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We present a generalization of a model that takes into account the magnetic disorder of paramagnetic host
with interstitial point defects towards the case of alloy hosts. In the framework of disordered local moment
approach combined with magnetic sampling method, we calculate solution enthalpy of carbon impurity in the
paramagnetic fcc Fe-Mn steels. First, we use the magnetic special quasirandom structure (M-SQS) method for
simulation of the paramagnetic state in Fe-Mn alloys without impurity. Here, Fe and Mn atoms are randomly
distributed at the sites of a supercell following the chemical SQS method. Next, to calculate the energies for
various magnetic realizations around the interstitial carbon impurity, we vary the position of the impurity within
the SQS. Our calculations show that in alloys containing ∼20 at. % Mn, the solution enthalpy of carbon reduces
compared to the pure fcc-Fe. By analyzing the local and global effects of impurity on the properties of the matrix,
we discuss various factors that could increase the carbon solubility in high-manganese austenitic steels.
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I. INTRODUCTION

High-manganese austenitic steels (so-called TRIP and
TWIP steels) are widely used in manufacturing of tools with
extremely high strength. These steels are of great interest
because of their unique combination of high strength and
plasticity, great ductility and energy absorption during the
deformation, as well as due to their lower weight compared
to carbon steels. As a rule, the high-manganese steels con-
tain 10–35 wt. % of manganese, and the concentration of
carbon can reach up to 1.5 wt. %. In order to improve some
specific properties, the Fe-Mn alloys may also contain other
elements, like aluminum, copper, titanium, tungsten, molyb-
denum, chromium, etc. Carbon in these steels strongly in-
fluences the mechanical properties, especially during marten-
sitic transformations. According to experimental data [1], in
the Fe-22Mn-C austenite steels the product of deformation
changes from mechanical twins (TWIP) to mechanical ε-
martensite (TRIP) if the carbon concentration reduces from
0.6 to 0.2 wt. %. Therefore, knowledge about thermodynamics
of the carbon solution into Fe-Mn austenite is highly impor-
tant for improvement and optimization of mechanical proper-
ties of steels. There were several experimental studies [2,3]
where the authors reported higher temperature of martensitic
transformation in Fe-Mn steels than the Néel temperature of
the steels. This means that the martensitic transformations
occur in the paramagnetic austenite. However, most of the
ab initio calculations [4–8] still focus on antiferromagnetic
Fe-Mn-based austenite to make predictions on martensitic
transformations. Therefore, simulations of the paramagnetic
state of Fe-Mn steels is a highly relevant task. Due to the
importance of carbon in these steels, the main purpose of
our work is to study the solution thermodynamics of carbon
in paramagnetic Fe-Mn steels and to analyze the local and

global effects induced by the interstitial C impurities on the
properties of the material.

From a theoretical point of view, the existence of lo-
cal magnetic moments in the high-temperature paramagnetic
state of Fe-Mn steels makes it quite challenging to study
the processes of alloying and formation of point defects.
There are a number of first-principle approaches to describe
the paramagnetic state of magnetic materials. Perhaps the
most adequate approximation at present is the dynamic mean
field theory (DMFT) [9]. However, it is well known that the
incorporated defects reduce the symmetry of the lattice, which
makes DMFT calculations quite time consuming. On the other
hand, the simulation of this chemically complex paramagnetic
system within the model of disordered local moments (DLM)
[9–14] combines high efficiency with sufficient accuracy.
Until recently, the DLM approximation was realized in the
framework of the coherent potential approximation (CPA)
[15] and was not suitable for simulations of point defects
inducing sufficiently strong local distortions of the crystal
lattice, like interstitial impurities. However, in Ref. [16],
Alling et al. successfully combined the DLM picture and the
supercell method, introducing two differerent techniques, the
magnetic special quasirandom structure technique (SQS) [17]
method and the magnetic sampling method (MSM) [16]. The
reliability of these methods was demonstrated in simulations
of CrN compound. It was found that the thermodynamic
properties of CrN calculated within DLM method are in good
agreement with the results obtained by DLM in combination
with the molecular dynamics (DLM-MD) [18] method, which
takes into account the lattice dynamics of the paramagnetic
system. Later Ponomareva et al. [19] combined the MSM
method with magnetic SQS method to simulate the para-
magnetic state of magnetic solids with point defects. This

