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Brittle yielding of amorphous solids at finite shear rates

Murari Singh,1 Misaki Ozawa,!-2 and Ludovic Berthier

1,3

'L aboratoire Charles Coulomb, UMR 5221 CNRS-Université de Montpellier, Montpellier 34095, France
2Département de Physique, Ecole Normale Supérieure, Paris 75005, France
3Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom

® (Received 17 December 2019; accepted 4 February 2020; published 24 February 2020)

Amorphous solids display a ductile to brittle transition as the kinetic stability of the quiescent glass is
increased, which leads to a material failure controlled by the sudden emergence of a macroscopic shear band

in quasistatic protocols. We numerically study how finite deformation rates influence ductile and brittle yielding
behaviors using model glasses in two and three spatial dimensions. We find that a finite shear rate systematically
enhances the stress overshoot of poorly annealed systems, without necessarily producing shear bands. For
well-annealed systems, the nonequilibrium discontinuous yielding transition is smeared out by finite shear rates
and is accompanied by the emergence of multiple shear bands, as reported in metallic glass experiments. We
show that the typical size of the bands and the distance between them increases algebraically with the inverse
shear rate. We provide a dynamic scaling argument for the corresponding lengthscale, based on the competition
between the deformation rate and the propagation time of the shear bands.
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I. INTRODUCTION

The mechanical response of amorphous materials such as
foams, colloids, and metallic glasses is an active research
topic for material science, engineering, and for the physics of
disordered systems [1-5]. Despite wildly different sizes and
interactions of the constituent particles, these diverse materi-
als show surprisingly universal rheological responses under
external loadings, such as yielding, plastic rearrangements,
avalanches, and shear bands. Concepts and ideas developed
in statistical mechanics are thus particularly useful to extract
and understand these universal features [4,5].

Here, we focus on the yielding transition of quiescent
materials in shear start-up conditions. This problem addresses
the basic question of how a given amorphous solid plastically
deforms or break when a nonlinear mechanical deformation
is applied by an external loading. In this setting, two types
of yielding transitions can be observed. One type is brittle
yielding, which is associated with an abrupt failure of the
material and corresponds to the appearance of sharp shear
bands [6]. The other is ductile yielding, which is accompanied
by significant plastic deformations that prevent the emergence
of a sharp failure and favor large deformations [4]. These
different yielding behaviors may depend on material proper-
ties, preparation protocols, and loading conditions [7-18]. In
particular, the initial stability of the glass (as controlled by the
preparation protocol of the material) directly determines the
brittle or ductile nature of yielding. More stable glasses show
more brittle yielding, whereas less stable glasses demonstrate
ductile behavior [12,14,15,17].

In the last decade, studies of yielding by the statistical
physics community have been largely dedicated to steady-
state properties after a large accumulated strain. Regard-
ing shear start-up conditions, relatively poorly annealed
glasses have been mostly analyzed, focusing on plastic
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rearrangements [1,19,20], the formation of shear bands
[12,21], and avalanche statistics [22—24]. Similar analysis and
direct visualizations have also been performed in colloidal
glasses [25,26]. Many useful concepts have emerged from
these intensive investigations, from the definition of soft spots
where plastic events successively take place [27-29] to the
localization of shear deformation [30] and scaling laws for
avalanche statistics [23,24,31].

By contrast, much less is known about the sharp yield-
ing transition of brittle materials. This problem is, however,
receiving growing attention thanks to the development of
theoretical approaches [32-36] and progress in numerical
techniques [37,38] that now allow the investigation of brittle
yielding in atomistic computer simulations. From a theoretical
viewpoint, brittle yielding under quasistatic loading corre-
sponds to a nonequilibrium discontinuous transition. This is
described as a spinodal transition in the mean-field limit [39],
potentially avoided in finite dimensions [36]. In addition to
these theoretical predictions, molecular simulations in ather-
mal quasistatic shear (AQS) deformation [40] demonstrated
that the nonequilibrium discontinuous transition can exist
in finite-dimensional models, accompanied by the sudden
appearance of a unique system-spanning shear band [36,41].

In the above studies, brittle yielding is described using
the language of phase transitions and critical phenomena,
but this description applies, strictly speaking, only in the
AQS limit. In experiments, several additional factors may
play a role and affect yielding, such as thermal fluctuations,
spontaneous relaxation, inertia, and a finite deformation rate.
In this paper, we deal with the latter and analyze the influence
of a finite shear rate, leaving out temperature and inertia in
this first effort. The loading rate dependence of yielding and
the formation of shear bands is an important topic in material
science and engineering [6,42], as well as soft matter [43].
In particular, it has been reported that multiple shear bands
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appear at a higher strain rate in metallic glass experiments in
various rheological conditions, and the density of shear bands
increases with increasing y [44—47]. Thus, a computational
study about brittle yielding at finite y provides useful micro-
scopic insights for both experimental observations at higher
strain rates [48] and for a fundamental understanding of the
nature of the yielding transition [49]. Physically, we expect
that the idealized picture of a single macroscopic shear band
being responsible for the failure of the material cannot exist
at finite shear rate, because it would take an infinite time to
create an infinite shear band in an infinite system. The finite
timescale introduced by the finite shear rate must compete
with the propagation of shear bands. Our main goal is to
understand the consequences of this competition and provide
a real-space picture of how this affects yielding.

