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Dependence of excess vibrational entropies on grain boundary structures in MgO:
A first-principles lattice dynamics
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First-principles lattice dynamics calculations were performed to reveal an atomic-level origin of excess
vibrational entropies at grain boundaries (GBs) in MgO. Fourteen symmetric tilt GBs with various structural
units were systematically examined. The excess vibrational entropies were found to vary depending on
the individual GBs, and as a result, the relative thermodynamic stability of the GBs studied changed with
temperature. The excess GB volumes were less correlated with the excess vibrational entropies. By contrast,
classifying ions in terms of their coordination numbers, bond-length changes at GBs were well correlated
with atom-projected excess vibrational entropies for both Mg and O ions. Bond-length changes at GBs, which
originate from changes in bond strength, are therefore a critical, well-defined descriptor for evaluating excess
vibrational entropies and thereby excess free energies in MgO.
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I. INTRODUCTION

In polycrystalline materials, grain boundary (GB) energies
have critical impacts on their microstructure evolution and
macroscopic properties, by governing grain-growth kinetics,
impurity segregation, and precipitate nucleation. GBs with
high GB energies were indicated to dominate GB sliding,
leading to deformation and fracture in polycrystals [1,2].
Thermal grooving measurements in metals and oxides showed
that GB energies decreased with rising temperature [3–5]
while increased with increasing temperature for impurity-
doped samples [6,7]. Such temperature dependence was also
indicated to be closely related to abnormal and antithermal
grain growth [6,8]. Understanding what determines GB en-
ergies at finite temperature is therefore essential for design-
ing polycrystalline microstructures and the resulting material
properties over a wide temperature range, as well as for
developing GB physics.

In an earlier work by Readey and Jech, thermal grooving
measurements for a tilt GB in NiO showed a strong reduction
in GB energy with rising temperature. The authors attributed
this reduction to GB segregation of Ni point defects [3]. Dillon
et al. [6] and Kelly et al. [7] measured relative GB energies
of impurity-doped Al2O3 by measuring dihedral angles of
thermal grooves at several temperatures. Their results showed
that relative energies of the doped samples varied with temper-
ature, suggesting that segregation/desegregation of impurities
and complexion transition dominantly affect GB energies at
finite temperatures.

However, the contribution of excess entropy to GB free
energy is still not fully understood. A fundamental question is
why excess entropies generated by GBs always have positive
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values, as previous thermal grooving measurements indicated
a reduction of relative GB free energies with temperature even
for high-purity samples [6,7]. So far experimental measure-
ment of excess entropies is difficult because their contribution
to GB free energies cannot be separated from point defect
formation and impurity segregation, whose concentrations
significantly vary with temperature, for real polycrystals. It
is also technically impossible to distinguish GB free energies
from surface free energies, since measured dihedral angles
provide only their ratio. Additionally, excess entropies are
most likely to depend on GB structures as well as the chemical
bonding states of substances, but such dependence is difficult
to experimentally evaluate in the atomic and electronic levels.
Therefore it is still unclear if and how excess entropies gener-
ated by GBs affect GB free energies at finite temperature.

Among many theoretical studies on the calculation of GB
energies [9–17], a few studies with empirical interatomic po-
tentials examined excess vibration entropies at GBs [13–17].
Using the harmonic approximation, Hashimoto et al. showed
that an Al tilt GB with a specific structural unit had a
larger excess entropy than the one without such a structural
unit, speculating that this difference resulted from particular
atoms next to the excess space of the GB [13]. Najafabadi
et al. calculated excess vibrational entropies of stable and
metastable structures for 12 twist GBs in Au [14]. Their study
indicated a rough correlation between the excess free energies
and excess volumes, although the reason was not discussed in
detail. Harris et al. applied the quasiharmonic approximation
to symmetric tilt GBs in MgO and indicated that the excess
entropies had less effect on the excess free energies than the
PV term with high pressures of up to 40 GPa [16]. To our
knowledge, however, there are no studies that have revealed
the atomic-level origin of excess vibrational entropies and
also their dependence on chemical bonding states. A critical
problem is that empirical interatomic potentials sometimes
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TABLE I. Crystallographic parameters of 14 symmetric tilt GBs.