2475-9953/2020/4(2)/024401(7) 024401-1 ©2020 American Physical Society

https://orcid.org/0000-0003-3476-3498
https://orcid.org/0000-0002-2473-9665
https://orcid.org/0000-0001-7551-4717
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.4.024401&domain=pdf&date_stamp=2020-02-04
https://doi.org/10.1103/PhysRevMaterials.4.024401


PONOMAREVA, MUKHAMEDOV, AND ABRIKOSOV PHYSICAL REVIEW MATERIALS 4, 024401 (2020)

combination allows one to perform accurate and computa-
tionally efficient calculations of solution enthalpy Hsol for
interstitial and substitutional impurities, e.g., in Fe-austenite
[19]. In the present work, we generalize this technique to the
case of an alloy host with interstitial point defects and perform
calculations of solution enthalpy for carbon impurity in the
paramagnetic Fe-Mn alloys.

II. CALCULATION METHOD

A. Computational details

Calculations are performed in the framework of the DFT
using a projector-augmented wave method implemented in
the VASP code [20–23]. The exchange-correlation effects were
treated using the generalized gradient approximation [24].
The cutoff energy for plane waves was set to 500 eV. The con-
vergence criterion for electronic subsystem was chosen to be
equal to 10−4 eV for subsequent iterations. The relaxation of
atomic positions was carried out by calculating the Hellman-
Feynman forces [25] and the stress tensor and using them in
the conjugated gradient method. Relaxation was considered to
be completed when the forces on the ions became of the order
of 10−3 eV/Å. The volume and shape of the cell were fixed
during iterations. The integration over the irreducible part
of Brillouin zone was carried out using the Monkhorst-Pack
method [26] on a grid of 2×2×2 k points. We checked that in
the case of 4×4×4 k-point mesh the solution enthalpy differs
by less than 0.002 eV. The carbon atoms were located in
octahedral interstitial sites. Calculations were performed for
periodic supercells with 108 (({Fe43Mn11} ↑ {Fe43Mn11} ↓)
and 109 ({Fe43Mn11} ↑ {Fe43Mn11} ↓ C1) ions.

B. Modeling of magnetic and chemical disorder

For simulation of a substitutional alloy with isolated in-
terstitial impurity, we generalize the theoretical approach
introduced in Ref. [19] to be able to describe the chem-
ical and magnetic disorder in matrix simultaneously. Our
computational scheme has the following steps. First, we use
chemical and magnetic SQS methods for simulation of the
paramagnetic state of Fe-Mn alloys without any interstitial
impurity. Herewith, the magnetic and chemical disorder in
the studied system is simulated as a four-component system
({Fex/2Mn(1−x)/2} ↑ {Fex/2Mn(1−x)/2} ↓), which describes the
host solid solutions. Here, Fe and Mn atoms are randomly
distributed; and their local magnetic moments are collinear
but randomly oriented as well. Note that for simulation of pure
iron, we considered a two-component system with only mag-
netic disorder. Next, we realize that during the long timescale
associated with a diffusion process of interstitial impurity
dissolution, the magnetic moments of atoms in the host alloy
change their orientations many times. Thus, there are con-
stant variations of magnetic configurations in the C impurity
surrounding. Moreover, as we model the high-temperature
paramagnetic state, the diffusion is relatively fast, and the
impurity may be present in different chemical surroundings.
To catch the dynamic behavior of the magnetic system and
the chemical complexity of the studied system, we need to ap-
proximate the paramagnetic state of the alloy by considering
a set of different magnetic and chemical configurations, and