In this paper, we perform athermal, overdamped simula-
tions at finite strain rate to shear glasses with a broad range
of initial stabilities to characterize the relevant timescales and
lengthscales associated with brittle yielding at finite strain
rate. By measuring the stress-strain curve and associated sus-
ceptibilities, we find that the discontinuous yielding transition
observed in the AQS simulations is smeared out in finite
strain rate simulation, when y is high and the system size N
is large. Larger samples require slower y to display brittle
yielding with a single system spanning shear band. If y is
large for a given system size, we instead observe that multiple
shear bands emerge, as reported in metallic glass experiments.
We then extract a typical lengthscale £ characterizing the
spatial pattern of shear bands for a given y. We find that &
scales as £ o« y~%, where o ~ 0.4 for two-dimensional stable
glasses. Thus, the lengthscale & diverges in the AQS limit, for
sufficiently stable glasses. We argue that the observed scaling
behavior can be understood as the competition between the
deformation rate and the timescale associated with shear band
formation.

This paper is organized as follows. In Sec. II, we describe
the numerical methods. In Sec. III, we present the macro-
scopic rheological properties of glasses prepared with differ-
ent initial stabilities to expose the basic differences between
ductile and brittle yielding at finite strain rates. Section IV
describes the effect of the finite strain rate on the nature of the
yielding transition. The relevant lengthscale for the yielding
transition is visualized and quantified in Sec. V. Finally, we
discuss our results and conclude in Sec. VI.

II. NUMERICAL METHODS
A. Simulation models

We simulate size polydisperse systems of N particles in
cubic and square boxes of length L in three (3D) and two
(2D) dimensions using periodic boundary conditions. The pair
interaction between particles i and j separated by a distance
rij is a soft repulsive potential,
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where 7;; is the distance between particles i and j, d; is the
diameter of the particle i, and € is the energy scale. The
set of parameters, ¢, ¢z, and ¢4, are adjusted so the poten-
tial and its first and second derivatives vanish at the cutoff
distance 7cy,ij = 1.25d;;. The particle diameters are drawn
randomly from a continuous size distribution P(d) = A/d? in
the range [dmin, dmax], Where A is normalizing constant. We
use parameters such that dyin/dmax = 0.45 and the average
size diameter is d = 1.0. We perform simulations at constant
number density p = 1.02 for 3D, and p =1 for 2D, using
different system sizes N € [1500,96000] in 3D and N =
64 000 in 2D.

To prepare the glassy samples to be sheared at temper-
ature T =0, we first equilibrate the system at some fi-
nite temperature, Tjy;, with the help of an efficient swap
Monte Carlo method [37,50]. The equilibrium configurations
are then instantaneously quenched at 7 = 0 using the conju-
gate gradient method [51]. We have checked that the mini-
mization algorithm does not affect the rheological response
of the system. We produce glassy samples using initial tem-
peratures Ti,; € [0.062, 0.200], which offers a broad range of
kinetic stability. In 2D, the initial preparation temperatures are
Tini € [0.035,0.200] [52]. For these temperature ranges, we
can cover in both 3D and 2D the range of behavior between
brittle and ductile when AQS simulations are used [36,41].

B. Equations of motion

Our goal is to analyze the effect of a finite shear rate on the
brittle yielding transition observed in AQS conditions reported
in Ref. [36]. To avoid adding too many ingredients at once, we
study the dynamics at zero temperature in the absence of iner-
tia. To this end, we perform molecular dynamics simulations
using overdamped equations of motion at 7 = 0. We impose a
simple shear flow in the X direction, where X is the unit vector
along the x axis, and solve the following equations of motion:

dl‘i A Bu(rjk, djk)
C(E—Vyzx) ——Za—ri, (H
Jj<k

where ¢ is the viscous damping coefficient, r; and y; represent
the position and its y component of a particle. We use Lees-
Edwards boundary conditions to perform simulations at a
finite shear strain rate y [53].

In the absence of thermal fluctuations, the natural micro-

scopic timescale is given by 79 = ;32 /€, which controls the
viscous dissipation of the system. Length, time, and energy
are expressed in units of d, 7y, and ¢, respectively. To integrate
the equations of motion in Eq. (1), we employ the Runge-
Kutta method of order 4 with a time step Az = 0.005 and the
Euler method with a time step At = 0.001 [54]. We confirmed
that these two methods produce identical results. We compute
the xy component of the stress, o, using the Irving-Kirkwood
formula.

