB and average
the local temperatures inside the bins to produce a smooth
temperature curve. Before carrying out the production runs,
the local temperatures were allowed to reach the steady state
by running NEMD for 1 ns. The production run was 4 ns long
and produced a time-averaged temperature profile T (y) used
to extract σK . To this end, the temperature profile was fitted by
the function

T±(y) = − J

κ
(y − y0) ∓ �T

2
tanh

(
y − y0

2w

)
+ T0, (4)

where the two sign choices reflect the fact that the simulation
block has two GBs exposed to heat flowing in opposite direc-
tions (Fig. 1). Here, κ is the bulk thermal conductivity, y0 is
the location of the center of the GB, T0 is the local temperature
at the GB location (which is close to the average temperature
in the simulation block), �T is the temperature jump, and

w controls the width of the hyperbolic tangent and has the
meaning of the thermal width of the GB. The flux J is known.
The remaining variables κ , y0, T0, �T , and w were treated
as fitting parameter and were determined by minimizing the
mean-square deviation of the actual temperature profile from
Eq. (4). This fit did not include the nonlinear regions close
to the thermostats where the temperature profile was distorted
by boundary effects. An example of the fit is shown in Fig. 1.
An advantage of this method is that the single fit allows us
to extract the temperature jump required for computing the
Kapitza conductance σK , the GB width w that can be used to
evaluate the GB conductivity

κK = σKw, (5)

and the lattice thermal conductivity κ . In the limits of y � y0

and y � y0, Eq. (4) reduces to two linear functions offset from
each other by �T ,

T1(y) =
[
− J

κ
(y − y0) + T0

]
+ �T

2
(6)

and

T2(y) =
[
− J

κ
(y − y0) + T0

]
− �T

2
. (7)

These functions represent the steady-state temperature pro-
files inside the grain on either side of GB-2 (Fig. 1). Their
slopes give the temperature gradients in the grains and thus
−J/κ . The values of σK and κ obtained from the fit were
further averaged over the two GBs present in the simulation
block due to periodic boundary conditions. At temperatures
above 750 K when thermal fluctuations were large, the calcu-
lation was repeated several times starting from different initial
conditions and the results were averaged.

To verify the system-size convergence of the NEMD
Kapitza conduction results, we varied the GB area and the
length of the simulation block in the y directions using the
�5[210] GB as a test case. Previous studies have indicated
that the converged dimensions depend on the interatomic
potential [36,38,72,73]. For the present interatomic potential,
it was found that the system dimensions of roughly 4.4 ×
100 × 5 nm ensured reasonably converged Kapitza conduc-
tance values. Details of the convergence tests can be found
in the Supplemental Material [74].

E. The Green Kubo method

To demonstrate the consistency of the simulation method-
ology, κ was also computed at several temperatures for c-Si,
l-Si, and a-Si samples using equilibrium MD and the GK
relation (2). The simulation block was pre-expanded accord-
ing to the equilibrium volume at the chosen temperature and
thermally equilibrated by an NVT run for 100 ps. A 10-ns-
long production run was carried out in the microcanonical
(NVE) ensemble to compute the HCACF 〈J(0) · J(t )〉. The
entire MD time was partitioned into intervals of length τ and
the product J(ti ) · J(ti + t ) was averaged over all atoms and
all MD integration points ti within each interval to obtain the
HCACF. Examples of the HCACF’s obtained in this work are
shown in Fig. 2.
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FIG. 2. The HCACF computed for c-Si using four interatomic potentials at 500 K (a) and 1000 K (b), for l-Si at 2000 K (c), and for a-Si
at 300 K (d). Note the difference in the timescales between panels (a) and (b) and panels (c) and (d). The potentials tested: SW [32], T89 [75],
MOD1 [76], and MOD2 [33].

To obtain the thermal conductivity from Eq.(2), the
HCACF was numerically integrated from zero to τ . The
choice of the correlation time τ is an important step in
the procedure and is known to affect the accuracy of the
results [36,38,39,72,73]. It should be emphasized that this
time depends on the interatomic potential used. To put our
results in perspective with the literature, the calculations were
repeated with several alternate potentials. For the SW [32]
and 1989 Tersoff (T89) [75] potentials, the correlation time
in c-Si was found to be on the order of 100 ps [38,39,72,73].
With the MOD2 potential [33], τ was significantly shorter,
approximately 8 to 12 ps, depending on the temperature
(Fig. 2). The MOD1 potential [76] presented an intermedi-
ate case. To assert the convergence with respect to τ , the
thermal conductivity as a function of τ and extrapolated to
infinity by fitting it with the function κ (τ ) = κ∞ tanh(τ −
τ0), τ0, and κ∞ (extrapolated value of κ) being the fitting
parameters. A typical example of fitting is shown in Fig. 3.
For l-Si and a-Si, the correlation time was relatively short
(1 to 5 ps) and the converged values were readily obtained
by setting τ = 10 ps. Convergence with respect to the system
size was also investigated and the results were in excellent
agreement with the literature [35,38,39,73]. It was found that
the system dimensions of 6.5 × 6.5 × 6.5 nm (13 824 atoms)
were sufficient for obtaining well-converged conductivity
values.