then average calculated properties over the set. In other words,
we need to calculate the energies for various magnetic and
chemical realizations. We achieve this by varying the impurity
positions within the SQS, placing the impurity at different
interstitial sites of the considered supercell. For simulation
of fcc Fe we carried out calculations for 40–50 impurity
positions on the various interstitial sites of magnetic SQS
until we achieved the convergence of the impurity solution
energy with cumulative average. For Fe-Mn alloys we consid-
ered 50–70 impurity positions. Note that the average energy
represents the potential energy of the alloy that contains the
single impurity (the concentration of impurities is determined
by the size of the SQS). Generally speaking, the potential
energy should be determined by averaging over the Boltzmann
distribution at a certain temperature, where one should use
the energies obtained with and without impurities. However,
in Ref. [19] it was shown that for the fcc Fe-C system the
averaging over the Boltzmann distribution and the arithmetic
averaging methods give results that differ by less than 0.04 eV
at temperatures corresponding to the stability field of fcc Fe.
Therefore, in the present work we used the arithmetic average
of the energies obtained with and without impurities over
MSM-SQS configurations in all the calculations. All other
details of the averaging are carefully described in Ref. [19].

Thus, in our approach the solution enthalpy of carbon is
determined as

Hsol = ∂�Hf

∂x
, (1)

where �Hf =〈E{(Fe − Mn)1−xCx}〉 − (1 − x)〈E{Fe − Mn}〉
− xE{C} is the formation enthalpy of the alloy averaged over
all the considered positions of the interstitial impurity in the
SQS.

We define the solution enthalpy with the reference to
carbon (graphite) and fcc Fe-Mn alloy:

〈Hsol〉 = (N + 1)〈E ((Fe − Mn)1−xCx )〉
− N〈E (Fe − Mn)〉 − E (C), (2)

where N denotes the number of atoms in the matrix (without
impurities).

Further, to check the validity of our technique, we per-
formed the calculations for two different sets of magnetic and
chemical realizations. In other words, two different SQS were
used for simulation of the matrix. As we demonstrate below,
the results calculated for both the SQS are very close to each
other.

Following the scheme successfully applied in Ref. [19], we
carried out the total energy calculations using experimental
values of the lattice parameters. At the same time, the average
pressure for the cells with impurities was kept equal to the
pressure of the cell without impurity. Detailed information
on chosen lattice parameters is given in the Supplemental
Material [27].

The proposed scheme is valid at temperatures well above
the magnetic transition temperature, therefore, we can ne-
glect the short-range magnetic effects. Since the magnetic
transition temperature of fcc Fe-Mn alloys is about the room
temperature [2,3], the DLM picture is adequate for our cal-
culations. Moreover, as will be shown in Sec. III B, the
energy variations between different magnetic configurations
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TABLE I. Theoretical and experimental values of solution en-
thalpy (〈Hsol〉) of C in the paramagnetic fcc Fe and Fe79.6Mn20.4

alloys (in eV).

Theory, MSM-SQS Experiment

0.36 [31]
0.40 [32]

Fe 0.20 [19] 0.41 [33]
0.43 [34]
0.46 [35]

SQS 1 0.12
Fe79.6Mn20.4 0.37 [35]

SQS 2 0.10

(∼10 meV/supercell) are much smaller than the value of kBT
(∼100 meV at T ∼ 1200 K), which justifies the use of the
DLM picture, as well as the MSM-SQS approach.

It is well known that at high temperatures the effects of
lattice vibrations, including the thermal expansion, become
increasingly important. For a more accurate description of
the entropic effects in a magnetic system above the magnetic
transition temperature one would have to use, for example,
the DLM-MD technique combined with the temperature de-
pendent effective potential method [28], or a combination of
molecular and spin dynamics [29]. However, such calcula-
tions would be really time consuming, while the proposed
technique allows one to obtain a quick and reliable estima-
tion of the impurity solution enthalpies within the validity
limits of the DLM picture. Given the size of the studied
systems, the contributions due to lattice vibrations have not
been considered explicitly in this work. However, they have
been included, at least partly, via the thermal expansion of
Fe-based solid solution, as discussed in the Supplemental
Material.