Misorientation angle 2θ (deg) GB plane/ Rotational axis � value Nsupercell Distance between GB planes (A)

16.26 (710)/[001] 25 200 16.1
22.62 (510)/[001] 13 156 17.5
36.87 (310)/[001] 5 80 14.7
43.60 (520)/[001] 29 232 12.6
53.13 (210)/[001] 5 160 19.9
61.93 (530)/[001] 17 204 19.4

38.94 (221)/[1̄10] 9 72 13.7
50.48 (332)/[1̄10] 11 176 20.3
70.53 (111)/[1̄10] 3 48 14.8
93.37 (223)/[1̄10] 17 136 17.9
109.47 (112)/[1̄10] 3 72 16.3
121.01 (225)/[1̄10] 33 132 13.2
129.52 (113)/[1̄10] 11 88 15.2
141.06 (114)/[1̄10] 9 144 19.3

fail to reproduce the energetics and atomic arrangements of
GBs with accuracy of DFT calculations [18,19], since their
empirical parameters are usually adjusted to reproduce basic
properties of reference bulk structures.

To reveal an origin of excess vibrational entropies at GBs,
we performed first-principles lattice dynamics with the har-
monic approximation. MgO was selected as a model system;
it is a representative ionic crystal with the rock-salt structure,
and thus results obtained from GBs in MgO would be highly
transferable to various ionic systems. Fourteen symmetric
tilt GBs with various structural units were systematically
examined. To determine GB features governing the excess
vibrational entropies, calculated vibrational entropies were
then correlated to excess internal energies, excess volumes,
and further local bond-length changes at the GBs.

II. COMPUTATIONAL PROCEDURES

Energy minimizations were performed using DFT cal-
culations of the projector augmented wave (PAW) method
implemented in the VASP code [20–22]. The generalized-
gradient approximation for exchange-correlation interactions
was employed with the formulation parametrized by Perdew,
Burke, and Ernzerhof (GGA-PBE) [23]. An energy cutoff of
plane waves was set at 450 eV. Electrons of 3s2 for Mg and
2s2 2p4 for O were treated as valence electrons in the PAW
pseudopotentials [24,25]. A first Brillouin zone was sampled
using the Monkhorst-Pack scheme [26], and a 4 × 4 × 4 k-
point mesh was used for a conventional cell of MgO.

A convergence criterion of self-consistent one-electron
energies was set at 10−6 eV for structural optimization and
10−8 eV for electronic cycles in lattice dynamics calculations,
respectively. A Davidson-block iteration scheme was used to
improve numerical stability and thereby energy convergence.
For structural optimization, atomic positions were relaxed
until a force on each atom was less than 10−2 eV/Å. With
these computational conditions, the lattice constant of MgO
was calculated to be 4.23 Å, in agreement with experimentally
measured value of 4.21 Å [27]. Higher energy cutoffs and
more k-point meshes resulted in little variations in lattice
constant up to 9 × 10−3 Å. The band gap was calculated to

be approximately 5.3 eV, similar to a calculated value in the
literature [28], although the underestimation of the band gap
was observed due to the limitation of DFT calculations.

Table I summarizes the crystallographic characteristics of
the GBs and details of each supercell. Symmetric tilt GBs are
crystallographically defined by a common rotation axis and a
misorientation angle (2θ ) of two grains. In this work, the [001]
and [1̄10] systems were examined by systematically varying
2θ . The table also lists their � values, which represent the
inverse of the density of coincidence site lattice (CSL) points
[29]. A GB with a low � value (e.g., � = 3 and 5) contains
many CSL points in its CSL unit cell, and its GB structure
typically has crystallographically simple structural units. In
this work, GBs with � values from 3 to 33 were examined to
cover different GB crystallographic characteristics.

Two equivalent GBs were introduced to satisfy periodic
boundary conditions, and they were separated by more than
12 Å (see Table I). To find the globally energy-minimum
structure of each GB, inequivalent initial atomic configura-
tions were generated by translating one grain with respect to
the other in two in-plane directions, in an increment of 0.5 Å.
All the initial configurations were then statically relaxed
and compared with respect to zero-temperature GB energy
that does not involve a lattice vibrational contribution. This
approach to finding energy-minimum atomic configurations
is known as the γ -surface approach [30], which enables the
evaluation of a potential energy surface as functions of the
rigid-body translations of one grain in the case of GBs.