Table I summarizes the thermal conductivity values at
representative temperatures computed in this work with four
different interatomic potentials. (It should be mentioned that
the l-Si and a-Si structures were prepared with the MOD2
potential and were rescaled to the new equilibrium volumes

FIG. 3. Thermal conductivity computed using the GK method
with the T89 potential [75] plotted as a function of the upper
integration limit τ . The solid line is a fit with the function κ (τ ) =
κ∞ tanh(τ − τ0) discussed in the text. The dashed blue line indicates
the converged value.
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TABLE I. Comparison of thermal conductivities (in W m−1 K−1)
computed with four interatomic potentials for c-Si, l-Si, and a-Si at
different temperatures. The potentials tested were SW [32], T89 [75],
MOD1 [76] and MOD2 [33]. Tm is the melting temperature computed
with the respective potential.

c-Si l-Si a-Si Tm

500 K 1000 K 2000 K 300K K

MOD1 28.6 14.7 0.7 0.84 1682d

MOD2 13.0 5.4 1.0 1.1 1687d

SW 157.4 43.5 1.4 1.2 1677d

T89 103.5 58.7 1.1 1.6
Experiment 75.2a 25.1a * 1.8b, 1.1c 1687d

aPredicted from the polynomial fit κ−1 [W−1 mK] =
1.33 × 10−5T + 2.66 × 10−8T 2 to experimental data for 28Si
[77].
bReference [78].
cReference [79].
dReference [33].
*Comparison is meaningless because thermal conductivity of liquid
Si is dominated by the electronic contribution [80].

when switching to other potentials.) Predictions of the SW and
T89 potentials overestimate the experimental data, whereas
the MOD1 and especially MOD2 potentials significantly
underpredict the experiment. The reasons for choosing the
MOD2 potential for this work over other existing potentials
was mentioned in Sec. I and will be discussed again in Sec. V.
For a-Si, all four potentials predict very similar values in
good agreement with experiment. While experimental data for
l-Si is available [80], comparison with classical MD simula-
tions has little significance since the heat transport in l-Si is
dominated by the electronic contribution. It should be noted,
however, that the four potentials predict similar values of κl

on the order of 1 W mK−1.

F. The vibrational density of states

Vibrational spectra of various atomic environments were
computed using the velocity autocorrelation function (VACF)
method [81]. One advantage of this method is that it can be
applied to selected atomic groups or even an individual atom.
The VACF of an atom is defined by

Cv (t ) = 〈v(0) · v(t )〉
〈v(0) · v(0)〉 , (8)

where v(t ) is the atom’s velocity. In practice, the ensemble
average 〈...〉 is replaced by averaging over multiple initial
conditions v(0) and across atoms with identical local envi-
ronments. In anisotropic environments, it is useful to examine
the VACF projected along specific directions. For example,
the VACF projected along the Cartesian axis x is defined by

Cvx (t ) = 〈vx(0) · vx(t )〉
〈vx(0) · vx(0)〉 , (9)

and similarly for the Cvy (t ) and Cvz (t ) projections. The vi-
brational density of states (DOS) g(ω) is obtained by taking
the Fourier transform of Cv (t ). The projected DOS gx(ω) is

FIG. 4. Groups of atoms selected for the calculation of local
vibrational DOS of crystalline lattice (green) and GB atoms (red)
in the (a) (210) GB and (b) (650) GB. The GB plane is horizontal
and the tilt axis is normal to the page.

defined as the Fourier transform of Cvx (t ) [accordingly, of
Cvy (t ) and Cvz (t ) for gy(ω) and gz(ω)].

For l-Si and a-Si, only Cv (t ) and g(ω) were computed.
The averaging in Eq. (8) was performed over all atoms in
the simulation block. The time averaging was performed by
repeating a 15-ps-long NVE MD simulation 25 times starting
from different initial conditions (15 ps exceeds the correla-
tion time). The averaged VACF was then transformed to the
frequency domain.

