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Computational screening of magnetocaloric alloys
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An exciting development over the past few decades has been the use of high-throughput computational
screening as a means of identifying promising candidate materials for a variety of structural or functional
properties. Experimentally, it is often found that the highest-performing materials contain substantial atomic
site disorder. These are frequently overlooked in high-throughput computational searches, however, due to
difficulties in dealing with materials that do not possess simple, well-defined crystallographic unit cells. Here we
demonstrate that the screening of magnetocaloric materials with the help of the density-functional-theory-based
magnetic deformation proxy can be extended to systems with atomic site disorder. This is accomplished by
thermodynamic averaging of the magnetic deformation for ordered supercells across a solid solution. We show
that the highly nonmonotonic magnetocaloric properties of the disordered solid solutions Mn(Co1−xFex)Ge and
(Mn1−xNix)CoGe are successfully captured using this method.
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I. INTRODUCTION

Recent advances in computing and automated materi-
als science frameworks [1–6] have enabled high-throughput
in silico screening of crystalline solids aimed at identify-
ing candidate materials for a variety of applications in-
cluding structural materials [7–9], battery electrodes [4,10],
thermoelectrics [11], photovoltaics [12,13], and magne-
tocalorics [14], among many others. In these projects, au-
tomated density functional theory (DFT) calculations are
performed on a large number of candidate structures and
compositions that have either been pulled from the literature
or generated using a set of rules. Properties of interest are
predicted from the results of these first-principles calculations,
often making use of a proxy: a simple quantifiable parameter
that serves as an indicator of the more complex physical phe-
nomenon [14–16]. While this strategy has met with success
and has expanded the breadth of materials systems under
consideration for various applications, a major limitation is
that these efforts have generally been limited to evaluating
compounds with simple unit cells, and without atomic site
disorder (alloying). Consequently, alloyed and solid-solution
materials are excluded from these searches, despite experi-
ments suggesting that the highest-performing materials for a
variety of applications often come from these families.

The importance of screening compositionally disordered
materials is especially apparent in the field of magne-
tocalorics, where many of the highest-performing materials
rely on substantial unit cell disorder and nonstoichiometry
for their remarkable properties, including (Mn, Fe)2−δ

(P, Si) [17–20], La(Fe, Si)13Hx [21,22], Gd5(Si, Ge)4
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[23,24], and a variety of substituted MnCoGe-based
compounds [25,26,26,27]. In these materials, application
of a magnetic field causes randomly oriented spins to align,
reducing the entropy of the spin system. Alternating cycles of
adiabatic and isothermal magnetization and demagnetization
of a magnetocaloric can be used to drive a thermodynamic
cycle and build an efficient magnetic heat pump [28].
Such devices promise to provide an energy-efficient
and environmentally friendly alternative to conventional
vapor-compression refrigeration and air conditioning [29,30],
which typically rely on hydrofluorochlorocarbons, which
are now known to be associated with high global warming
potential [31]. The primary metric used to quantify the
performance of a magnetocaloric is the entropy change
experienced by the material upon isothermal application of
a magnetic H field at a temperature T , �SM (T, H ). This
parameter reaches its peak value near a magnetic transition
temperature Tc, where the spins are most susceptible to an
external field. An effective magnetocaloric should therefore
show a large peak |�SM (T, H )| at a useful temperature
range.

For the high-performing magnetocaloric materials men-
tioned above, magnetic moments are strongly coupled to
crystal structure, causing their magnetic transitions to couple
to discontinuous changes in the crystal symmetry or lattice
parameters. Such systems can show greatly enhanced (giant)
magnetocaloric effects [23] around their first-order magne-
tostructural phase transitions. In fact, magnetostructural cou-
pling can lead to an enhanced magnetocaloric effect even
without this type of first-order transition present [32–35].
We previously introduced a simple DFT-based proxy for
magnetostructural coupling known as the magnetic defor-
mation [14] �M , a stand-in for magnetostructural cou-
pling, obtained through comparing the degree of lattice
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FIG. 1. (a) Hexagonal and (b) orthorhombic structure types of
MnCoGe, depicted in the orthorhombic setting. The orthorhombic
structure can be accessed from the hexagonal structure by a dis-
placive phase transition involving corrugation of the honeycomb
Co-Ge network.

deformation between magnetic and nonmagnetic DFT struc-
tural optimizations. In systems where the inclusion of mag-
netism in the DFT calculation causes a large change in the
optimized structure, we surmise that magnetostructural cou-
pling must be strong. In a survey of reported magnetocalorics
without substantial unit cell disorder, we found that �M

correlates well with the experimental peak �SM for transition-
metal-based compounds, both for materials with known first-
order magnetostructural transitions and for those with no such
transitions [14]. Consequently, �M can be used to compu-
tationally screen magnetic compounds to identify promising
magnetocalorics.