The energy-minimum structure of each GB was used as a
reference structure for lattice dynamics calculations. The sta-
ble and metastable structures obtained are in the Supplemental
Material [31].

Lattice vibrational analyses based on the finite displace-
ment method were performed using the phonopy code [32].
Force constants were calculated from the Hellmann-Feynman
forces by imposing a displacement of 0.1 Å to each atom. In
this calculation, we used supercells whose lattice parameters
are equal to or larger than those of a 2 × 2 × 2 supercell of
the unit cell of MgO.

To calculate an excess vibrational entropy per GB area
�Svib

GB and a GB free energy σGB, which involves lattice
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vibrational contribution, thermodynamics- and statistical-
mechanics-based equations were employed, as described be-
low. Here σGB was assumed to be equal to an increase in
Helmholtz free energy F from the perfect crystal. With the
vibrational internal energy Evib and vibrational entropy Svib,
F is expressed as

F = E static + F vib = E static + Evib − T Svib, (1)

where E static is the zero-temperature total energy calculated
with DFT calculations. The vibrational free energy F vib is
given by

F vib =
∑

i

[
1

2
h̄ωi + kBT ln

{
1 − exp

(
− h̄ωi

kBT

)}]
, (2)

where h̄ is the reduced Planck constant, ωi is the vibrational
frequency of the ith normal mode, and kB is the Boltzmann
constant. The negative of the derivative of F vib with respect to
T is equal to the vibrational entropy Svib, as

Svib = −∂F vib

∂T

= 1

2T

∑
i

h̄ωi coth

(
h̄ωi

2kBT

)

− kB

∑
i

ln

[
2 sinh

(
h̄ωi

2kBT

)]
. (3)

Furthermore, Svib was divided into Svib
μ, j , the atom-projected

vibrational entropy of the μth atom for the jth degree of
freedom, as follows:

Svib
μ, j = 1

2T

∑
i

|ei(k, μ; j)|2h̄ωi coth

(
h̄ωi

2kBT

)

− kB

∑
i

|ei(k, μ; j)|2 ln

[
2 sinh

(
h̄ωi

2kBT

)]
, (4)

where ei(k, μ; j) is the ith Cartesian component of a polariza-
tion vector. To quantify the atom-projected vibrational entropy
of the μth atom Svib

μ , the sum over 3N degrees of freedom

Svib
μ = ∑3N

j=1 Svib
μ, j was then computed. The sum of Svib

μ over
all atoms is equal to Svib. Finally σGB was calculated by

σGB = (FGB − FBULK )/2A, (5)

where FGB and FBULK are the Helmholtz free energies of
a GB structure and the perfect-crystal structure of MgO,
respectively, and A is the GB area. The term σGB was divided
into three terms:

σGB = �E static
GB + �Evib

GB − T �Svib
GB, (6)

where �E static
GB is the excess internal energy per GB area at

0 K without vibrational contribution. This term was calculated
from the total-energy difference between a GB structure and
the perfect crystal. �Evib

GB is the excess vibrational internal
energy per GB area. Each term on the right side was calculated
as a difference between the corresponding values of a GB and
the perfect crystal.

In our test calculations, both the harmonic and quasihar-
monic approximation were applied to the most stable struc-
ture of the �5(310)/[001] to investigate the contribution of

thermal expansion to σGB. Differences between σGB obtained
from the two approximations were found to be less than 9 ×
10−3 J/m2 up to around 1000 K, although at above 1200 K
physically reasonable free energies were not obtained from
the quasiharmonic approximation due to the large elongation
of the GB structure at negative pressures above −12 GPa. For
this reason, only the harmonic approximation was applied to
the 14 GBs studied. These results are contained in Sec. S1 in
the Supplemental Material [31].

III. RESULTS AND DISCUSSION

A. Most stable and metastable GB structures

Figure 1 displays the most stable GB structures obtained
from DFT calculations. As examples, the structural units
of �5(310)/[001] and �3(111)/[1̄10] are indicated by the
shapes with a black edge. A structural unit is a repeated
pattern of atomic arrangements at a GB in the in-plane
direction, although its definition is somewhat arbitrary. The
obtained structural units are found to vary depending on
the misorientation angles and rotational axes, having several
similar features of atomic arrangements: for the [001] system
[Fig. 1(a)], the GBs tend to have “open” atomic structures,
involving an empty space at the boundary planes and lower
coordination than sixfold coordination. Among these GBs,
the atomic structures of �5(210)/[001], �5(310)/[001], and
�25(710)/[001] were reported by previous atomistic simu-
lations and DFT calculations [28,33–35], which are in good
agreement with the present results.