To probe the dynamic properties of GBs, their density of
states (DOS) was computed for atoms within the cores of the
(210) and (650) GBs at the temperatures of 300 and 1600 K.
To gather better statistics, the simulation blocks constructed
for the Kapitza conductance calculations (see above) were
replicated several times in x and z dimensions. The c-Si lattice
DOS was computed from about 200 000 atoms residing in
a region chosen inside one of the grains as shown in green
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FIG. 5. GB energy γ as a function of tilt angle θ . The inset
figures represent typical GB structures with fundamental structural
units A, B, and C shown on the right. The structures are projected
along the [001] tilt axis normal to the page. The blue atoms have a
diamond-like local environment whereas the orange atoms have local
environments deviated from diamond. The square symbols represent
the GBs used for the systematic study of Kapitza conductance at the
fixed temperature of 750 K. The green circles represent GBs selected
for a less systematic study at different temperatures. The color
of the squares reflects the different structural categories discussed
in the text. The solid red and blue lines were obtained by Read-
Shockley fits [83]. The dashed black lines serve as a guide for the
eye.

in Fig. 4. The lattice DOS was validated by independent
calculations based on the dynamical matrix method [82] and
excellent agreement was obtained. For the GBs, the VACF was
averaged over around 50 000 atoms identified as belonging
to the GB core using the excess energy criterion. In Fig. 4,
such atoms are shown in red. They form a continuous layer in
the high-angle (210) GB and decorate individual dislocation
cores in the low-angle (650) GB. The projected VACF in
all three coordinate directions was computed to differentiate
between vibrational effects in the GB normal direction and in
the GB plane directions. It should be noted that, in the highly
nonhomogeneous structure of a GB, each atoms has its own
distinct density of states. Thus, the GB DOSs characterize
averaged dynamical properties of all atoms residing in the GB
core. The local DOSs of individual GB atoms can differ from
each other very significantly. To probe this difference, we
calculated DOS for several representative atomic sites chosen
within the GB core. The results will be discussed below.

IV. RESULTS

A. Grain boundary structures

Figure 5 shows the GB energy γ as a function of the
tilt angle θ , along with several representative GB structures
and the fundamental structural units found in this work and
in the previous literature [84,85]. A complete catalog of the
GB structures obtained in this work can be found in the
Supplemental Material [74].

The shape of the energy-angle curve is qualitatively similar
to the one reported previously [84–87]. Most of the GB struc-
tures are also in good agreement with literature reports when

FIG. 6. Energy of selected GBs as a function of the number λ of
atoms removed from the GB (fraction of atomic plane). (a) Tilt angle
θ � 43.6◦. (b) Tilt angle θ � 53.1◦. The lines are drawn to guide the
eye.

available [84–86,88,89]. The (320) and (310) GB structures
are additionally consistent with the high-resolution electron
microscopy observations [90]. One discrepancy with the liter-
ature is our structure of the (510) boundary. This boundary
has been extensively studied and at least twelve different
structures have been reported [84,88]. In Ref. [88], our lowest-
energy structure of this boundary [74] was found to have the
second lowest energy out of eight structures tested. This minor
difference is likely to be related to the different interatomic
potentials used in the two studies. The agreement between
the simulated and experimentally known structures gives us
confidence that other predicted GB structures are also reliable.

As mentioned in Sec. III B 1, some of the GBs were
additionally equilibrated by varying the atomic density λ in
the GB core using the methodology developed in Ref. [66].
By contrast to metallic GBs, where variations in λ revealed
new stable or metastable structures (GB phases) [60–64,66],
no new structures were found in the Si GBs whose energies
would be lower than those obtained by the standard method
(λ = 0). Figure 6 shows GB energy versus λ plots for a set of
GBs tested by this method. In all cases, the energy has a single
minimum at λ = 0 (and λ = 1 by periodicity), showing that
there are no additional GB phases present. The only exception
is the (520) boundary, which has a local minimum at λ = 0.5
corresponding to a metastable GB phase. For all other values
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of λ, this GB represents distorted, vacancy-riddled forms of
the lowest-energy structure obtained at λ = 0.

By examining all GB structures and energies obtained
in this work, it was found that they could be divided into
three groups. Group 1 includes low-angle GBs with θ � 7◦.
Such boundaries are composed of A-type structural units
(Fig. 5) forming the cores of the edge dislocations separated
by elastically distorted lattice regions. An example of group
1 structures is given by the (20 1 0) boundary with θ = 5.73◦
shown in Fig. 5. Group 2 is more inclusive and encompasses
the GBs over the angular range 7◦ � θ � 65◦. They are char-
acterized by densely packed structural units with little or no
lattice gaps between them. The structural units are mostly B
type arranged in linear or zigzag patterns. Examples are given
by the (610), (310), and (520) GBs shown in Fig. 5. Finally,
the GBs assigned to group 3 have the tilt angles in the range
65◦ � θ � 90◦ (i.e., disorientation 0◦ � θ̃ � 25◦). They are
composed of discrete dislocations whose cores are formed of
B-type structural units separated by lattice regions. It should
be noted that the choice of the bounding angles between
the groups is somewhat subjective, but it is consistent with
the natural grouping of the GBs according to their Kapitza
conductance, as will be discussed below.