While the application of the magnetic deformation proxy
was previously limited to DFT-friendly compounds with no
consideration of atomic site disorder, here we introduce a
method to allow for the calculation of �M in disordered solid
solutions. In order to accomplish this, we consider the test
case of MnCoGe-based alloys. MnCoGe, an orthorhombic
Pnma compound with a TiNiSi-type structure, shows an in-
termediate peak �SM of −6 J kg−1 K−1 for an applied field
H = 5 T [36]. This effect is in agreement with the calculated
value of �M = 1.93% [14]. However, it was reported in 2010
that inclusion of just 2% or 3% boron (e.g., MnCoGeB0.02)
in the material leads to a giant magnetocaloric effect with
peak �SM of up to −47.3 J kg−1 K−1 [25]. This doped
MnCoGe shows a coupled first-order magnetostructural tran-
sition, with a higher-symmetry hexagonal Ni2In paramag-
netic phase [Fig. 1(a)] transforming to a magnetic phase
with a mixture of TiNiSi [Fig. 1(b)] and Ni2In structures.
The TiNiSi structure is described by a subgroup (Pnma) of
the space group of the Ni2In structure (P63/mmc) and is
formed by a displacive phase transition involving corruga-
tion of the honeycomb Co-Ge lattice [37], as illustrated in
Fig. 1. Similar effects to those of boron doping can also
be realized with a number of other atomic substitutions,
with giant magnetocaloric effects seen at disordered compo-
sitions including MnCoGeC0.03 [25], Mn0.9Ni0.1CoGe [26],
MnCoGe0.95Ga0.05 [27], and Mn0.98CoGe [25].

Here, we propose a method by which the magnetic de-
formation proxy �M can be used to screen compositionally
disordered magnetic materials to identify promising magne-
tocaloric compositions. �M for a compositionally disordered
material is calculated by taking a Boltzmann-weighted av-
erage of the individual �M values for enumerated ordered
supercells of the disordered material. Using this technique, the
qualitative magnetocaloric behavior of two solid solutions of
MnCoGe are successfully reproduced: Mn(Co1−xFex)Ge [36]
and (Mn1−xNix)CoGe [26]. In the first system, substitution
of Fe for Co has has been shown to cause a modest in-
crease in peak −�SM at the intermediate composition x =
0.2 [36]. In the second, substitution of Ni for Mn has been
shown to lead to a much larger increase in −�SM , with a
giant magnetocaloric effect observed at x = 0.1 [26]. In both
cases, we show that the highly nonmonotonic behavior of the
solid solution is remarkably captured by the ensembled mag-
netic deformation calculations, with only minor deviations.
We investigate the potential energy surfaces relevant to the
DFT structural optimizations of individual supercell calcula-
tions for Mn(Co1−xFex)Ge and find that key cells experience
double-well potentials with local minima at the hexagonal
and orthorhombic structures of MnCoGe. This indicates that
the ability of the structural optimization algorithm to traverse
from one local minima to the other is an important consid-
eration with regard to the results obtained from the magnetic
deformation proxy calculations.

II. METHODS

A. Supercell enumeration

For the solid solution systems studied, all possible or-
derings of the supercells up to a specified multiple of the
volume of the 12-atom MnCoGe primitive cell (Pnma, TiNiSi
structure) were enumerated. For the Mn(Co1−xFex)Ge system,
we chose two times the primitive cell volume, allowing for
x increments of 1/8 across the full composition range x = 0
to x = 1. For (Mn1−xNix)CoGe, supercells up to three times
the primitive cell volume were considered from x = 0 to 0.25,
allowing for x = 1/12 and x = 1/6 compositions to be probed
in addition to x = 0, 1/8, and 1/4. The Clusters Approach
to Statistical Mechanics (CASM) code [38–40] was used to
enumerate these symmetrically distinct configurations and de-
termine the multiplicity of each configuration. These ordered
supercells may vary in cell shape and are not, in general,
simple 2 × 1 × 1 or 3 × 1 × 1 stackings of the primitive cell.
However, all cells do start with unit cell parameters and atomic
positions consistent with the MnCoGe Pnma symmetry, if the
atom identity on the mixed site is ignored. Table I lists the
compositions for which we apply this method along with
the number of supercell configurations generated and the
maximum supercell size for each composition.