Figure 1(b) shows stable GB structures for the
[1̄10] system. For the �9(221)/[1̄10], �11(332)/[1̄10],
�17(223)/[1̄10], and �11(113)/[1̄10], the projected image
makes Mg and O ions at the GB planes look unphysically
close to each other, but their actual distance is 2.0–2.1 Å; one
grain is translated relative to the other grain with a/2 along the
[1̄10] axis, where a is the lattice constant of the conventional
cell of MgO. For the �3(112)/[1̄10], �33(225)/[1̄10], and
�9(114)/[1̄10], no rigid body translation along the [1̄10]
axis occurs between two grains, with 1.8–1.9 Å of spacing
between two grains perpendicular to the boundary planes.
These types of structural units with the [1̄10] rotational axis,
with open structures and translation along the axis, were
also reported by previous atomistic simulations [35,36]. The
�3(111)/[1̄10] corresponds to a coherent twin GB, with a
bulklike atomic arrangement.

Metastable structures were also determined to examine
their relative stability to the most stable structures at a
finite temperature, as Najafabadi et al. indicated that the
most stable GB structures changed with temperature for
twist GBs in Au [14]. Figure 2 shows metastable structures
of four GBs obtained. For the metastable structures of
the �5(310)/[001], �17(530)/[001], �3(112)/[1̄10],
and �11(113)/[1̄10], �E static

GB are calculated to be 0.23,
0.07, 0.07, and 0.04 J/m2 higher than those of their most
stable structures, respectively. For the �5(310)/[001] and
�17(530)/[001], the metastable structures do not have open
spaces as is formed for the most stable structures [Fig.
1(a)], but they have “dense” structures at which ions are
closely packed. Similar dense structures were also predicted
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FIG. 1. Most stable structures of all the calculated GBs with (a) the [001] and (b) [1̄10] rotational axes. The dashed line corresponds to
the boundary plane. The yellow and red balls represent Mg and O ions, respectively. For the �5(310)/[001] and �3(111)/[1̄10], examples of
structural units are indicated by the black line and dots.

as metastable structures in the literature [36,37]. For
the metastable structures of the �3(112)/[1̄10] and
�11(113)/[1̄10], one grain is displaced by a/2 along the
[1̄10] axis with respect to the other grain. Although the
other GBs also had metastable structures, their atomic
arrangements showed similar features to the four metastable
structures mentioned above. The four GB structures in Fig. 2
were thus used as representatives of metastable structures for
lattice dynamics calculations.

B. Excess free energy and excess vibrational entropy

Figure 3 shows σGB and its vibrational components (i.e.,
�Evib

GB and T �Svib
GB) for the �5(310)/[001]. At up to around

100 K, �Evib
GB and T �Svib

GB are much smaller than �E static
GB ,

indicating that temperature dependence of σGB is insignificant.
At T � 100 K, σGB decreases with rising temperature as
T �Svib

GB becomes comparable to σGB at 0 K, whereas �Evib
GB

is still smaller than �E static
GB and also nearly constant. The

temperature dependence of σGB thus originates from T �Svib
GB.

Since the same trend was observed for the other GBs, the

FIG. 2. Metastable GB structures for the �5(310)/[001],
�17(530)/[001], �3(112)/[1̄10], and �11(113)/[1̄10]. The dashed
line represents the boundary plane.

discussion below focuses on only �Svib
GB for contribution of

lattice vibration to σGB.
Figure 4 displays σGB as a function of temperature. Al-

though σGB tends to decrease with rising temperature for
all GBs, the temperature dependence of σGB varies depend-
ing on each GB. For instance, the �25(710)/[001] has a
larger σGB of 1.33 J/m2 than the �5(210)/[001] (σGB =
1.26 J/m2) at 0 K, whereas at 1500 K, the �25(710)/[001] is
thermodynamically more stable (σGB = 1.13 J/m2) than the
�5(210)/[001] σGB = 1.15 J/m2). As plotted with the blue
line in Fig. 4, the metastable structures of �17(530)/[001]