Additionally, we perform strain-controlled AQS deforma-
tion using Lees-Edwards boundary conditions [40], to com-
plement data obtained for the same model in Ref. [36]. The
AQS shear method consists of a succession of tiny uniform
shear deformation with a step size of Ay = 10~ followed by
energy minimization via the conjugate gradient method.
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FIG. 1. Average shear stress in the steady state regime as a
function of applied shear strain rate for the 3D with N = 1500 and
12000. The green dashed curve represents the Herschel-Bulkley
law with a yield stress independently measured in the AQS limit at
y =0.

By definition, the finite strain rate simulations described
by Eq. (1) should produce results identical to the AQS simu-
lations in the limit y — 0. Therefore, Eq. (1) is the simplest
and most natural extension of the AQS study of brittle yielding
to finite strain rates, which introduces only one additional
control parameter, y. In future work, it would be interesting
to study the effect of temperature and of inertia on this
phenomenon, which also introduce additional timescales in
the problem.

III. MACROSCOPIC RHEOLOGY

A. Steady-state flow curve

Before showing results for the shear start-up setting, we
present the steady-state flow curve to illustrate the range of y
that we impose, and the basic rheological properties of our
numerical models at finite y in the steady state, where no
shear band is present. We check convergence to a steady state
by monitoring the convergence of the potential energy to a
stationary value. In practice, it is much faster to reach steady
state starting from poorly annealed glasses.

In Fig. 1, we present the steady state flow curve for the 3D
system and two system sizes, N = 1500 and N = 12 000. The
average of the shear stress in the steady state, oy, is obtained
by averaging over many configurations for strain larger than
1000% and over different samples. We do not observe finite
size effects, at least down to y = 1074,

We independently measure the shear stress 042 = 0.154
in the steady state for the AQS condition. We substitute this
value in the Herschel Bulkley equation [55], oy = U;:QS +
By", where B is a prefactor, and find that this phenomeno-
logical equation describes our data very well with the ex-
ponent n = 0.515. This is within the range of the values
(n =~ 0.4 — 0.6) reported for similar systems in several earlier
studies [56-58].

In the steady state, we do not observe any instability,
such as ordering along the shear direction, or shear local-
ization. Besides, the obtained flow curve in Fig. 1 does not
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FIG. 2. Average stress strain curves for 3D glasses for N =
12000 (a) at high initial preparation temperature Tj,; = 0.200 and
(b) at low initial preparation temperature 7;,; = 0.062. The data
denoted y — 0 are measured using AQS simulations.

present a nonmonotonic behavior. Thus, the system under
study does not satisfy any known condition to produce per-
manent shear bands in the steady state [4,21,59]. In other
words, the shear bands observed in our study in the shear
start-up setting are inherently a transient phenomenon whose
origin can directly be related to the nature of the initial
configurations [16].

B. Shear start-up

We now focus on the macroscopic stress-strain curves
obtained in the shear start-up setting. We prepare zero-
temperature glasses at various depth in their energy landscape
quantified by the preparation temperature Ti,; and apply a
finite shear rate at time r = 0. For each T;,;, we average the
results over independent glass configurations to increase the
statistics of the data to obtain the evolution of the average
shear stress, denoted by (o), as a function of the deformation
y = yt since time t = 0. We present the results for poorly
annealed glasses prepared at high temperature, 7;,; = 0.200,
and for very stable glasses prepared at low temperature, T;,; =
0.062.

In Fig. 2(a), we report the results for poorly annealed
glasses. First, we show that in the AQS simulation, y — 0,
the system shows a completely monotonic crossover across
yielding and reaches steady state without any stress overshoot,
consistent with a very ductile behavior. When a finite strain
rate is applied, deviations from the AQS results are clearly
observed. As y is increased, we observe that up to a strain rate
¥ & 1073, the system shows a qualitatively similar monotonic
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crossover to yielding, akin to the AQS conditions. Increment-
ing the strain rate further, y > 4 x 1073, the system starts
to present a stress overshoot during yielding [60,61]. The
same trend can be observed for different system sizes from
N = 1500 to 96 000.

It has been theoretically argued that the presence of the
stress overshoot before reaching the steady state is associated
with the emergence of shear banding [16]. However, a careful
analysis of the nonaffine displacement field for these systems
does not reveal any sign of a transient shear band in our
simulations. Whereas shear bands may well appear at even
larger system sizes [62], we feel that these systems are too
ductile to show any interesting shear localization at such large
shear rates.

In Fig. 2(b), we show the results obtained for very stable
glasses. We find that all samples display a sharp shear band at
low shear rates, which can be either horizontal or vertical. We
average the stress strain curves over the samples showing hori-
zontal shear bands to remove the small stress growth observed
after yielding when a vertical shear band is present [38]. In
this case, we observe that in the AQS limit the system shows
a discontinuous stress drop after stress overshoot, as reported
previously [36]. At finite but low strain rate, y = 1074, we
observe that the average stress strain curve shows a trend
very similar to the AQS results, with a very slight change of
the slope d{o)/dy precisely at yielding as compared to the
AQS limit. In that case, we also observe a system-spanning
shear band, as discussed in more detail below in Sec. V.
When the strain rate is increased further, y > 1073, the sharp
stress drop at yielding is smeared out, and the corresponding
slope is also systematically decreased. Concomitantly, the
formation of a shear band is also altered, as described below in
Sec. V.