III. RESULTS

A. Solution enthalpy of carbon into paramagnetic
fcc Fe and Fe-Mn alloys

Using the SQS-MSM method and Eq. (2), we have calcu-
lated the solution enthalpies 〈Hsol〉 of carbon impurity in para-
magnetic Fe-Mn alloys. The results are presented in Table I.
The theoretical 〈Hsol〉 for pure Fe are taken from Ref. [19]. As
the reference states, we considered DLM fcc structure for Fe
and Fe-Mn alloys; and for carbon we use the graphite structure
with experimental values of lattice parameters (a = 2.46 Å,
c = 6.65 Å) [30].

From Table I we see that the solution enthalpy of C in
the alloy containing ∼ 20 at. % of Mn is lower compared
to pure paramagnetic γ iron. Note, that the present values
of 〈Hsol〉 for paramagnetic Fe were obtained for supercells
without the so-called spin-flip transition (SFT). In γ iron the
SFT is induced by impurity and represents the reorientation
of Fe local magnetic moment relative to primary direction
inside the matrix without impurity. In our previous work [19]
we showed that nearly 40% of magnetic realizations of the
paramagnetic binary Fe-C alloy had SFT. The spin-flip takes
place on the atoms located in first coordination shell (CS) of
impurity atom [19]. This fact indicates that carbon impurity

increases the local magnetic moment of the nearest neighbor
(NN) cluster; and the first CS becomes strongly polarized.
The magnetic realizations induced by the SFT (e.g., with
strong polarization) exhibit a lower local solution enthalpy of
carbon compared to weakly polarized cells. Thus, accounting
for the SFT the 〈Hsol〉 is equal to 0.2 eV [19]. For overcooled
austenite, the statistical weight of these polarizations might
be important; but at high temperatures the amount of these
configurations is most probably low. Therefore, for the high-
temperature regions we did not consider them in calculations
of solution enthalpy, and as the result we got 〈Hsol〉 = 0.27 eV.
The point is that in the studied Fe79.6Mn20.4 alloy we did not
observe the similar effect (we will discuss this in more detail
below), and therefore consider it irrelevant for the comparison
between the solution enthalpies of C in the pure fcc Fe and in
the alloy. The obtained values of 〈Hsol〉 are 0.12 and 0.10 eV
for two sets of SQS, which puts the theoretically predicted
decrease of solution enthalpy of C between elemental host
and the alloy in quantitative agreement with experiment [35].
We emphasize that the difference between the theory and
experiment in absolute values may appear as high. But in fact,
it is not. Typical solution enthalpies are of the order of several
eV and can be calculated from first principles with the similar
absolute accuracy (0.1 to 0.2 eV) as in our case [36]. The
magnitudes of the solution enthalpy of C in fcc Fe and Fe-Mn
alloy are just too low. Of course, there are several reasons
that still affect calculated accuracy, including limited size
of supercells, which does not catch the long-wave magnetic
interactions in fcc Fe [37], neglect of lattice vibrations, as well
as the effects of strong electronic correlations and longitudinal
spin fluctuations.

B. Local and global effects of impurity on matrix properties

It is important to underline that the proposed technique
makes it possible to analyze average values of global prop-
erties (like 〈Hsol〉), as well as local properties. Let us first
consider the effect of impurity on the local distortions of
underlying crystal lattices for Fe-C and Fe-Mn-C alloys.
Figure 1 illustrates the average relative displacements with
regard to the ideal positions R̄i (%) of matrix atoms for the
first five coordination spheres around the interstitial impurity.
The average distortions are defined as

R̄i = 1

n

n∑

σ=1

1

mi

mi∑

l=1

(
ri

l − ri
ideal

)

ri
ideal

, (3)

where ri
l is a distance between C atom and a matrix atom

located at l-th position in i-th coordination sphere of C in fully
relaxed supercell; ri

ideal is the same distance for ideal lattice;
mi is total number of the matrix atoms in i-th coordination
sphere. In Eq. (3) the inner sum runs over i-th CS and the
outer sum runs over n number of σ -magnetic configurations
of MSM-SQS.