FIG. 3. Change of the GB free energy (σGB) from 0 K for the
�5(310)/[001]. The black, red and blue lines represent σGB, the
excess vibrational internal energy per GB area (�E vib

GB ) and the
excess vibrational entropy per GB area multiplied by temperature
(−T �Svib

GB), respectively.
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FIG. 4. GB free energy (σGB) as a function of temperature T for the GBs with (a) the [001] and (b) [1̄10] rotational axes. The red and blue
lines represent σGB for the most stable and metastable GBs, respectively.

and �17(334)/[1̄10] (denoted as “�17(530)/[001]m” in
Fig. 4, for instance) also have large �Svib

GB, resulting in a
rapid decrease in σGB from 1.58 to 1.27 J/m2 and from
1.94 to 1.53 J/m2 between T = 0–2000 K, respectively. A
comparison between �Svib

GB of the [001] and [1̄10] systems
indicates that the magnitude of �Svib

GB does not depends on
the rotational axis, while �E static

GB is entirely larger for the
[1̄10] GBs. Therefore, GBs in MgO polycrystals are most
likely to have a wide spectrum of �Svib

GB, depending on their
individual GB structures. Such a temperature dependence may
also affect the population of individual GBs in polycrystalline
microstructures at a given temperature, as it was reported that
GBs with particular interfacial planes were observed more
frequently than other GBs in polycrystalline MgO [38,39].

The relative stability of stable and metastable structures
for the crystallographically same GB is also found to change
depending on temperature. For the �17(530)/[001] and
�11(113)/[1̄10], the most stable structures change at 1300
and 1350 K, respectively, as the metastable structures at
0 K has larger �Svib

GB than the most stable structures at 0 K.
By contrast, the metastable structures of the �5(310)/[001]
and �3(112)/[1̄10] at 0 K have smaller �Svib

GB than those of
the most stable structures, and thus have their higher values
of σGB even at 2000 K. In the present study, we examine
only four metastable structures of symmetric tilt GBs with
low-� values. The numbers of metastable structures for a GB
would increase with its � value, since the periodicity of the
structural unit along the boundary plane becomes longer with
increasing � value, involving various types of atomic arrange-
ment. GBs with a high-� value may thus often experience
stable-metastable transition depending on temperatures.

For the �17(530)/[001] and �11(113)/[1̄10], transforma-
tion between the stable and metastable structures (see Figs. 1
and 2) involves not only a change in atomic arrangement but
also rigid body translation along the rotational axis. Such
translation is likely to have a large activation energy, since
relative shifts of one grain are required. Thus, when a GB
structure is formed at a high temperature and then annealed,

the high-temperature GB structure may be retained even at
low temperature.

In this work we used only static calculations, and thus the
GB transition cannot occur simultaneously in our simulations.
The GB transition may occur in long-timescale molecular
dynamics (MD) simulations. Although such DFT-MD sim-
ulations still have high computational cost, they would be
employed in the combination of lattice dynamics calculations
in future works.

A previous atomistic simulation study of MgO showed
that a difference of σGB at 300 and 1200 K was as small
as 0.05 J/m2 for the �5(210)/[001] [16]. In this study the
�5(210)/[001] shows a difference of 0.04 J/m2 between
the two temperatures, comparable to the previous result. On
the other hand, the �25(710)/[001] shows a difference of
0.13 J/m2, three times larger than that of the �5(210)/[001].
Although the difference of 0.13 J/m2 is still smaller than the
pressure contribution to σGB at high pressures reaching tens of
GPa, as indicated in the previous study [16], this value is not
negligible in normal conditions. Comparing with a previous
study of the �5(310)/[001] in Al [13], the �5(310)/[001] in
MgO studied exhibits approximately by five times a smaller
value of �Svib

GB (8 × 10−5 J/m2 K−1) than that in Al (4 ×
10−4 J/m2 K−1). Although the previous study used a Morse-
type interatomic potential and thus a direct comparison to our
result is difficult, �Svib

GB may affect σGB more significantly for
Al than MgO. Our future work with DFT calculations will
address �Svib

GB of metal GBs by varying their misorientation
angles to reveal the difference in �Svib

GB between Al, MgO and
covalent crystals such as Si.