The foregoing discussion was focused on GB structures at
zero temperature. To evaluate the temperature effect, a set of
representative GBs was selected to examine their structural
evolution with increasing temperature. For some of them, such
as the (310) and (210) GBs, the atomic structure remained
practically unchanged up to temperatures close to the melting
point, except for thermal displacements of atoms from the
average positions. Other GBs developed a significant atomic
disorder at high temperatures. The disordering of core re-
gions of crystalline defects at high temperatures falls in the
category of premelting phenomena, which for metallic GBs
have been thoroughly studied by theoretical models and atom-
istic simulations [91–93]. A similar GB disordering at high
temperatures was previously observed in Si, specifically in
the �25(710) tilt boundary [94] and several twist boundaries
[95]. In this work, this effect has been demonstrated for a
larger set of tilt GBs, including low-angle boundaries such
as (20 1 0) 5.73◦ and (650) 79.6◦. The latter case is illustrated
in Fig. 7 for the (650) GB whose structure is composed
of discrete dislocations running parallel to the tilt axis and
normal to the page. As temperature increases, the dislocation
cores become increasingly disordered and eventually turn into
liquid pipes at temperatures approaching the melting point
(1687 K).

To quantitatively demonstrate the accumulation of disorder
in the GBs, the order parameter Q6 was computed as discussed
in Sec. III C. The results obtained for a set of six GBs are sum-
marized in Fig. 8. The order parameters in the crystalline and
liquid phases of Si are shown for comparison. As expected,
the order parameter in the GBs is lower than in the perfect
crystal but higher than in the liquid. In the (310) and (210)
GBs, the order parameter decreases linearly with temperature
with approximately the same rate as in c-Si [Fig. 8(a)]. This
behavior is consistent with the fact the structure of these
boundaries is preserved at all temperatures. The decrease in
their order parameter is solely due to the increased amplitude
of atomic vibrations. In the remaining GBs [Fig. 8(b)], the

FIG. 7. Atomic structure of the (650) GB at different tempera-
tures. The atoms with diamond-like local environment are shown in
blue, while atoms with distorted environments are shown in orange.
Note the high level of disordering in the dislocation cores forming
the boundary at the highest temperature (1600 K).

order parameter decreases linearly at low temperatures but
deviates down from this trend at temperatures above 1250 K.
This deviation signals the onset of additional disordering,
which becomes especially pronounced near the meting point.
This accelerated disordering reflects the GB premelting be-
havior affecting these boundaries.

B. Grain boundary thermal conductance

1. Simulation details

A typical steady-state temperature profile T (y) obtained by
NEMD simulations is shown in Fig. 1. The profile consists
of linear segments inside the grains and a temperature jump
�T arising at the GB due to its Kapitza resistance. The
nonlinear regions near the hot and cold thermostats are caused
by increased phonon scattering and were commonly observed
in previous studies [14,18,27]. In the present simulations, the
temperature difference between the thermostats was around
150 K at low temperatures and as high as several hundred
Kelvin at high temperatures. The values of �T were typically
around 10 to 20 K.

To demonstrate the robustness of our simulation method-
ology and insensitivity of the main conclusions with respect
to the choice of the interatomic potential, the Kapitza con-
ductance of three GBs was computed at 500 and 1000 K
using four different potentials. The results were compared
with literature data when available. The �5(210) and �5(310)
GB structures were created with the MOD2 potential and
scaled according to the thermal expansion coefficients of other
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FIG. 8. The GB order parameter as a function of temperature. (a) (310) and (210) GBs show a linear decrease in the order parameter due
to atomic vibrations. (b) GBs show an accelerated decrease of order at high temperatures approaching the melting point (1687 K) caused by
premelting. The order parameters in c-Si and l-Si (at 1690 K) are shown for comparison.

potentials. For the �5(310) GB, a metastable structure was
used to facilitate comparison with previous calculations [14].
The �101(10 1 0) 11.42◦ twist boundary was equilibrated
with the SW potential [32] to ensure full consistency with
the previous work [14]. The 0 K energy of this boundary
was found to be 0.91 J m−2, which is exactly the number
reported in Ref. [14]. The results are summarized in Table II.
The Kapitza conductance obtained in this work compares well
with the previous reports [14,18] and shows relatively small
variations across the four potentials. The latter observation is
in contrast with the results for the lattice thermal conductivity
of c-Si, which was shown to be much more sensitive to the
choice of the potential (Table I).

2. Tilt angle dependence

We will first present the results obtained by fixing the aver-
age temperature at 750 K and studying a set of GBs over the

entire range of tilt angles. The goal was to elucidate the effects
of GB energy, GB structure, and the lattice misorientation
on the Kapitza conductance. The temperature of 750 K is
above the experimental Debye temperature of Si (658 K [96])
but low enough that even the lowest-angle GBs produced a
temperature jump that could be reliably determined to extract
the Kapitza conductance.