For stable glasses, reaching the steady state requires strain-
ing the sample for extremely large values of y. For example,
y > 3.0 is needed to reach the steady state at y = 10~' for
N = 12000. Besides, the amount of strain to reach the steady
state increases with increasing the system size or decreasing
y. At the slowest shear rate limit, y — 0, y = 10.0 is not
enough at all to reach the steady state for N = 12 000 systems.
Thus, the sheared glassy states obtained immediately after the
stress overshoot in Fig. 2(b), say 0.6 < y < 0.8, are not yet
typical of the steady state, even though the stress seems to
have reached a stationary strain dependence. The energy is a
more suitable observable to detect whether a steady state has
been reached.

IV. YIELDING TRANSITION

Having exposed the basic phenomenology at finite strain
rates in the previous section, we now focus on the effect of a
finite y on the nonequilibrium first-order transition observed
in stable glasses in AQS simulations [36].

A. Finite size scaling analysis

In Fig. 3(a), we display stress strain curves for a stable
glass in AQS simulations, varying the system size N. These
data were first shown in Ref. [36]. The slope of these curves
just after the stress overshoot becomes sharper with increasing
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FIG. 3. Average stress strain curves for 3D AQS simulations (a),
y =107 (b), and y = 107* (c), and different system sizes. The
preparation temperature is 7i,; = 0.062. The vertical arrow indicates
the location of y4 used in Sec. V to study shear band formation.

system size, and the stress drop becomes a genuine disconti-
nuity in the thermodynamic limit. Note that in Fig. 3 the slight
increase of the stress observed after yielding stems from the
fraction of samples where the shear band occurs in the vertical
direction.

When a finite strain rate y = 107> is applied for the same
system sizes, see Fig. 3(b), the stress drop at yielding still
gets increasingly sharper with system size, at least up to N =
96 000. For these system sizes, then, we observe only little
difference between this small shear rate and the AQS limit.
However, when the strain rate is increased further, y = 1074,
we observe that for N > 12000, the stress strain curves no
longer evolve and the stress drop does not become sharper at
larger N, see Fig. 3(c).

In summary, we find that for a finite strain rate, the
sharp stress drop seen in the AQS limit initially gets sharper
with increasing the system size, but there seems to exist
a finite N above which it saturates. This crossover system
size becomes larger for smaller shear rate, and presumably
it diverges as y — 0, so the AQS discontinuous limit is
recovered. These observations suggest that the nonequilib-
rium first-order transition seen in the AQS simulation is now
smeared out by the finite timescale introduced by the shear
rate.
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FIG. 4. The peak values of the disconnected (a) and connected
(b) susceptibilities, x> and x2<, as a function of the system size N
for 3D stable glasses with T;,; = 0.062. The dashed lines correspond
to the scaling behaviors observed in the AQS limit, x*** oc N and

beak o N1/2, Departure from the AQS limit arises at smaller N when
y increases, indirectly revealing a crossover lengthscale & controlled

by the shear rate y.

B. Stress fluctuations and susceptibilities

In the AQS limit, the brittle yielding transition is most
transparently revealed via the analysis of the stress fluctua-
tions, which are efficiently quantified by two susceptibilities
that we now discuss.

We first define the connected susceptibility,

Xeon = —d{o)/dy, (2

which can be directly measured from the derivative of the
average stress strain curves shown in Fig. 3. The second
quantity is the disconnected susceptibility,

xais = N({0?) — (o)), A3)

which quantifies the sample to sample fluctuations of the shear
stress at a given strain y. Both these susceptibilities exhibit a
pronounced peak near yielding, and we define x2<** and X(ﬁ’iiak
as the amplitude of these peaks. These amplitudes thus depend
on the preparation temperature 7j,;, on the system size N, and
on the applied shear rate y.

In Fig. 4, we show the evolution of these peak values for
3D stable glasses with Tj; = 0.062. In the AQS limit, the
system size dependence of the susceptibilities is well under-
stood [36]. They both diverge as a power law of the system

size, x N withd =1 and 6§ = 1 /2 for the disconnected and
connected susceptibilities, respectively. These divergences at
y — 0 reflect the existence of sharp nonequilibrium first-
order transition in the thermodynamic limit [36].

When we apply a low finite 7, at smaller N, x> and x 25"
still follow the AQS behavior for small enough N. However,
they depart from the AQS behavior for larger N and the
divergence with N is eventually avoided and replaced by a
saturation of the fluctuations to a finite value. The deviations
from the AQS limit become stronger with increasing the shear
rate. These results confirm the existence of a crossover system
size, N*(y), below which the AQS behavior is observed, but
above which the divergence of the stress fluctuations is cutoff.
This crossover system size N*(y) becomes larger for smaller
shear rate, and it diverges in the AQS limit y — 0.