For the Mn(Co1−xFex)Ge system, a parallel set of super-
cells was also enumerated with the same unit cell orderings
but with the atom positions and unit cell parameters adjusted
to correspond to the symmetry of the Ni2In-type hexagonal
(P63/mmc) structure. The necessary transformation is possi-
ble for every supercell of the TiNiSi structure because Pnma
is a subgroup of P63/mmc and therefore the Ni2In structure
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TABLE I. Compositions considered (labeled by x) and the num-
ber (count) of symmetrically distinct, ordered supercells with com-
position x for the Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe systems.
For each composition, Vmax is the volume of the largest supercells
enumerated, in multiples of the primitive cell volume.

MnCo1−xFexGe Mn1−xNixCoGe

x Count Vmax x Count Vmax

0 1 1 0 1 1
0.125 7 2 0.0833 9 3
0.25 29 2 0.125 7 2
0.375 41 2 0.1667 71 3
0.5 58 2 0.25 184 3
0.625 41 2
0.75 29 2
0.875 7 2
1 1 1

type can always be expressed within a Pnma-compatible unit
cell.

B. Magnetic deformation

For each enumerated cell, the magnetic deformation �M

was calculated following the procedure given in Ref. [14]. The
optimized structure for each configuration was acquired using
DFT with and without spin polarization. Calculations were
performed using the Vienna Ab initio Simulation Package
(VASP) [41] using the generalized gradient approximation
(GGA) exchange-correlation functional as parametrized by
Perdew, Burke, and Ernzerhof [42,43]. Spin-orbit coupling
was not included. For each configuration, the spin-polarized
relaxations were initialized with magnetic moments of 3.0μB

on each transition-metal ion.
Meshes for DFT calculations were automatically generated

with the number of k-points set to 2500 divided by the number
of atoms in the cell. Structural optimizations were performed
using the conjugate gradient algorithm with an energy con-
vergence criterion of 10−3 eV. The structural relaxations were
run iteratively until the volume change between subsequent
relaxations was less than 2%. Once this convergence param-
eter was met, a final electronic optimization was performed
for each enumeration while keeping the structure fixed. The
PYTHON packages PYMATGEN and CUSTODIAN [44] were used
to automate, monitor, and analyze the VASP calculations.

Based on the obtained optimized structures, the magnetic
deformation �M is calculated as the degree of lattice defor-
mation (%) [45,46] between the DFT optimized nonmagnetic
and magnetic structures. This is obtained by finding the
transformation matrix between the two relaxed structures:
P = A−1

NMAM, where ANM and AM are the lattice vectors of
the nonmagnetic and magnetic relaxed unit cell, respectively.
The Lagrangian finite strain tensor (which removes any rota-
tional component of P) is then calculated as η = 1

2 (PTP − I),
and the magnetic deformation is obtained as the root-mean-
squared eigenvalues of η:

�M = 1
3

(
η2

1 + η2
2 + η2

3

)1/2 × 100%. (1)

For the Mn(Co1−xFex)Ge system, in addition to the mag-
netic deformation calculated using only orthorhombic starting
cells, a global �M was calculated for each cell based on the
lowest-energy nonmagnetic and the lowest-energy magnetic
structure obtained in either the run that started with the hexag-
onal structure or the run that started with the orthorhombic
structure.

Although it is well established that DFT often fails to
localize 3d transition-metal electrons enough to accurately
model the moments in magnetic intermetallics, we chose not
to include any Hubbard U correction terms in order to keep
the calculations as simple (and generalizable) as possible,
and to maintain compatibility with our previous work [14],
where it was found that �M performs well as a proxy for
magnetocaloric effect across a diverse range of compounds
without the use of U . While we believe a GGA+U approach
could allow for the more faithful reproduction of magnetic and
structural ground states observed in experiment, this method
increases computational cost and requires careful selection
of U terms for each individual transition-metal element in
the compound, making it difficult to generalize to a high-
throughput search.