As an example, Fig. 9(a) presents a collection of tempera-
ture profiles for several low-angle (relative to a misorientation
of 90◦) GBs. Note that the lowest-angle GB has a very
small temperature jump due to its relatively large conductance
σK , and that generally �T grows (σK decreases) as the tilt
angle deviates down from 90◦ (increased disorientation θ̃ ).
Figure 9(b) summarizes the conductance of all GBs studied in
this work plotted as a function of the GB energy γ . An impor-
tant observation is that the results fall into three categories dis-
tinguished by different colors. These categories correspond to
the three structural groups discussed in Sec. IV A, specifically

TABLE II. Thermal conductance σK of selected GBs (in GW m−2 K−1) computed with different interatomic potentials. The results are
compared with literature data when available [14,18]. The potentials tested: SW [32], T89 [75], MOD1 [76], and MOD2 [33].

�5(310)[001] tilt �5(210)[001] tilt �101(10 1 0) twist

500 K 1000 K 500 K 1000 K 500 K 1000 K

MOD1 1.25 1.92 1.54 2.10 1.58 2.03
MOD2 1.36 1.97 1.94 2.47 1.65 2.03
SW 1.21, 0.9a 1.80 1.38 1.94 1.53, 1.63 ± 0.2b 1.92, 1.95b

T89 1.41 2.03 1.71 2.14 1.66 2.43

aReference [18].
bReference [14].

033405-10



THERMAL CONDUCTIVITY AND ITS RELATION TO … PHYSICAL REVIEW MATERIALS 4, 033405 (2020)

FIG. 9. (a) Temperature profiles for low-angle (relative to 90◦)
GBs at 750 K. The profiles were fitted by Eq. (4) and shifted to
zero by subtracting the average temperature of the simulation block.
(b) Kapitza conductance of all GBs studied in this work as a function
of GB energy at 750 K. Note that the results naturally break into
three groups as discussed in the text. The lines represent linear fits
intended to highlight the trends. The inlays show the plots of the GB
conductance σK versus the tilt angle.

group 1 (blue), group 2 (black), and group 3 (red). Within each
group, the conductance follows a linear dependence on γ . The
linear correlation lines are shifted relative to each other and
have different slopes. A similar trend was previously observed
for Si twist boundaries [19] as well as symmetric tilt GBs in
MgO [97]. The low-angle GBs of group 1 have the highest
conductance and are closely followed by Group 3 GBs. The
Group 2 GBs with intermediate tilt angles have the lowest
conductance. It is interesting to note that in all three groups,
σK approaches the same, universal value of approximately
1.75 GW m−2 K−1 in the high energy limit. This value is
generally consistent with GB conductances reported in the
literature, which range from as low as 0.56 GW m−2 K−1

[14,26] or as high as 17.6 GW m−2 K−1 [27], depending on
the GB and the material in question.

The inlay in Fig. 9(b) shows the conductance plotted
as a function of the tilt angle with the structural groups
differentiated by color. Note that the shape of the curve is
similar to the inverted function γ (θ ) shown in Fig. 5. This

FIG. 10. Thermal width w (a) and GB conductivity κK (b) as
functions GB energy at 750 K. The lines are drawn to highlight the
trends. The inlays show the plots of w and κK versus the tilt angle.

similarity highlights a strong correlation between the Kapitza
conductance and the GB energy, which appears to be a rather
general trend. This correlation was previously observed for
GBs in Si [20,29], diamond-cubic carbon [27], silicon carbide
[21], MgO [97], CeO2 [98], Al2O3 [99], and other materials.
Furthermore, a decrease of the GB conductance with the tilt
angle was found for low-angle (θ < 30◦) tilt GBs in graphene
[100,101], suggesting that this trend extends to 2D materials
as well.

Figure 10(a) shows that the thermal GB width w follows
a similar correlation with the GB energy as the thermal con-
ductance. In particular, all w values break into three groups
corresponding to the structural groups (Sec. IV A). In the
high-energy limit, all three correlation lines converge to the
same, universal width of about 0.25 nm, which is fittingly
close to the interatomic distance. Knowing σK and w, the GB
conductivity κK was evaluated from the relation κK = σKw.
As expected, κK closely follows the same trends as σK and
w, showing a strong correlation with the GB energy. It is
interesting to note that, for the group 2 GBs (black symbols),
σK decreases with GB energy while w increases. The two
trends partially compensate each other, resulting in a rela-
tively small slope (weaker dependence on the energy) for the
conductivity correlation line. Each structural group follows
its own correlation line, but all three lines converge to nearly
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FIG. 11. GB conductance of Si GBs at 750 K plotted against
the GB excess volume per unit GB area. The color of the points
represents the structural groups as in Figs. 9 and 10.

the same, universal GB conductivity of about 0.4 W m−1 K−1

[Fig. 10(b)]. This value can be viewed as thermal conductivity
of typical atomic structures existing in the cores of high-
energy, high-angle GBs in Si.