C. Correlation of excess vibrational entropy to excess internal
energy and excess volume

To reveal a physical origin of the excess vibrational en-
tropies generated by the GBs, correlations of �Svib

GB to �E static
GB

and excess volume �VGB were investigated; �VGB represents
a volume increase at a GB with respect to the volume in bulk,
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FIG. 5. (a) Excess vibrational entropy T �Svib
GB (T = 1000 K), (b)

excess static energy �E stat
GB , and (c) excess volume �VGB as a function

of misorientation angle 2θ . The black dashed arrow indicates the
cusp position.

and is often used to discuss the correlation to σGB at 0 K
[9,11]. For instance, Najafabadi et al. showed a rough correla-
tion between �VGB and σGB in Au GBs [14]. Figures 5(a) and
5(b) show T �Svib

GB (T = 1000 K) and �E static
GB as a function

of the misorientation angle, respectively. The two quantities
seem to change with 2θ in the same manner, although there
exist differences in cusp positions and relative values. For the
[001] system, T �Svib

GB has clear local maxima at 16.26° for the
�25(710)/[001] and 61.93° for the �17(530)/[001], whereas
�E static

GB has one local maxima at 61.93°. For the [1̄10] sys-
tem, T �Svib

GB has three cusps at 70.53°, 109.47°, and 129.52°
for the �3(111)/[1̄10], �3(112)/[1̄10], and �11(113)/[1̄10],
respectively, whereas �E static

GB has two cusps at 70.53° and
109.47°. As shown in Fig. 6(a), the correlation between

T �Svib
GB and �E static

GB is relatively strong with a correlation
coefficient of 0.85. Even without the �3(111)/[1̄10], which
corresponds to a coherent twin GBs and is energetically much
stable (�E static

GB = 0.64 J/m2), the correlation coefficient for
the other GBs is calculated to be 0.78. However, without
the �3(111)/[1̄10], the correlation coefficients for the [001]
and [1̄10] rotational axes are 0.60 and 0.26, respectively.
Therefore although �E static

GB as a whole is correlated with
�Svib

GB, the strength of the correlation differ with the rotational
axes.

A comparison between �VGB [Fig. 5(c)] and �Svib
GB

[Fig. 5(a)] indicates clear differences in both cusp positions
and relative values. For the [001] rotational axis, �VGB in-
creases up to 36.87° for the �5(310)/[001] and then mono-
tonically decreases, without any cusps. For the [1̄10] rota-
tional axis, �VGB has two cusps at 70.53° and 129.52 °.
In addition, the values of �VGB at 2θ � 70.53◦ are entirely
smaller than at 2θ > 70.53◦. This tendency is not observed
for �Svib

GB. Figure 6(b) shows that �VGB and �Svib
GB are less

correlated with a correlation coefficient of 0.11 and −0.49
with and without the �3(111)/[1̄10], suggesting that a local
volume increase at a GB is not a critical factor in determining
the magnitude of �Svib

GB.
We note that σGB and VGB are also not well correlated, as

shown in Fig. 6(c). The reason is that in MgO, stable GB
structures have both small and large VGB, strongly depending
on the crystallographic characteristics of GBs. The formation
of structural units with various VGB is clearly due to the
fact that even at GBs, the Coulomb interaction, as well as
the bulk crystal structure (here the rock-salt structure), is
a critical factor in determining stable ionic arrangements,
as Mg2+ and O2− are bonded across the GB plane for the
“open” structures (see Fig. 1). This trend clearly differs
from fcc metals: their stable structural units are basically
“dense” and do not have open structures as is found at the
�5(310)/[001] in MgO [10,40,41]. For GBs in fcc met-
als, VGB is thus relatively correlated with strain energies at
GBs and thereby their GB energies, as was indicated in the
literature [9].