These observations imply that there is a direct connection
between the timescale imposed by the shear rate and a typical
lengthscale £ = £(y) characterizing the yielding transition.
Since brittle yielding is associated with a single system span-
ning shear band, the crossover lengthscale revealed by the
above analysis suggests the emergence of a characteristic
lengthscale associated with shear band formation at finite
shear rates, so a sharp behavior similar to AQS physics is
observed when L <« &, whereas a new physical regime is
entered when L >> £. This conclusion suggests that a direct
visualization of the real-space deformations of yielding is
needed, which is the topic of the next section.

V. A LENGTHSCALE ASSOCIATED WITH SHEAR
BAND FORMATION

The purpose of this section is to analyze in real space how
the sharp yielding transition observed in AQS conditions for
stable glasses is modified when using a finite shear rate.

To this end, we spatially resolve the plastic activity by
measuring the accumulated nonaffine displacement for each
particle. We follow the standard method introduced by Falk
and Langer to compute the quantity D2 , which provides the
local deviation of the particle displacement from an affine
deformation [63]. Particles with large D2 typically belong
to the shear band, whereas low plastic activity is revealed by a
small D2. . At a given strain y, we compute the deformation
with respect to the unstrained sample at y = 0. We also follow
them [63] regarding the definition of neighboring particles and

use a cutoff radius ry, = 2.5.

A. Visualization in 3D

To best visualize the plastic activity in the strained samples,
we need to choose a strain value very close to yielding,
right after the stress drop that is observed in the macroscopic
stress-strain curves. While this choice is easily made in the
AQS limit where the stress drop in stable glasses is essentially
instantaneous, this is less obvious at finite y. Typical choices
are shown in Fig. 3. As seen in Fig. 3, for a given system
size, ya should increase as y increases. For example, for N =
96 000, in the AQS limit this value is Y5 =& 0.125, whereas at
the strain rate y = 107> and y = 10~* take ya ~ 0.130 and
ya =~ 0.176, respectively. All the images shown below are for
the largest system simulated in 3D, N = 96 000.
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T} =0.062

FIG. 5. Snapshots of the nonaffine D%, field immediately after
yielding (at the strain y, shown in Fig. 3) for two different T,y
and various shear rates y for the 3D system with N = 96 000. An
increasing number of shear bands is observed as the strain rate
increases.

We summarize our observations in Fig. 5, which shows
snapshots for different y at the corresponding y4 for glasses
prepared initially at T, = 0.062 and Tj,; = 0.085. Both
preparation temperatures are below the brittle-to-ductile crit-
ical temperature of the AQS condition, 7. ~ 0.095, and
thus show sharp discontinuous stress drops in AQS simula-
tions [36].

First, we discuss the results for the best annealed sam-
ple (Ti; = 0.062). Whereas we have observed smearing out
of the sharp stress drop at a rate of y =1 x 107* (see
Fig. 3), the system still forms a well-defined single shear
band right after yielding. As we increase the strain rate to
¥ =6 x 107*, two shear bands are typically observed, with
additional smaller plastic events seen elsewhere in the system.
Increasing even further the strain rate to y = 8 x 107, we
now observe multiple shear bands in both horizontal and ver-
tical directions. A qualitatively similar behavior is observed
for T;n = 0.085, but many more plastic events are already
present at the smallest shearrate y = 1 x 10~*, which coexist
with a macroscopic shear band. Again, increasing the shear

rate results in multiple shear bands that are less and less
well-resolved.

Our numerical results, where the unique control parameter
is the increasing shear rate should be interpreted as follows.
When y is finite, the system does not have enough time
to develop a single system-spanning shear band. Instead,
it responds to the applied strain by independently forming
several shear bands at various locations in the material [47].
We notice that the emergence of multiple shear bands at high
loading rates has also been reported in metallic and silica
glass experiments in various loading conditions, compres-
sive [42,44,64,65], tensile [46,47], and nanoindentation [45]
deformation tests, as well as molecular dynamics simula-
tions [48]. We discuss these results further in Sec. VI.

B. Visualization in 2D

From the above real-space observations in 3D, we con-
cluded that an increasing strain rate produces multiple shear
bands, suggesting that a typical finite distance, £, between
shear bands emerges at finite y, and decreases at larger y.
We postulate that this is a relevant lengthscale for the yielding
transition, that we wish to characterize further.

It is however difficult to quantify this length scale from
the simulations shown in Fig. 5 because the system size
remains too small, despite the fact that we use N = 96 000
particles, which corresponds to a linear system size L = 45.5.
To overcome this difficulty, we perform a similar analysis in
2D systems. This allows us to access larger linear sizes (L =
253 for N = 64 000), and thus to quantitatively determine how
the lengthscale £ varies with y. The AQS limit for the 2D
model is studied more carefully in Ref. [41].