The recent simulations of MgO GBs [97] revealed a strong
correlation between the GB thermal conductance and the GB
excess volume, while correlation with GB energy was much
weaker. To compare these findings with the situation in Si, we
have plotted the GB conductance at 750 K against the 0-K
excess volume [V ]N per the GB area. The excess volume is
computed as [V ]N = V − vN , where V is the volume of a
region with N atoms containing the GB and v is the volume
per atom in an unperturbed reference grain. As illustrated
in Fig. 11, the data points do separate into “clouds” corre-
sponding to the structural groups. However, the slopes are
either vertical or horizontal, which makes this correlation less
informative than the correlation with energy. Figure 11 only
serves to demonstrate the clustering behavior associated with
the GB structural units rather than any meaningful statistical
correlation. The preference for the GB conductance to corre-
late with the excess volume rather than energy is apparently a
specific feature of the MgO GBs.

3. Temperature dependence

Six GBs were selected to examine the temperature de-
pendence of the GB thermal conductance. Figure 12(a) re-
ports the results for the (310) and (210) boundaries, which
remain ordered up to high temperatures (cf. Fig. 8). In both
boundaries, σK increases with temperature in more or less
linear fashion. The trend for interface thermal conductance to
slightly increase with temperature was observed in previous
studies of GBs in Si and carbon [14,19,20,27,29,102], GBs
in 2D graphene [100], and Si-Ge solid-solid interfaces [103].
For GBs, the likely reason is the existence of localized vibra-
tional modes, which can exchange energy more easily as the
anharmonicity increases at high temperatures.

The remaining four GBs exhibit the same trend at low
temperatures [Fig. 12(b)] but deviate from this behavior at
high temperatures. Namely, σK starts to decrease with tem-
perature above about 1300 K. This change in the temperature

FIG. 12. The thermal conductance of GBs plotted as a function
of temperature. (a) GBs remaining ordered up to the melting point.
(b) GBs undergoing structural disordering at high temperatures. The
lines are included as a guide to the eye.

dependence correlates with the onset of atomic disorder in
these boundaries as was discussed in Sec. IV A (cf. Figs. 7 and
8). The effect can be explained by noting that the disordered
GB structures begin to resemble a-Si, which is known to have
a much lower thermal conductivity than ordered structures. A
similar decrease was observed in simulations of the �29 43.6◦
twist boundary in diamond carbon [27]. The observation of
this effect in several GBs in Si suggests that the decrease in
the GB conductance at premelting temperatures is a general
trend common to most GBs in covalent materials.

To put these results in perspective, the temperature depen-
dence of the GB conductivity κK was compared with that of
the lattice conductivity κ . The latter was extracted from the
linear portions of the temperature profiles during the NEMD
simulations as discussed in Sec. III D. As a consistency check,
κ was also computed by equilibrium MD simulations using
the GK relation (Sec. III E). The GK method was also applied
to compute κ of a-Si at several temperatures. The results are
summarized in Fig. 13, where the low-angle (650) GB and
the high-angle (210) GB have been chosen as representative
cases. We find that the lattice conductivities obtained by
the NEMD and GK methods are in good agreement with
each other. The lattice conductivity rapidly decreases with
temperature, following the 1/T relation predicted by the
standard three-phonon scattering model [104]. In comparison,
the GB conductivities increase with temperature very slowly
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FIG. 13. Temperature dependence of thermal conductivity of
c-Si (computed by two methods), a-Si, and two representative
GBs. The line is a 1/T fit of the c-Si data.

and remain in the same ballpark as a-Si. The latter trend is
consistent with the notion that the heat transport across GBs
is likely to be dominated by localized vibrations rather than
collective displacement waves as in the crystalline state. As a
result, κK is not much different from that in the amorphous
state. Both conductivities are expected to be close to the
lower bond predicted by the Cahill-Pohl theory [105–107]. A
rough estimate of this lower bound for Si, 0.4 W m−1 K−1, is
provided by the high-energy extrapolation in Fig. 10(b).

C. Vibrational density of states

The vibrational DOS of GBs computed at different temper-
atures was compared with the DOS of the bulk Si phases in the
effort to better understand the nature of the Kapitza resistance.
As a reference point, Fig. 14 shows the DOS of c-Si computed
with the present interatomic potential. The first, rather broad
peak (band) represents the acoustic modes, whereas the sharp
peak near the cutoff frequency originates from the optical
branches. In the context of thermal conductivity, we are most
interested in the acoustic modes. As temperature increases, the
acoustic band shifts toward lower frequencies and becomes
somewhat narrower and higher. The increased density of the
medium-frequency acoustic phonons enhances their scattering

FIG. 14. Vibrational density of states for diamond silicon at
several temperatures.

FIG. 15. Atomic vibrational spectra of (210) and (650) GBs in
Si in comparison with DOS in c-Si, l-Si, and a-Si at (a) 300 K and
(b) 1600 K.

rate, which is consistent with the observed decrease in thermal
conductivity with temperature. The optical peak also initially
shifts to lower frequencies, but this shift stops at higher
temperatures.