C. Modeling disorder

We consider the aggregate �M for a given composition
labeled by x to be determined by an ensemble of the ordered
supercells. The aggregation may be done by a weighted
average of the calculated �M for each ordering i using the
multiplicity �i as the weight:

�M,av =
∑

i
�i�M,i

∑
i

�i
. (2)

A more complete picture, however, considers the calcu-
lated energy of each enumeration, considering that low-energy
states are more likely to be present in a true sample of a dis-
ordered alloy. To approximate this, we define the Boltzmann
weight of a configuration i with composition x as

wi = �i exp

(
Ei − E0

kBT

)
(3)

such that the Boltzmann-weighted average �M is

�M,Boltzmann =
∑

i wi�M,i∑
i wi

. (4)

Here, Ei is the spin-polarized energy of supercell i, expressed
per the maximum supercell size (i.e., in units of eV per 24 or
36 atoms). E0 is the energy of the lowest-energy enumeration
for the composition x, and kB is the Boltzmann constant. The
temperature T was set to 300 K. In addition, we also tested
setting the temperature to the preparation temperatures of the
alloys (around 1000 K), and this did not dramatically change
the presented results.

In addition to enumerating small supercells, we also tried
calculations of �M on special quasirandom structures, a
different method commonly used for DFT modeling of al-
loys [47,48]. In this method, an alloy composition is modeled
by a single large supercell (here, 48 atoms) with occupation
of the atomic sites chosen so as to match the near-neighbor
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FIG. 2. Comparison of (a) peak �SM values as measured by Lin
et al. for applied fields of 2 T and 5 T [36] and (b) calculated
�M vs x for Mn(Co1−xFex)Ge. In (b), each gray circle represents a
single enumerated cell, with the area of each circle proportional to its
Boltzmann weight as calculated in Eq. (3). Both Boltzmann [Eq. (4)]
and naive [Eq. (2)] averages of �M for composition x are overlaid.
(c) Energy of formation vs x for each cell. The asterisk indicates the
cell indicated as cell B in Fig. 5. The gray shaded areas (violin plot)
visualize the distribution of the supercell energies.

correlations of the true infinite disordered compound as well
as possible. Unfortunately, this method was not as successful
as the supercell enumeration method for the tasks investigated
presently. For a discussion of these calculations, the reader is
directed to the Supplemental Material [49].

D. Transition paths

In order to investigate the potential energy surfaces which
control the DFT structural relaxations used to calculate �M ,
we performed transition path calculations on a few se-
lected atomic supercells of Mn(Co0.75Fe0.25)Ge between their
hexagonal and orthorhombic structures. Lattice parameters
and atom positions of structures along the path are inter-
polated between the end members, which are the relaxed
hexagonal (d = 0) and orthorhombic (d = 1) structures. The
energies of structures along this path were calculated without
structural relaxation.

III. RESULTS AND DISCUSSIONS

Experimental peak −�SM values and computed �M

data for the Mn(Co1−xFex)Ge system are shown in Fig. 2.
MnCoGe and MnFeGe are both ferromagnets, and the full
solid solution between them can be prepared experimen-
tally [36]. This solid solution features a transition from the
orthorhombic Pnma structure of MnCoGe at x < 0.2 to the
hexagonal P63/mmc structure of MnFeGe at x > 0.2 [36].
Across this series, peak −�SM decreases as x increases,
except for at the phase boundary (x = 0.2), where a peak in

FIG. 3. Comparison of (a) experimental peak �SM values
as measured by Zhang et al. [26] and (b) calculated �M for
(Mn1−xNix)CoGe (x � 0.25). (c) Energies of formation vs x for
the enumerated cells. Refer to the Fig. 2 caption for additional
definitions.

−�SM reaching 9 J kg−1 K−1 for an applied field of 5 T is
observed. Figure 2(c) shows the energies of the individually
enumerated supercells relative to the energies of the corre-
sponding mixture of MnCoGe and MnFeGe. Many orderings
across the full compositional range show negative formation
energies, consistent with the experimental observation that the
solid solution forms and does not phase segregate. As seen
in Fig. 2(b), the calculated �M values for individual ordered
cells span a range of values, from about 0.75% to 2.25%. The
simple average of these �M values somewhat follows the ex-
perimental trend of a general decrease in �SM with increasing
x interrupted by a peak near the middle of the compositional
range. However, the position and magnitude of the peak in
�M are far off from the experimental results, and therefore
the correspondence between computation and experiment is
poor. On the other hand, the Boltzmann-weighted average
gives an excellent qualitative match, with a maximum �M at
x = 0.25, the closest computed composition to the peak in
the experimental data (x = 0.2). The peak in �M is broader
than that seen in the �SM data; however, the qualitative
match is remarkable given the simplicity of the computa-
tional model and the many variables involved in the exper-
imental preparation and measurement of a magnetocaloric
material.