As in 3D, we vary the initial stability of the glass samples
by changing T;,; over a considerable range, from very stable
glasses to poorly annealed materials to highlight the nature
of the measured lengthscale &. In particular, we wish to
discriminate & from previously reported lengthscales in the
literature, discussed in the steady state or poorly annealed
materials [66,67].

We again analyze the configurations of the 2D systems at
the strain value immediately after the stress overshoot ya.
For a given y, ya depends very little on T;,; (within 5%)
and therefore we choose the same y, irrespective of Ti,;. We
use ya = 0.070, 0.107, 0.125, 0.150, and 0.190, for y — 0
(AQS),y = 1075,107%, 1073, and 1072, respectively.

We summarize our results in the snapshots shown in Fig. 6
where several strain rates and preparation temperatures are
shown. Starting with the AQS limit (top row), we observe
homogeneous plastic activity for poorly annealed systems,
and a gradual emergence of shear localization as Tj,; is de-
creased, followed by a single sharp shear band at low Tiy;.
This evolution mirrors the physics observed in 3D AQS simu-
lations [36], and its nature is discussed further in Ref. [41]. We
find that there is a critical preparation temperature Tipi . ~ 0.1
separating brittle and ductile yielding behaviors also in two
dimensions [41]. For Tjy; close to Tiy ¢, the snapshots reveal
a combination of randomly distributed plastic events and a
system-spanning shear band.

When y is increased from y =107 to y = 1072,
for poorly annealed samples at Ti, = 0.200, the plastic
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field immediately after yielding (at the strain ya ) for several T;,; and various shear rates y for the 2D

system with N = 64 000 (L = 253). An increasing number of shear bands are formed as the strain rate increases, which form a checkerboard

pattern for low 7;,; with characteristic lengthscale (£).

rearrangements continue to fill the entire sample and remain
homogeneously distributed in space. The shear rate plays only
a minor role in these snapshots, the contrast between regions
with large and small nonaffine displacements become less
pronounced as y increases. Despite the existence of a stress
drop in the average stress-strain curves, these samples do not
display shear localization.

On the other hand, for stable glass samples at Tip; = 0.035,
multiple shear bands appear in both horizontal and vertical
directions, as seen for instance for y = 10~*. This result is
similar to the above observations in 3D. Although less strik-
ing, it also appears that the width of each shear band becomes
thinner at larger shear rate [68]. As y is increased further
for the stable glasses, the density of shear bands increases,
or, equivalently, the typical distance between two shear bands
decreases. When several shear bands appear inside the system,
they form a sort of “checkerboard” structure (see, for instance,
y = 1073 and y = 1072). Finally, the samples at intermediate
temperatures, 7j,; = 0.070 — 0.150, appear as a superposition
of the two extreme cases (7;,; = 0.035 and 0.200), with ho-
mogeneously spread plastic activity superposed to a checker-
board pattern.

C. A shear-rate-dependent lengthscale for shear banding

To quantify the typical distance between two shear bands
which would be the relevant lengthscale associated with shear
band formation in the system, we first compute D2. for
each particle. This quantity, however, takes continuous values.
We first transform it into a binary variable to more clearly
distinguish the shear bands from the rest of the system. We
use a threshold value Dfnin = 2.0, below which we consider
the region as being outside the shear band. This binary field
now clearly specifies the interface separating the two regions.
We checked that transforming the snapshots in Fig. 6 using
the binary field leaves the images essentially unaffected.

This binary information can then be used to compute the
typical lengthscale between the shear bands, by measuring
the chord length distribution, recording distances between
the shear bands. We define a chord by two consecutive in-
tersections of a straight line with the non-shear-band region
present in the system [69]. To gather statistics, we draw many
straight lines in both x and y directions, taking care of the
Lees-Edwards boundary conditions, and measure the length &
of each chord along each straight line. We therefore measure
for each configuration a distribution of chord lengths, P(§).
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FIG. 7. Evolution of the typical distance between shear bands
with the shear rate for the 2D model at various values of T.,;. The
solid straight line corresponds to the scaling predicted by Eq. (7)
using the exponent B = 1.72 measured in Fig. 8, which should hold
for low T;,; and small y. The dashed straight line corresponds to the
fitting by Eq. (5) with the exponent o = 0.4.

We can then define an average distance between shear bands
as the first moment of this distribution:

&) = fo dE'PEE. @)

By construction, (§) should thus quantitatively represent the
typical size of the checkerboard patterns shown in Fig. 6.
This lengthscale characterizing yielding has a very different
nature from lengthscales reported previously, such as the
typical distance between plastic events measured in the steady
state [66,67].