Figure 15 displays the local DOS in the core regions of
the (210) and (650) GBs in comparison with the DOS of c-Si
and a-Si. Note that the a-Si DOS is qualitatively similar to the
one seen experimentally by inelastic neutron scattering and in
independent simulations [108–111]. At 300 K, the vibrational
spectra of the (210) and (650) GBs tend to be intermediate
in shape between the spectra of c-Si and a-Si. Similar to the
amorphous structure, the acoustic band of both boundaries is
shifted toward lower frequencies relative to c-Si. Furthermore,
it additionally exhibits many localized peaks and looks more
jagged than the a-Si DOS. In particular, the (210) GB DOS has
a well-pronounced localized peak at about 3 THz. This peak
suggests the existence of localized (nondispersive) vibrations
in the GB core. Note that the frequency of this peak lies inside
the acoustic frequency range that is most important for phonon
scattering. As temperature increases to 1600 K, the 3-THz
peak smooths out, as do other sharp peaks seen at 300 K.
Except for the suppressed optical peak, the GB DOS becomes
quite similar in shape to that of c-Si, and to some extent,
to the a-Si DOS. This similarity is consistent with the con-
vergence of thermal conductivities of the three structures at
high temperatures. This convergence is illustrated in Fig. 13,
where the c-Si thermal conductivity rapidly decreases with
temperature while the GB conductivity slightly increases, so
the two conductivities become close to each other.

More detailed information can be obtained by examining
the vibrational spectra of individual GB sites. Figures 16 and
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FIG. 16. (a) Selected atomic sites (shown in green and labeled A
through F) in the (210) GB at 300 K. The sites are ranked according
to the distance from the GB center and their energy is plotted as a
function of this distance. The lines are drawn to highlight the trends.
Panels (b), (c), and (d) show the vibrational density of states of the
selected GB sites in the x, y, and z directions, respectively. The
projection on the DOS-frequency plane shows the overall DOS of
the GB core in the respective direction in comparison with that of
diamond cubic (DC) Si.

17 show site-specific DOSs of the two GBs at 300 K resolved
in the x, y, and z directions. The GB sites are labeled by letters
A through F starting from the GB center and moving away

FIG. 17. (a) Selected atomic sites (shown in green and labeled A
through F) in the (650) GB at 300 K. The sites are ranked according
to the distance from the GB center and their energy is plotted as a
function of this distance. The lines are drawn to highlight the trends.
Panels (b), (c), and (d) show the vibrational density of states of the
selected GB sites in the x, y, and z directions, respectively. The
projection on the DOS-frequency plane shows the overall DOS of
the GB core in the respective direction in comparison with that of
diamond cubic (DC) Si.

in the y direction normal to the GB plane. The energies of
the sites are indicated in the plot. The icons show a fragment
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of the GB structure with the chosen atoms colored in green.
Recall that whenever we show a GB structure, the x direction
is horizontal, the y direction is vertical, and the z direction is
normal to the page (parallel to the tilt axis).

In the (210) GB (Fig. 16), the 3-THz peak mentioned above
features most prominently in vibrations along the x and z
directions lying in the GB plane. This suggests that the peak
is caused by localized in-plane vibrations. While this peak
extends through two layers on ether side of the central layer
A, it is highest for the vibrations of atom A sitting next to the
open space existing at the center of the kite-shape structural
unit. Thus, the localized vibrations occur by displacements
of atom A toward this open space as well as parallel to the
tilt axis. Another notable feature is that the acoustic band of
the atoms B (located in the compressed region near the tip of
the kite) is relatively narrow and is separated from the optical
modes by a wide frequency range where the DOS is rather
small. This frequency “gap” creates an acoustic mismatch
between the vibrations of atoms B in the GB and the medium-
frequency phonons in the lattice.

A similar frequency mismatch with lattice phonons exists
for atoms B in the (650) GB (Fig. 17). Furthermore, a sharp
peak occurs inside the acoustic band at about 5 THz for
vibrations in all three directions. By contrast to the (210) GB,
the atom A does not contribute much to this peak. Instead, the
5-THz peak is largely caused by vibrations of atoms B in the
y direction. Another sharp peak at about 5 THz is produced by
vibrations of atoms C in the z direction. Since atoms B and C
are spatially separated from each other and have different local
environments (relatively open and compressed, respectively),
these two peaks represent different local modes and their
frequency match is likely to be coincidental.

The Supplemental Material [74] presents the results of
similar site-specific DOS calculations at 1600 K. Some of the
features mentioned above can still be discerned, but in general
the spectra look much smoother. The local peaks within the
acoustic band are barely noticeable, but atoms B still exhibit a
wide “gap” separating the acoustic and optical bands and thus
creating a mismatch with the acoustic phonons in the lattice.

