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Growth modes of quasicrystals involving intermediate phases and a multistep behavior studied
by phase field crystal model
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Understanding the microscopic kinetics of quasicrystal formation via nucleation and growth is crucial. Here,
we report unusual pathways to nucleation and growth of dodecagonal quasicrystals via a phase field crystal
model incorporating a two-length-scale potential. Under certain thermodynamic parameters, both quasicrystal
growths via heterogeneous and homogeneous nucleation may be associated with a multistep behavior and the
transient appearance of triangular and intermediate phases, different from classical nucleation pathways. The
metastable intermediate phase spontaneously occurs to bridge the triangular phase and quasicrystal nuclei of
different orientations to reduce the total free energy of the system. Decomposition of an undercooled fluid phase
into quasicrystal phase shows a multistep pathway wherein the triangular phase and the intermediate phase
may occur faster than the quasicrystal phase, when the growth rate of one length-scale ordering is significantly
different from the other and the subsequent competing and coupling of both length scales are involved. The
calculated structure factor, radial distribution function, and the aperiodic tiling structure of the intermediate
phase explain why it appears during the quasicrystal formation.
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I. INTRODUCTION

Quasicrystal (QC) as a structure with quasi-periodic long-
range order and no translational order, has attracted substan-
tial interest in materials science and condensed matter physics
since its first discovery [1,2]. To this date, thousands of QCs
with five-, eight-, ten-, 12-, 18-fold rotational symmetries have
been reported, mostly in metallic alloys [3] and recently in
soft matter systems [4–10]. The conditions for the formation
of stable QCs have been revealed from specific factors of
different physical natures to common principles in different
QCs [3,11]. The geometric feature of QCs is usually described
by the abstract tiling rules, such as Penrose tiling and random
tiling model [12]. The stability of QCs is attributed to be a
low free energy state by a compromise between configuration
entropy and interaction energy between particles with specific
pair potential, wherein competing and nonlinear interactions
of at least two length scales are crucial [13–20].

Besides the efforts to investigate the existence and sta-
bilities of QCs geometrically and thermodynamically, it has
become attractive to investigate possible practical growth
mechanisms that can contribute to a structure with long-range
aperiodicity and how structural phase transitions proceed from
and to the quasicrystalline state (see Refs. [11,21] and ref-
erences therein). In comparison with the growth of periodic
ordering by repeating a regular unit cell, QCs due to their
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structural aperiodicity exhibit more complex growth behavior.
In general, two categories for QCs’ growth rules have been
proposed: energy-driven defect-free structure models [22] and
entropy-driven random tiling models [23]. By using phase
field simulations, the pathways of defect-free QC growth and
random tiling-like QC growth have been discovered [24].
In particular, molecular dynamics (MD) simulations demon-
strate that icosahedral clusters form in the liquid first and
then are incorporated into the growth front of dodecagonal
QC nuclei to contribute to the growth of QCs [25], which
indicates a two-step growth mode. Archer et al. demonstrated
that a transient small scale crystal structure emerged during a
deep quench of the initially unstable uniform liquid into a QC
by performing dynamical density functional simulations in
two dimensions [26,27]. Interestingly, Mikhael et al. [28,29]
discovered an (32.42) Archimedean-like tiling structure with
aperiodicity in one direction as an intermediate state between
a decagonal QC and a triangular crystal by studying the phase
behavior of a colloidal monolayer interacting with tunable op-
tical quasicrystalline substrate. A similar Archimedean tiling
cluster has also been reported as a bridge “wetting layer”
during the transition from the dodecagonal QC phase to cubic
phase in binary nanoparticles superlattices system [6]. All of
these findings indicate that growth of QCs may occur in a
multistep manner via some intermediate or metastable states.
In fact, similar multistage mechanisms have been widely
reported in various nucleating systems [30–32], including, but
not limited to decomposition in alloys [33–39], crystallization
[40–44], and structural transformation in colloidal crystals
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[45], wherein appearance and subsequent transformation of
intermediate states before reaching a thermodynamically sta-
ble phase is universal.

Recently molecular dynamics simulation has been applied
to explore the growth processes of two-dimensional (2D) qua-
sicrystals, limited by time and space scales [16,18,19,25,46].
The so-called phase-field crystal (PFC) modeling shows the
advantage of modeling microstructure evolution with atomic
resolution and diffusive time scales [47,48]. This model is
similar to the atomic density function theory proposed by Jin
and Khachaturyan [49]. Originally the free energy expression
of the phenomenological PFC model is based on an expansion
of the Swift-Hohenberg free energy [50,51], but later it was
proved that it can be derived from density functional theory
(DFT) [52,53]. After constructing the phenomenological free
energy function for crystalline states with multiple competing
length scales, the developed so-called multimode PFC model
is capable of formation of more complex ordered structures
[54–56], nucleation dynamics [32,42,43,54] and structural
phase transformations [55,56], although some modifications
[57–60] are made to more accurately describe the defects’
behavior, which is, nevertheless, only suitable to the system
containing single kind of symmetry lattice by far. In particular,
2D or three-dimensional (3D) quasicrystalline structures can
be recovered when a potential with two competing length
scales is incorporated in the framework of PFC or DFT
[17,24,26,61,62].