We show in Fig. 7 the evolution of the measured (&)
as a function of y for the entire range of Ti, analyzed in
2D. Stable glasses at Tip; = 0.035 and 0.070 show monotonic
growth of (¢) with decreasing y, as expected from the direct
visualization in Fig. 6. For these stable glasses, (£) seems to
grow algebraically at low shear rate,

(§) oy, &)

with o & 0.4, suggesting that the distance between shear
bands indeed diverges in the AQS limit y — 0. This diver-
gence implies that a single shear band exists in fully AQS
simulations in the thermodynamic limit.

On the other hand, for less well-annealed glasses, espe-
cially Tip; = 0.150 and 0.200, the lengthscale (£) saturates at
small y to a finite value, suggesting that these systems exhibit
a homogeneous spatial distribution of plastic events at large
scales, L > (&). Interestingly, glass samples prepared near
the critical point, Ti . &~ 0.1 seem to also exhibit a power
law divergence with y, albeit with a different exponent «. It
would be interesting to relate this exponent to the criticality
discussed in Ref. [36]. We also anticipate that (£)(y, Tini)
may obey a form of critical scaling as a function of the
distance AT = |Tini — Tini.c|- Our data remain insufficient to
study these critical behaviours.

More broadly, these results suggest that the lengthscale (&)
introduced above may provide a quantitative definition of the

degree of ductility; very ductile yielding being characterized
by a very small (£), whereas brittle ones would exhibit a large
value of (§). In this view, the sharp yielding transition at y —
0 corresponds to (§) — oo.

D. Physical interpretation and scaling argument

We first argue that the typical lengthscale between shear
bands, (£), can be used to assess finite size effects. For
L < (&), a single system-spanning shear band is observed in
the simulated system, whereas multiple shear bands appear
for L > (£). This reasoning directly explains the system size
dependence of the susceptibilities shown in Fig. 4, since stress
fluctuations should saturate when the system size becomes
larger than (§).

Furthermore, the observed scaling behavior, (£) oc 77,
can be physically interpreted as follows. In AQS simulations,
the system is given an infinite amount of time to relax in
the nearest energy minimum after each strain increment. In
practice, this energy minimization takes of course a finite
amount of time since the system size is always finite and an
efficient conjugate gradient algorithm is employed. Thus, it
is possible to observe a unique system-spanning shear band
even when the system size increases, L — oo (and hence the
timescale for shear band formation increases). When a finite
shear rate is imposed, however, the shear band only reaches a
given size before the external deformation can trigger another
shear band elsewhere in the material. Let us define tsg (L) the
typical timescale for a single shear band to develop inside a
system of finite linear size, L. If we assume that this timescale
grows with the system size as

tsp o LP, (6)

then it follows that in a very large system deformed at a finite
strain rate, the typical distance between the shear bands should
scale as

(&) ocy /P, (7)

which suggests a relation between the exponent « introduced
in Eq. (5) and the exponent f characterizing the dynamics of
shear band formation in Eq. (6), namely,

oa=1/p. ®)

To test these ideas, we estimate tsg by direct numerical
simulations. To this end, we first perform AQS simulations
of stable glasses for which a system-spanning shear band
forms at yielding accompanying the largest stress drop. In
AQS simulations, the stress relaxation is realized by the
energy minimization procedure which uses some unphysical
dynamics (such as the conjugate gradient method [51] or FIRE
algorithm [70]) to reach the energy minimum as quickly as
possible. To measure the timescale 7sg, we perform AQS
simulations up to the last step before the largest stress drop,
but we then switch to the physically steepest descent dynamics
described by Eq. (1) at zero strain rate. Thus the system now
obeys the physically correct dynamics during the largest stress
drop, which allows us to numerically observe the formation of
the shear band.

In Fig. 8(a), we show the typical time evolution of the
stress, o (t), during the largest stress drop when the steepest
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FIG. 8. (a) Stress relaxation during the largest stress drop for
stable glasses using the physically steepest descent dynamics. The
times t; and 7, describe the beginning and the end of the shear band
formation for the red curve. (b) The averaged duration of the shear
band formation, (tsg) = (t, — 71) increases algebraically with the
system size with an exponent § & 1.72 that is then used in Fig. 7.

descent dynamics is employed for 2D systems with N =
64 000 and T;,; = 0.035. We show three independent samples.
We define tsg = 1, — 11, Wwhere 7 and 1, are the times when
o (t) drops 1% below o (0) and when o (¢) reaches 1% above
o (00). These two timescales represent roughly the beginning
and the end of the shear band formation, as specified by the
arrows in Fig. 8(a). Therefore, tsg quantifies the duration of
the formation of a system-spanning shear band in a system of
finite size L.