V. SUMMARY AND CONCLUSIONS

We have conducted a systematic study of thermal (Kapitza)
resistance of GBs in Si, focusing on a set of [001] symmet-
rical tilt GBs spanning the entire misorientation range. The
simulations are based on classical MD and utilize a recently
developed interatomic potential [33]. Careful equilibration of
the GBs ensured that their structures are representative of
the equilibrium GBs occurring under experimental conditions.
The thermal conductance of the GBs was determined by the
NEMD method (also known as the direct method) over a wide
range of temperatures. In this method, the GB conductance is
extracted from the temperature jump across the GB measured
in the presence of heat flux normal to the boundary (Fig. 1).
The method also yields the GB thermal width, which can
be used to find the effective GB conductivity from the GB
conductance. For comparison, thermal conductivity of bulk Si
phases (crystalline, amorphous, and liquid) was computed by
equilibrium MD simulations using the GK method.

Two limitations of our methodology should be mentioned.
First, we rely on a classical interatomic potential [33]. While
this potential presents a significant improvement over the
popular potentials such as SW [32] and T89 [75], we find
that it underestimates the lattice thermal conductivity of c-Si
with respect to those potentials, as well as experimental data
and first-principles calculations. On the other hand, the tests
reported in this paper show the GB conductance and the ther-
mal conductivity of a-Si predicted by this potential are very
similar values to those obtained with other potentials. Given
that the present potential is likely to be more reliable for the
modeling of defect structures such as GBs [33], we consider it
a reasonable choice for this study. The second limitation is that
the classical MD simulations are not expected to accurately
represent the actual behavior of the thermal conductivity
at low temperatures dominated by quantum effects. Given
that many of the results reported here refer to temperatures
below the experimental Debye temperature of c-Si, we only
expect that they capture the main qualitative trends of the GB
structure-conductivity relationships.

One of the main results of this work is the established cor-
relation between the GB excess energy and the GB thermal re-
sistance. Specifically, all GBs studied here naturally break into
three groups according to the type of elementary structural
units forming their core (Fig. 5). Within each group, the GB
conductivity strongly correlates with the GB energy (Figs. 9
and 10). While the correlation relations are different within
each group, the remarkable fact is that all three correlations
predict the same upper bound of the thermal conductivity
achieved in the high-energy limit. This limiting values is
close to thermal conductivity of a-Si, suggesting that the heat
transport mechanisms are similar. In fact, the GB and a-Si
conductivities remain in the same ballpark at all temperatures
(Fig. 13).

While the lattice thermal conductivity decreases with in-
creasing temperature, the GB conductivity slightly increases.
The latter effect can be explained by the enhanced energy
transfer between the localized vibrational modes in the GB
core as the anharmonicity of vibrations increases with tem-
perature. In some of the GBs, however, this trend reverses
and the conductivity starts decreasing at high temperatures
[Fig. 8(b)]. It has been shown that this effect is caused by
structural disordering of such GBs when approaching the
melting temperature (premelting phenomenon, Fig. 7).

To gain a better microscopic understanding of the Kapitza
resistance, we have analyzed the vibrational spectra of the
GBs extracted from the velocity autocorrelation function. Us-
ing this method, the vibrational DOS can be computed specif-
ically for atoms located within the GB core region, or even
for individual atoms. Furthermore, the DOS can be resolved
along the three Cartesian axes. Such directional vibrational
spectra carry valuable information about the atomic vibrations
parallel and normal to the tilt axis as well as in the direction
normal to the GB plane. One of the important findings is the
existence of sharp peaks in the acoustic frequency range of
the vibrational spectra (Figs. 15, 16, and 17). Such peaks are
usually caused by nonpropagating modes, such as resonances
and Einstein-like localized vibrations. The origin of these
peaks has been traced back to the strong inhomogeneity of
the atomic environments featured by the GB core, including
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alternating regions of tension and compression. The tensile
environments exist in relatively open locations near the cen-
ters of the structural units. Atoms in such environments are
loosely bound and vibrate anharmonically, especially at high
temperatures. This behavior is somewhat reminiscent of the
“rattling” of caged atoms in phonon-glass systems [112]. One
more prominent feature is the existence of low-density regions
(“gaps”) between the acoustic and optical bands in the spectra
of some GB atoms (Figs. 16 and 17). Such “gaps” give rise to a
mismatch with the medium-frequency lattice phonons, which
are important for thermal conductivity.

Further progress in the understanding of Kapitza resistance
can be made by specifically analyzing the atomic displace-
ments in the normal modes of a bicrystal containing a GB,
as was recently done for a model system composed of two
lattice-mismatching Lennard-Jones solids [15]. This analysis
should permit separation of the lattice modes from the modes
localized in the GB core, and among the latter, identification
of the local modes and resonances. The relaxation times of
individual modes in the GB region can also be computed,

along with other measures anharmonicity and localization,
and the results can be correlated with the local structural
environments. Improving the accuracy of the interatomic po-
tential is another important task for the future. One possi-
ble path toward this goal is utilizing one of the machine-
learning potentials, such as the physically informed neural
network potential proposed in Ref. [113]. Such potential
prove access to large-scale simulations while predicting the
energies of atomic configurations on a nearly first-principles
level.
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