From Fig. 1 we see that incorporation of carbon induces
significant dilatations of the lattice, which rapidly decrease
from a maximum value for the first CS to almost zero for
the fifth CS. In Fe-Mn-C alloys, the average stretching of
Fe-C bond on the first CS are close to 5% (SQS 1) and 5.1%
(SQS 2), while for binary Fe-C alloy it is about ∼5.8%. The
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FIG. 1. Average relative displacements R̄i (%) of matrix atoms
for the first five coordination spheres around carbon interstitial atom.
The Fe-C results were taken from Ref. [19].

weakening of dilatations is due to an increase of the alloy
lattice parameter from 3.64 Å [38] for Fe99.1C0.9 to 3.658 Å
for Fe78.9Mn20.2C0.9 (see Supplemental Material). In Fe-Mn-C
alloy, the value of R̄1 around Mn atoms is larger compared to
that for Fe atoms and amounts to ∼7%. Note that in Fe-Mn-C
alloys the values of deformation for both supercells, SQS 1
and SQS 2 are very close to each other. From Fig. 1 one sees
that for Fe-Mn-C the deformation in the second coordination
shell is smaller compared to the binary Fe-C alloys, even
around Mn atom, where the stretching is 1.5 times higher than
around Fe atom.

Now let us consider the influence of interstitial atoms on
the magnetic properties of the matrix. As can be seen from
Fig. 2, in the first coordination sphere of C impurity, the local
magnetic moments on Fe and Mn atoms become significantly
smaller compared to their values in the matrix. The average
values of local magnetic moments on Mn atoms are higher
compared to Fe atoms. In the binary Fe-C alloy the average

FIG. 2. Calculated average magnetic moments on Fe and Mn
atoms in paramagnetic fcc Fe-Mn alloys as a function of number
of coordination shell around C impurity. Results for Fe-C alloy from
Ref. [19] are shown for comparison.

FIG. 3. Calculated local magnetic moments of all Fe and Mn
atoms in the NN of impurity. The Fe-C results were taken from
Ref. [19].

magnetic moment on Fe atoms is higher in comparison to
the Fe-Mn-C alloy even though the multicomponent alloys
have larger lattice parameters. This is so because of the
significantly low values of magnetic moments ∼ 0−0.5 μB

(see Fig. 3) on the NN atoms of the C impurity in the Fe-Mn-C
alloys. In Ref. [19] it was shown that the low values of Fe
magnetic moments in Fe-C alloy can be observed only for
ideal (unrelaxed) lattice. After the relaxation, all the local
magnetic moments increase above 0.5 μB.

On the contrary, in Fe-Mn-C alloys, the presence of mag-
netic moments with small values can be explained by the
fact that it is impossible to satisfy the signs of exchange pair
interactions for some of Fe-Fe, Fe-Mn and Mn-Mn pairs in the
nearest neighborhood of the C impurity, as will be discussed
in more detail below. Consequently, the system reacts by
decreasing, and even quenching the local magnetic moments
on the NN atoms. In addition, Fig. 2 shows that screening of
the interstitial impurity is quite effective, and the perturbation
of magnetic moments becomes almost negligible starting from
the third coordination shell.

In all the studied alloys, like in γ -Fe, the magnitude
of magnetic moment induced on carbon increases with the
magnetization of the first CS of the impurity and becomes
equal to ±0.15 μB for the highest NN magnetization (see
Fig. 4). Note that the magnetization of the NN is calculated
as a sum of magnetic moments of the matrix atoms

∑
μNN

with accounting for their signs. If the first CS consists of
three spin-up atoms and three spin-down atoms the total∑

μNN will be close to zero. In the opposite limit, i.e.,
for the ferromagnetic alignment of local moments in the first
CS, the sum

∑
μNN is in the range of 12−15 μB. Note that

the magnetic moment, induced on the C impurity, is related to
the strong hybridization between pz electrons of carbon and
valence 3d electrons of Fe [39], and it is oriented antiparallel
to the total magnetic moment of atoms surrounding carbon in
the nearest neighborhood.