Figure 3 shows the same analysis for a different solid
solution of MnCoGe, the (Mn1−xNix)CoGe system. In this
case, introduction of a small amount of Ni (≈11%) has been
found to result in a giant magnetocaloric effect with peak
−�SM reaching 24 J kg−1 K−1 for an applied field of 5 T [26].
As in the Mn(Co1−xFex)Ge system, this is due to the coin-
cidence of magnetic and structural transitions, i.e., due to a
first-order magnetostructural transition, observed for samples
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with x between 0.08 and 0.12 (for x < 0.08 and x slightly
greater than 0.12, the structural and magnetic transitions
occur at different temperatures). As alloying across the whole
composition space 0 � x � 1 has not yet been reported, in
order to set a reasonable limit to the computational cost, �M

was calculated only for x � 0.25 for this system (Fig. 3).
For this compositional range, the calculations presented here
reproduce the experimental �SM reports with a similar level
of success as the study of the Mn(Co1−xFex)Ge system dis-
cussed above. While the maximum �M is slightly misaligned
from the experimental largest −�SM (x = 0.167 vs x = 0.11,
respectively), the qualitative shape and the magnitude of the
�M curve match nicely to the experiment.

A direct comparison of the two systems under study
reveals that the maximum �M is 2.1 times larger in the
(Mn1−xNix)CoGe system than in the Mn(Co1−xFex)Ge sys-
tem. Similarly, the ratio of the maximum Boltzmann-averaged
�M values is 2.7. Even without experimental references, a
computational screen comparing these two systems would
correctly conclude that (Mn1−xNix)CoGe is a more promising
candidate system of experimental study. Furthermore, such a
conclusion would be reached even if we had only considered
supercells of up to size Vmax = 2 (24 atoms) for both systems.
While the peak in �M at x = 0.167 (1/6) in (Mn1−xNix)CoGe
would not have been captured, the �M at x = 0.25 is still
large enough relative to any values in the Mn(Co1−xFex)Ge
system to suggest that Ni is a more interesting dopant. A
comparison of �M and �SM values for the two systems
on the same scale may be found in Supplemental Material
Fig. S3 [49].

In addition to �M and cell energy, we obtain informa-
tion from our calculations about the evolution of magnetic
moments in these solid solutions. Figure 4 shows the DFT
total moment (top) and projected local moments (bottom) for
Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe. As with the ensem-
bled �M calculations, the total and local moments shown
are a Boltzmann-weighted average of all of the moments
in all of the enumerated supercell calculations. However,
in this case, there are not substantial differences between
Boltzmann-weighted and simple averages. In the case of
Mn(Co1−xFex)Ge, a comparison to the reported experimental
saturated moments at 5 K is included [36], while we were
unable to find such data for (Mn1−xNix)CoGe. From this
comparison, we see that the calculated moment is under-
estimated for MnCoGe and overestimated for MnFeGe. As
discussed in the Methods section, it is likely that a more
faithful reproduction of the experimental moments would
require a GGA+U approach. However, the general trend of
decreasing moment with increasing Fe content is captured by
our calculations, and we can therefore use these results to
draw insight into the local magnetic moment evolution. As Fe
atoms are substituted in, they are found to hold a larger local
moment than the Co atoms they replace (about 1μB vs 0.5μB).
However, at the same time, the large Mn moments decrease
in magnitude with increasing x. The net effect is a decrease
in total moment with x. In (Mn1−xNix)CoGe, a decrease in
total moment with x is also predicted; however, in this case,
the decrease is driven by the replacement of high-moment Mn
atoms (3μB) with Ni atoms which have very small moments
(about 0.25μB).

FIG. 4. Total (top) and local (bottom) evolution of the DFT mag-
netic moments for (a) Mn(Co1−xFex)Ge and (b) (Mn1−xNix)CoGe.
All of the individual transition-metal local moments from individual
enumerated cells are shown as small dots, while the Boltzmann-
averaged local and total moments are shown as larger symbols
connected by lines. For Mn(Co1−xFex)Ge, experimentally measured
5 K saturated total magnetic moments from Lin et al. [36] are plotted
for comparison.