We repeat this analysis for many samples (respectively, 49,
68, 76, and 73, for N = 8000, 16000, 32000, and 64 000),
from which we deduce the average value (tsg). We then repeat
these measurements for various system sizes to estimate how
the timescale for the formation of a system-spanning shear
band grows with the linear size of the system. The results
are displayed in Fig. 8(b). Within the error bars, we find
that (tsg) o LP with B & 1.72. This value for the exponent
B translates into an exponent o ~ 1/1.72 & 0.58, which is
not far from (but certainly larger than) our numerical ob-
servations o =~ 0.4 in Fig. 7, although the predicted scal-
ing for (£) overestimates somewhat the measured growth
of the lengthscale. This can be attributed to the fact that

the checkerboard patterns in Fig. 6 contain very small shear
bands that may bias the chord length distribution toward
smaller lengthscales. We expect our prediction to become
better when sharp, large shear bands exist, i.e., when both
the shear rate y and the preparation temperature 7T, are
small. This trend is compatible with the data shown in
Fig. 7.

Therefore, our independent analysis supports the idea that
the lengthscale (£) and its scaling with the shear rate result
from the competition between the timescale for the formation
of a shear band and the imposed shear rate. The degree of
brittleness of yielding thus decreases continuously with the
imposed shear rate.

We have repeated the same timescale analysis for the most
stable system with 7j; = 0.062 in 3D. We again approach
the macroscopic stress drop using AQS simulations, but we
simulate the largest stress drop dynamics using the physically
steepest dynamics. Repeating this analysis for different sys-
tem sizes, we estimate that the exponent g in Eq. (6) is 8 =
0.96 in 3D, suggesting that the exponent 8 and hence o =
1/B8 =~ 1.04 may depend somewhat on the spatial dimension.
Clearly, more work is needed to assess more precisely the
value of this exponent, and to understand better the kinetics
of the formation of shear bands in amorphous materials since
our 2D and 3D data do not allow us to distinguish between
diffusive (8 = 2) or ballistic (8 = 1) propagation of the shear
band. While we may expect that shear bands form ballistically
as the macroscopic avalanche unfolds, as we observe here in
3D, our AQS simulations in 2D have revealed the presence
of strong spatial disorder-induced fluctuations [41] that may
explain the slower shear-band propagation (and thus the larger
exponent ) obtained above. We leave this issue for future
work.

VI. DISCUSSION AND PERSPECTIVES

We have numerically studied the effect of using a finite
strain rate on the yielding of model glasses prepared over
a very wide range of initial stabilities. We found that the
nonequilibrium discontinuous transition observed in the AQS
conditions for stable glasses [36] is smeared out when a
finite deformation rate y is imposed. In the quasistatic limit,
stable glasses yield at a well-defined yield strain value via the
formation of a unique system-spanning shear band because
the first shear band that appears in the system can propagate
throughout the material before the next plastic event occurs.
Instead, at finite shear rates, several shear bands can form
independently in the material and propagate over a finite
lengthscale (£) that decays algebraically with the shear rate.
Therefore, the sharp difference between the yielding transi-
tions of poorly-annealed and stable glasses obtained in the
quasistatic limit is blurred at finite shear rates where both
types of materials display smooth yielding transitions. Yet, the
lengthscale (&) reveals the difference between these two types
of materials, since stable systems are characterized by a large
distance between localized shear bands (and thus a large value
of (£) that grows when the shear rate is decreased) whereas
poorly annealed glasses display a more homogeneous map of
plastic activity (and thus have a small, y-independent value

of (§)).
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Our results open some interesting avenues for future re-
search. It would be interesting to understand and better
characterize the lengthscale (£) in various theoretical set-
tings, from atomistic simulations in various glassy models to
more coarse-grained descriptions such as elastoplastic models
where larger system sizes can more easily be studied, in
particular perhaps in 3D. More generally, our work should
motivate theoretical models, such as soft glassy rheology [16],
shear transformation zone [68], elastoplastic models [31],
mode-coupling theory [71] and random first-order transition
theory [72,73] to address the problem of brittle yielding at
finite shear rates.

Moreover, our results suggest many directions for future
computer simulations along the lines proposed here. It would
be interesting to study the effect of dimensionality [41],
temperature, and inertia in more details. It would also be
important to study other loading conditions, such as cyclic
shear [74-76] and extensional flows to assess the general-
ity of our results. In particular, it has been reported that
ductility increases with increasing the shear rate in tensile
experiments [46,47] (as we observed numerically), whereas
compression tests have demonstrated the same [64] and
the opposite trend [42,44], depending on geometrical con-
straint of mechanical apparatus. Besides, recent silica glass

compression tests using a very wide range of strain rate have
reported the nonmonotonic dependence of ductility on the
loading rate [65]. Notably, this experiment has revealed that
the ductility increases with increasing the strain rate at a very
high rate regime covered by computer simulations. Although
the emergence of the multiple shear bands and higher loading
rate are positively correlated in general, its relation with
ductility is a delicate problem, which might be affected by
other factors such as how the stress spreads and accumulates
in the macroscopic structure of the system. More generally,
it now becomes possible to simulate the formation of shear
bands in amorphous solids with stability comparable to the
ones of metallic and silica glasses. It thus becomes possible to
understand the details of the kinetic mechanism of shear-band
formation in these systems at the atomic scale.
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