Figure 5 shows the total energies of all studied MSM
realizations as functions of the total magnetic moment of Fe
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FIG. 4. Induced magnetic moments μi on C impurity versus the
total magnetization of matrix atoms

∑
μNN in the NN of the impurity

atom. The Fe-C results are from Ref. [19].

and (Fe+Mn) atoms in the NN of the C impurity. We observe
a dispersion of supercells energies in both the Fe-Mn-C and
Fe-C alloys, which arises due to the presence of the various
magnetic configurations in the NN of the interstitial impurity.
For Fe-Mn-C alloys the distribution of total energies relative
to

∑
μ(Fe+Mn) [Fig. 5(b)] is more uniform, while for the fcc

Fe the minimum energies correspond to the supercells with
the highest magnetic polarization of Fe atoms in the NN
of impurity [see Fig. 5(a)]. A similar trend is observed in
distribution of magnetic moments of the host atoms around
the C impurity (see Fig. 3).

From the analysis of local and global effects of the C
impurity on matrix properties we can see that the presence
of manganese in alloy enlarges the volumes of voids in the
crystal, which in turn weakens the deformation of Fe-C bonds
and reduces the screening radius of the impurity.

FIG. 5. Energies of MSM supercells with various impurity posi-
tions versus the total magnetic moment of matrix atoms

∑
μNN in

the first CS of the C impurity for Fe-C (a) and Fe-Mn-C (b) alloys.
Energies are calculated relative to the minimum energy Emin obtained
for each SQS supercell. The Fe-C results were taken from Ref. [19].

FIG. 6. Calculated average exchange pair interactions in param-
agnetic Fe-Mn alloy plotted versus the lattice parameter.

IV. DISCUSSION

For better understanding the features of impurity solution
in Fe-Mn-C alloys, we plot the pair exchange interactions Ji j

of classical Heisenberg Hamiltonian as a function of lattice
parameter (see in Fig. 6). The exchange interactions Ji j were
calculated for the host fcc Fe79.6Mn20.4 alloy using the Exact
Muffin-Tin Orbitals method combined with CPA (EMTO-
CPA) [40–44].

As shown earlier in Ref. [19], the strong dependence of Ji j

on the lattice parameter might be considered as the possible
explanation of existence of so-called SFT in the Fe-C alloys.
The similar behavior was observed earlier in various magnetic
configurations of γ -Fe: ferromagnetic [37], DLM [19], spin
spirals [45]. According to our EMTO-CPA calculations of
γ -Fe [19], the sign of the exchange interaction JFe−Fe is
negative for the range of lattice parameter from 3.50 to 3.63 Å.
However, with further increasing of the lattice parameters
JFe−Fe becomes positive and rapidly increases. It is known that
the stretching deformations around the impurity atom increase
the distance between iron atoms in the first CS, which in turn
changes the sign of JFe−Fe exchange interaction. Therefore,
the carbon impurity can change the sign of exchange interac-
tion between Fe atoms in its first coordination sphere. More-
over, the carbon impurity stimulates the formation of partially
or fully ferromagnetic local regions with lower solution en-
thalpy. In particular, according to Fig. 5(a), the lowest value
of solution energy corresponds to the supercell realizations
with the highest magnetic polarization of Fe atoms in the NN
of carbon impurity.

In the manganese containing alloy, the additional Fe-Mn
and Mn-Mn pair interactions must also be considered. These
interactions are sufficiently strong, and they remain negative
for the range of lattice parameters close to equilibrium, as
well as for larger lattice parameters corresponding to possible
dilatation effects. Therefore, the ferromagnetic alignments of
local moments on chemically nonequivalent atoms around the
C impurity would not satisfy the signs of Fe-Mn and Mn-Mn
pair interactions. This is due to the local magnetic frustrations
caused by the large negative values of JFe−Mn and JMn−Mn

interactions. As a matter of fact, the frustrations also explain
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FIG. 7. 3D and 2D maps of charge density difference for Fe-C and Fe-Mn-C alloys plotted in the plane containing C impurity: (a) and
(d) without Mn atoms (Fe-C, 0 Mn); (b) and (e) with 1 atom of Mn in the NN (Fe-Mn-C, 1 Mn); (c) and (f) with two atoms of Mn in NN
(Fe-Mn-C, 2 Mn).

the existence of the magnetic moments with magnitudes from
0.0 to 0.5 μB, because reducing and even quenching the local
moments is a well-known way for a system to respond to the
magnetic frustrations [46].