Returning to the �M results, we noticed that for the compo-
sitions showing maximal Boltzmann-averaged �M (x = 0.25
for Mn(Co1−xFex)Ge and x = 0.175 for (Mn1−xNix)CoGe),
the Boltzmann averages are dominated by a single enumerated
cell which has significantly lower energy than the rest of the
cells. For example, in Fig. 2(c), the energy of formation for
all of the enumerated cells is plotted vs x. At x = 0.25, the
cell marked with an asterisk is about 20 meV f.u.−1 lower
in energy than all the other cells, and therefore contributes
dominantly to the Boltzmann-averaged �M . This special unit
cell also exhibits a larger �M than any of the other enumer-
ations, and as a result this single cell is entirely responsible
for the peak at x = 0.25 in the Boltzmann-averaged �M .
Inspection of the calculations for this special cell revealed
that the magnetic structural optimization resulted in a cell
with atom positions consistent with the hexagonal structure
[Fig. 1(a)], while the nonmagnetic structural optimization
stayed in the orthorhombic structure [Fig. 1(b)] with which
the calculation was initialized. For the other enumerations
at x = 0.25, both the magnetic and nonmagnetic unit cells
remained in the orthorhombic structure.

To understand this, we turned to calculations of the transi-
tion path energies between the hexagonal and orthorhombic
structures of two representative enumerated cells with x =
0.25: cell A is a cell that stayed in the orthorhombic structure
for both magnetic and nonmagnetic optimizations, and cell
B is the special cell that changed structures during the mag-
netic optimization. For each cell, Fig. 5 shows the energies
of the transition paths with and without spin polarization
as functions of the fractional hexagonal distortion d , with
d = 0 corresponding to the hexagonal structure, and d = 1
to the orthorhombic structure. Interestingly, for both cells,
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FIG. 5. Transition path energies between the hexagonal
(MnFeGe-like, d = 0) and orthorhombic (MnCoGe-like,
d = 1) structures of two different enumerated configurations
of MnCo0.75Fe0.25Ge, (c) without and (d) with spin polarization.
(a) Cell A shows a transition path landscape which is characteristic
of that experienced by the majority of the enumerated cells, which
remain orthorhombic after both nonmagnetic and magnetic structural
relaxations. (b) Cell B is the special cell marked by an asterisk in
Fig. 2, which transformed to the hexagonal structure during the
spin-polarized relaxation.

the nonmagnetic calculation shows a global minimum at the
orthorhombic structure while the magnetic calculation shows
a global minimum at the hexagonal structure. As the enhanced
magnetocaloric effect around x = 0.2 in Mn(Co1−xFex)Ge is
believed to arise from coupling of the magnetic transition
to a structural transition, it is interesting to note that the
inclusion of magnetism in the DFT calculation changes the
predicted structural ground state. However, it is also important
to note that the nonmagnetic DFT calculation should not be
considered a realistic model for the true high-temperature
paramagnetic state.

The transition path energies without spin polarization look
qualitatively similar for cell A and cell B, with a very shal-
low local minimum at the hexagonal structure and a global
minimum at the orthorhombic structure. In contrast, with
spin polarization, greater differences between the two cells
are evident. Cell A exhibits a double-well potential with a
barrier between the wells, while cell B has no barrier to re-
laxation into the global minimum hexagonal structure. As the
optimizations used to calculate �M were initialized with an
orthorhombic starting configuration, cell A relaxed into the or-
thorhombic local minimum, while cell B was able to relax into
the global minimum structure. As a result of this feature of its
potential energy surface, the DFT calculations on cell B result
in a lower energy and larger magnetic deformation than all
other cells enumerated at this composition. We can therefore
conclude that the effectiveness of the magnetic deformation
proxy in identifying the extremal magnetocaloric composition

FIG. 6. Comparison of peak �SM values (a) as measured by Lin
et al. [36] and (b) calculated �M vs x for Mn(Co1−xFex)Ge using
global �M values computed from calculations starting from both
the orthorhombic and hexagonal structures, as discussed in the text.
Please refer to the Fig. 2 caption for definitions.

in this system is driven by the ability to conveniently identify
a potential energy surface with competing structural ground
states whose energies are coupled to the system magnetism,
and which has low barriers to relaxation from one state to the
other. These features are consistent with the thermodynamic
conditions necessary for a first-order magnetostructural tran-
sition leading to an enhanced magnetocaloric effect.