Here, given the lack of understanding the multistep
metastable growth mechanism of QCs, we employ a PFC
model with a two-length-scale potential [24] to comprehen-
sively investigate the growth behavior of QCs involving in-
termediate phase and multistep behavior, wherein we do not
specify any quasicrystal materials. By studying different cases
of heterogeneous nucleation followed by growth and growth
dynamics in a decomposition of the undercooled liquid into
a QC phase, we discover a multistep transition behavior via
two metastable solid states, i.e., triangular (Tri) structure
and intermediate (Int) structure (the term “Int” refers to the
specific phase we found in the text). Especially, analyses of
the static structure factor and the radial distribution function
indicate that the Int phase serves as a structurally compro-
mised metastable state between the Tri and QC phases and
is revealed to possess a 2D structure with aperiodicity in one
direction, which is inherent in the two-length-scale model.
The correlation and competition between two length scale
orderings play an essential role in this multistep phenomenon.
Moreover, the PFC model of diffusive time scale enables us to
study the complex kinetics and morphology of QCs, such as
the movement of defects and growth rate of nuclei.

This article is organized as follows: In Sec. II, the em-
ployed two-mode PFC model that incorporates a two-length-
scale potential is introduced. The derivation of its disper-
sion relation based on linear stability analysis is given.
Section III presents a modified phase diagram containing
liquid, Tri, Int, and QC phases with respect to two parameters,
and determines the parameter values for the formation of
stable QCs. Different nucleation and growth modes of QCs
from an undercooled liquid are simulated. Furthermore, the
static structure factor, radial distribution function and the
aperiodic tiling structure of the Int phase are analyzed to

elucidate the QC growth mode involving a multistep behavior
and an Int phase. Finally, conclusions are marked in Sec. IV.

II. THEORY AND METHOD

A. Two-mode PFC model

The PFC model introduced here is based on a dimension-
less free energy functional containing two length scales [24],

F [ψ (�r)] =
∫
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{

1

2
ψ (�r)

[
−ε +

2∏
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((
k2
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)2+bm
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which is generalized from the two-mode form proposed
before [14,54], wherein ψ (�r, t ) is a field variable related to
atomic density and ε can be interpreted as the mean-field
temperature [48]. By changing the two inherent length scales
characterized by two wave numbers k1, k2, phases of different
symmetries can be controlled. The parameter bm controls the
relative magnitude of different modes. A conserved dynamic
equation on diffusive time scales governs the evolution of
ψ (�r, t ),

∂ψ

∂t
= �∇2 δF

δψ
+ η , (2)

where � is the mobility parameter and η is the Gaussian
random noise mimicking thermal fluctuation.

Here, to model QCs, two incommensurate length scales
are required and the ratio of k1 and k2 should be a special
value. If we set k1 = 2π/a and k2 = 4πcos(π/12)/a, where a
is a characteristic length scale, this leads to a stable QC with
12-fold symmetry [14,24], which is a so-called dodecagonal
QC. Besides the temperature term ε, another intrinsic term
to determine the phase behavior of this model is the mean
density ψ̄ , which is conserved under the dynamical process
described by Eq. (2). By numerically solving Eq. (2), the
growth behavior of the QCs can be captured through tracking
the atomic density field ψ (�r, t ). As for the numerical calcu-
lations, a semi-implicit spectral method [63] is used to solve
the dynamic equation Eq. (2). All simulations in this paper are
conducted with periodic boundary conditions, where the grid
space is 	x = a/3π and dimensionless time step is 	t = 0.1.
Without specific notation, the simulations are conducted in the
domain of 1024	x × 1024	x. We have tried different sizes
of the simulation box (from 5122 to 20482) and found the
multistep growth phenomena in all of them, so we believe that
the artificial size effect due to periodic boundary conditions
can be neglected in the size range we selected. All the density
field values of the simulated results are scaled from 0 for the
minimum to 1 for the maximum.