Now let us consider the map of charge density difference
for Fe-C and Fe-Mn-C alloys plotted in the plane containing
the C impurity. We will discuss specific magnetic config-
urations of the paramagnetic state of the alloys. Figure 7
shows three different cases that correspond to different num-
bers of Mn atoms in the first CS of the C impurity. The
analysis of the electron density difference reveals the redis-
tribution of the electron density in the system due to the
modification of chemical bonds. In binary Fe-C alloys, the
interatomic interaction between Fe and C lead to the transfer
of the electronic density from the iron atom to the carbon
atom. At the same time, one sees that the excessive electrons
around the carbon atom are symmetrically localized near lines
pointing towards each Fe atom.

In the regions between Fe atoms and close to carbon,
the electronic density is depleted [see Figs. 7(a) and 7(d)].
A Mn atom in the first CS leads to the delocalization of
the charge, and the region with excessive electron densities
becomes broader. In the case of single Mn atom in the nearest
neighborhood of carbon, the electron density forms excessive
charge along the line that connects the centers of Mn and
C atoms as well as along the line that connects Mn and
Fe atoms [see Fig. 7(b)]. One can observe the regions with
electron deficiency near the manganese site, while around
the Fe atom in the first CS of the C impurity and in the
second CS of Mn the electron density remains localized.

Note that the electronegativities of C, Fe and Mn are equal
to 2.55, 1.83 and 1.55, respectively. Because Mn has the
lowest electronegativity, the charge transfer from manganese
toward carbon and iron sites can indeed be expected. This
is demonstrated in Fig. S1 (see the Supplemental Material),
where the maps of charge density differences are plotted in
the planes distant from the impurity. One of these planes
contains only Fe atoms (Supplemental Material, Fig. S1, left
panel), while the other one contains both, Fe and Mn atoms
(Supplemental Material, Fig. S1, right panel). From Fig. S1
we see that the electron density is transferred toward the
more electronegative Fe atom. Moreover, the electron density
between Fe and Mn atoms is higher compared to Fe-Fe and
Mn-Mn pairs.

In the case of two Mn atoms in the first CS of the C
impurity, the region with excessive electron densities becomes
broader and covers almost the whole spatial sphere around the
carbon. The screening of the impurity becomes more effective
despite strong local dilatations in the first CS (see Fig. 1).
Lattice deformation sufficiently weakens for both Fe and Mn;
and becomes symmetric already in the second CS. Thus, the
presence of Mn in the first CS of impurity induces charge
delocalization (in comparison to pure fcc Fe), which in turn
provides the effective screening of the C impurity.

V. CONCLUSIONS

In the present work, the solution enthalpy of carbon impu-
rity into the paramagnetic Fe-Mn alloys has been calculated
within the framework of DFT. Calculations have been carried
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out within the generalization of the model that describes the
point defects in paramagnetic hosts towards the case of alloy
hosts. The model allows us to account for thermal magnetic
fluctuations in the paramagnetic chemically disordered matrix
with point defects.

According to theoretical results, in the alloys with Mn con-
centration ∼20 at. %, the solution energy of carbon impurity
becomes lower compared to the pure paramagnetic γ iron.
This behavior of the solution energy qualitatively agrees with
the experiment. The origin of the reduction of the solution
enthalpy can be traced to following reasons:

(i) Alloying with Mn increases the lattice parameter. This,
in turn, decreases the distortions of Fe-C bonds, and increases
the spatial size of the octahedral sites where the carbon
impurity is dissolved.

(ii) Analysis of charge density maps shows the delocaliza-
tion of electron density in the first CS of the C impurity, in the
presence of manganese atoms. This makes the screening of the
impurity more efficient and weakens the lattice deformation
starting from the second CS.
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