D. Correlation of excess vibrational entropy
to bond-length change

Since �Svib
GB is fundamentally caused by thermal vibration

of atoms, involving variation in interatomic bond length,

FIG. 6. Correlation between T �Svib
GB (T = 1000 K) and (a) �E stat

GB and (b) �VGB, and (c) the correlation between σGB and �VGB. The red
and blue points represent the GBs with the [001] and [1̄10] rotational axes, respectively.
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FIG. 7. Bond-length change �dMg−O and vibrational entropy change �Svib
μ (T = 1000 K) from the perfect crystal for each (a) Mg ion and

(b) O ion for the �17(530)/[001]. The results of ions sixfold and fivefold coordinations are displayed. The Mg or O column positions at the
GB are displayed with the dashed line circles. The fivefold coordinated ions with large negative and positive T �Svib

μ are labeled A and B,
respectively. For these labeled ions, the partial phonon density of states is plotted in Fig. 8.

correlations between bond lengths between nearest neighbor-
ing Mg and O ions and �Svib

GB were examined. Figure 7 shows
bond-length changes �dMg−O and T �Svib

μ of each ion with
sixfold and fivefold coordination at the �17(530)/[001] for
Mg [Fig. 7(a)] and O [Fig. 7(b)]. Here �dMg−O were obtained
from differences of Mg-O bond lengths near a GB from that
in the perfect crystal. It is seen that the sixfold coordinated
Mg ions with positive �dMg−O have positive �Svib

μ , whereas
those with negative �dMg−O have negative �Svib

μ . A similar
trend is also found for the fivefold coordinated Mg ions,
although the Mg ions encircled with the dotted line seemingly
have negative �dMg−O while exhibit positive �Svib

μ . This will
be addressed later in Fig. 9. For the O ions [Fig. 7(b)], the
correlation between �dMg−O and �Svib

μ is very similar to that
for the Mg ions, as the atomic arrangements of O ions are
almost the same as Mg ions, having translation symmetry even
at the GBs.

To reveal how bond-length changes at GBs affect �Svib
μ ,

partial phonon densities of states (DOS) for the ions labeled
A and B in Fig. 7 is plotted in Fig. 8. For the Mg(A) ion
[Fig. 8(a)], with a shorter Mg-O bond length, the DOS shifts
toward high-frequency modes from that in the perfect crystal,
clearly decreasing the peaks at 7.9 and 12.1 THz. The peak at
a high frequency of 21.5 THz also appears. The shift toward
high-frequency modes causes Svib

μ to decrease, since Svib
μ de-

creases with increasing characteristic frequency, as described
by Eq. (3). Such a shift physically means that an ion with a
shorter bond length at a GB has a larger spring constant than
an ion in the perfect crystal, and thus its displacement from
the equilibrium position becomes small, leading to a decrease
in accessible atomic position for the ion. For the Mg(B) ion,
with a longer bond length, its DOS entirely shifts toward low-
frequency modes with decreases in the high-frequency modes
at 12.1 and 17.5 THz. The peak at 7.9 THz observed in the
perfect crystal still remains, with a slightly shift to 7.5 THz.
These results indicate that the lattice vibration of the Mg(B)
ion becomes “loose,” leading to large atomic displacements
and thereby increased accessible atomic positions.

As seen in Fig. 8(b), the labeled O ions also show similar
shifts to the labeled Mg ions, although their peak positions and
intensities differ. The O(A) ion has a strong peak at 21.4 THz,
with the decreases of the DOS at 12.1 and 17.4 THz that are
observed in the perfect crystal (dashed black line). For the
O(B) ion the two peaks become weak, shifting toward low
frequencies. These differences between the DOS of the Mg
and O ions probably result from the difference between their
atomic masses, since O ions vibrate with higher frequencies
and thus their DOS is distributed entirely at higher frequen-
cies than that of the Mg ions. Considering that Svib

μ mono-
tonically increases with decreasing phonon frequency [see
Eq. (4)], GB ions with longer bond lengths are a critical fac-
tor in decreasing phonon frequencies and thereby increasing
Svib

μ .
For the Mg and O ions in all the GB structures studied,

the correlation between the Mg-O bond length and �Svib
μ

was examined, as shown in Fig. 9. Classifying the ions in
terms of their coordination number, the two quantities are well
correlated: for both Mg and O ions, �Svib

μ linearly increases
with increasing Mg-O bond length. This trend is observed for

FIG. 8. Partial phonon density of states (DOS) for the labelled
ions in Fig. 7 for (a) Mg and (b) O ions. The reference partial DOS
for the Mg and O ion in the perfect crystal are also plotted by the
black dashed lines.
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FIG. 9. Correlation between �Svib
μ (T = 1000 K) and bond

length between neighboring ions for all ions in all the GB structures
studied. The yellow and red data points correspond to Mg and O ions,
respectively. The blue lines were obtained by fitting the data points
of each coordination to linear functions. The fourfold and fivefold
coordinated ions in the green area have shorter bond lengths than the
sixfold coordinated ions in the perfect crystal but have positive �Svib