Based on this analysis, we proceed to consider what role
the incomplete structural relaxations in cells like cell A played
in the evaluation of the overall �M . To address this, a par-
allel set of DFT calculations was run with the enumerated
supercells initialized in the hexagonal structure instead of
the orthorhombic structure. The nonmagnetic and magnetic
structures used in calculating �M were then each taken from
the calculation that reached a lower energy state. The results
are shown in Fig. 6, which can be compared to Fig. 2 in which
only the orthorhombic initialization was considered. Provid-
ing an alternate path to relaxation for each cell increases the
likelihood that the global energetic minimum is reached for
each of the nonmagnetic and magnetic optimizations. As a
result, more cells change structure type between the nonmag-
netic and magnetic unit cells and the �M,i values increase.
Both the Boltzmann- and simple weighted averages of �M

are seen to increase for all x < 0.8 in the Mn(Co1−xFex)Ge
system such that the strong peak seen before at x = 0.2 for the
Boltzmann-averaged �M is smeared out and the qualitative
match with the experimental data is weakened. Nevertheless,
the composition and magnitude of the peak in �M remains
very similar to the original calculations. Furthermore, this ap-
proach results in the Boltzmann and naive averages converg-
ing to nearly the same values for each composition. There-
fore, if using this strategy to screen magnetocaloric systems,
one does not necessarily need to exhaustively perform DFT
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FIG. 7. Correspondence between peak values of experimental
−�SM for an applied field of 5 T and magnetic deformation �M .
Gray circles show the results from Ref. [14], which considered only
ordered magnets.

calculations on all possible enumerations; rather, reasonably
accurate results could be obtained by averaging together a
small number of �M,i values (i.e., five to ten cells) for each
composition x.

IV. SUMMARY AND CONCLUSIONS

In this work, we introduce a method for screening ex-
perimental magnetocaloric behavior in disordered compounds
(alloys) which employs the magnetic deformation proxy �M

in conjunction with the enumeration of relatively small su-
percells of various compositions. We validate its screening
utility by direct comparison to reported experimental �SM

measurements in Mn(Co1−xFex)Ge and (Mn1−xNix)CoGe,
two systems where the magnetocaloric performance depends
on x in a highly nonmonotonic manner. In both cases, the
method successfully predicts the presence and magnitude
of enhanced magnetocaloric effects in the solid solutions
compared to MnCoGe, reproducing the qualitative shape of
the �SM vs x curves and identifying the compositions of the
largest magnetocaloric effect with errors of δx ≈ 0.05.

Figure 7 provides a summary of these results, showing the
correspondence between predicted �M and experimental peak
�SM as compared to previous results applying �M to 33 ferro-
magnets without substantial atomic site disorder [14]. On this
plot, all of the calculated x points from the Mn(Co1−xFex)Ge
system (Fig. 2) are plotted against the −�SM of the near-
est composition experimentally reported by Lin et al. [36].
In (Mn1−xNix)CoGe, where the experimental data are more
sparse and the composition with maximal �M somewhat devi-
ates from the reported largest −�SM [26], the maximum �M

(at x = 0.167) is plotted against the maximum −�SM (at x =
0.11). This plot demonstrates that the magnetocaloric effects
of these complex disordered systems are being screened with
comparable accuracy to prior predictions of ordered magnets.

The success of �M in predicting behavior of these complex
MnCoGe-based magnetocalorics demonstrates that screening
disordered magnetocalorics is a promising route towards the
discovery of exceptional magnetocaloric effects at unstudied
compositions. This screening technique requires no informa-
tion about the system other than the known crystal structure
of the parent compound (here, MnCoGe), and therefore we
believe this approach will be quite generally applicable. Due
to the many supercells sampled (on the order of 200 for each
system), the computational cost of obtaining �M on solid
solutions is much larger than the cost of screening compounds
without compositional disorder. Nevertheless, it would be
feasible to apply this screening method to searches on the
order of tens, or perhaps hundreds, of systems. For example,
this method could be used to exhaustively screen elements for
promise as dopants for MnCoGe or another magnetocaloric
material of interest.
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