μ .

all the GBs studied regardless of differences between their
crystallographic characteristics and atomic arrangements. It is
noted that the fourfold and fivefold coordinated ions in the
green area have negative �dMg−O (since their bond lengths
are shorter than the sixfold coordinated ion in the perfect
crystal) but these ions exhibit positive �Svib

μ . This situation is
similar to the ions encircled in Fig. 7(a). These ions, however,
still clearly show a positive correlation between their bond
lengths and �Svib

μ , although the bond length at �Svib
μ = 0

differs between the coordination numbers. Considering this
difference, it is likely that when a GB contains many ions
with longer bond lengths than those at �Svib

μ = 0 for each
coordination number, with positive �Svib

μ , the GB exhibits a
large positive �Svib

GB and hence a sharp decrease in σGB with
temperature. By contrast, a GB containing many ions with
shorter bond lengths should have a small positive �Svib

GB and
thereby little temperature dependence of σGB.

To evaluate which coordination more dominantly affects
�Svib

GB, �Svib
μ were fitted to linear functions (blue lines).

Their slopes are calculated to be 57.7, 48.6, and 45.7
JK−1 mol−1 Å−1 for sixfold, fivefold, and fourfold coordi-
nation, respectively, indicating that bond-length changes of
sixfold coordinated ions have larger contribution to �Svib

GB.
Such ions are distributed at atomic columns surrounding a
structural unit, as observed for the sixfold coordination in
Fig. 7. Thus GBs involving many sixfold coordinated ions
with longer bond lengths may lead to a large increase in �Svib

GB.

A systematic investigation of 14 GBs in MgO has demon-
strated that bond-length changes at the GBs are well correlated
with �Svib

μ despite of the difference in GB crystallographic
characteristics. Although bond lengths are here used as de-
scriptors for excess vibrational entropies at GBs, such a cor-
relation should originally arise from reduced force constants
between atoms around GB cores. In general, reduced force
constants between atoms result in their longer bond lengths.
In fact, as can be seen in Fig. 8, the atoms with longer bond
lengths at GB cores have smaller vibrational frequencies,
indicating their softened force constants. Such reduced force
constants between atoms can be realized at around GB cores,
where atomic environments and their resultant chemical envi-
ronments are different from those in bulk.

Although previous studies of metal GBs related �VGB

to �Svib
GB [13,14], �VGB was less correlated with �Svib

GB for
MgO. This difference implies that critical factors determining
�Svib

GB differ depending on substances with various chemical
bonding states, which may be further varied at GBs. Our
future work will apply lattice dynamics calculations to GBs
in other oxides, metals, and semiconductors, with the goal of
uncovering the underlying physics of the excess entropy of
GBs.

IV. CONCLUSIONS

To reveal the atomic-level origin of excess vibration en-
tropies generated by GBs in MgO, first-principles lattice
dynamics with the harmonic approximation was applied to
symmetric tilt GBs for the [001] and [1̄10] systems. It was
found that �Svib

GB significantly varied depending on the indi-
vidual GBs. For the GBs with larger �Svib

GB, σGB decreased
with increasing temperature more significantly than GBs
with a smaller �Svib

GB. Due to the large decrease in σGB, the
relative thermodynamic stability of the GBs changed with
temperature. The zero-temperature metastable structures of
the �17(530)/[001] and �11(113)/[1̄10] were found to have
larger �Svib

GB than their most stable structures at 0 K. As
a result, the metastable structures became more stable at
elevated temperatures, indicating that stable GB structures
undergo structural transition depending on temperatures. The
values of �Svib

GB were less correlated with �VGB, indicating
that a volume increase at a GB is not necessarily a critical
factor for �Svib

GB. It was found that the contribution of each
ion to �Svib

GB, �Svib
μ , was well correlated with Mg-O bond

lengths at GBs. Local bond-length changes induced by GBs,
which originates from changes in bond strength, are therefore
one of the critical descriptors for evaluating excess vibrational
entropies generated by GBs.
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