B. Linear stability analysis

Before exploring the growth behavior of the QCs during
the nucleation process using the PFC simulation, we employ
a linear stability analysis of Eq. (2) to study the growth rate of
nucleation during the earliest stage of a uniform liquid state
[26,49,64]. We firstly assume that the atomic density field
ψ has a uniform profile plus an additional small-amplitude
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FIG. 1. Dispersion relation of stable (a) and unstable (b)–(e)
cases. (a) ω(k1) < 0, ω(k2) < 0; (b) ω(k2) > ω(k1) > 0; (c) ω(k1) >

ω(k2) > 0; (d) ω(k1) < 0 < ω(k2); (e) ω(k2) < 0 < ω(k1).

harmonic perturbation with wave number �k and angular
frequency ω:

ψ = ψ̄ + δψ = ψ̄ + ξei�k·�xeωt , (3)

where the amplitude of the perturbation ξeωt is assumed to be
an exponential form with |ξ | � 1. Substituting this expression
into the functional derivative of the two-mode free energy (1),
we have

δF (ψ )

δψ
= �ψ̄ + ψ̄3 + (� + 3ψ̄2)δψ + O(δψ2), (4)

where � = −ε + ∏2
m=1 [(k2

m − k2)2 + bm]. Then by inserting
expression (4) into Eq. (2) and linearizing, the following
dispersion relation can be obtained:

ω(k) = −k2(� + 3ψ̄2). (5)

The uniform liquid state is linearly stable when ω(k) < 0,
while linearly unstable when ω(k) > 0, which means that
any small-amplitude perturbation of the wave vector amplifies
over time and changes the initial density field configuration,
and finally triggers the nucleation and growth behavior. As
described by Eq. (5), there are two local maxima, ω(k1) and
ω(k2), in the limit of k > 0, corresponding to the fastest
growth rate of the perturbation with its characteristic wave
numbers k1, k2 (see Fig. 1).

Consider the case (b1, b2) = (0, 0), by solving the equation
ω(k) = 0 of expression (5), we have the relation −ε + 3ψ̄2 =
0, which defines the linear instability threshold where these
two local maxima of ω(k) both equal zero. Based on this
threshold, we find values of the two peaks exhibit ω(k2) <

ω(k1) < 0 with lower ε [Fig. 1(a)], while ω(k2) > ω(k1) > 0
on the other side [Fig. 1(b)]. If we choose an appropriate value
of ε above the instability threshold, the structure ordering
with the period k2 are expected to appear first. Moreover,
we note that the parameters b1 and b2 determine the relative
contribution of the length scales characterized by k1 and k2,
so that different scenarios, such as homogenous nucleation
dominated by the ordering with the period k1 or k2, can be
studied [Figs. 1(b)–1(e). For example, by choosing a smaller
value of b1 or a bigger value of b2, the case of ω(k1) >

ω(k2) > 0 can be obtained [Fig. 1(c)], and then the structure
ordering of length scale k1 is expected to be faster than that
of length scale k2. If there is only one unstable length scale

[Figs. 1(d) and 1(e)], the structure ordering of the unstable
length scale will appear and evolve first, which is followed by
triggering the instability of the other length scale. Therefore
the nucleated phase dominated by the fastest structure order-
ing will be a more kinetically accessible state. This is a kinetic
origin of the formation of transient or metastable phase during
the nucleation and growth process. Note that the studies in
Refs. [14,24] only considered the case of (b1, b2) = (0, 0).
In our study, we will show when more parameters ε, ψ̄ , b1,

and b2 are changeable, the system has more pathways to
lose its stability and evolves into nonlinear regime. Under
some specific conditions, the ordering contribution by the two
inherent length scales reaches a delicate equilibrium in the
system, which may favor the formation of QCs.

III. RESULTS AND DISCUSSIONS

A. Phase diagram

Before investigating the kinetics of QC growth by numeri-
cally solving Eq. (2), we revisit the phase diagram of the sys-
tem with its free energy in Eq. (1) by using PFC simulation in
order to indicate clearly where the pathway of QC nucleation
and growth is activated. The stable phase may appear in the
phase diagram if its free energy is lower than the other phases
considered in the PFC modeling with two length scales, given
the parameters ε, ψ̄ , b1, and b2. The free energy calculations
can be performed when the profiles of atomic density field
ψ (�r, t ) representing the possible phases are substituted in
Eq. (1), respectively. For example, the density field of all these
phases ( f -fold symmetry and even the Int phase) can also be
created from the interference pattern [65],

|ψqc(�r)|2= 1

f 2
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(
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f
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,

(6)

where �kn is the wave vector or the characteristic length scale.
The efficiency of the free energy calculations can be improved
by adopting a so-called projection method [66]. Since the
stable phase is also corresponding to the minimum of the free
energy functional in Eq. (1), described as δF (ψ )/δψ = 0, we
can initially generate a fluid phase with several seeds of Tri or
QC phases and track their competitive growths by numerically
solving Eq. (2) at each point (ε, ψ̄ ) of the parameter space
with (b1, b2) = (0, 0). The final steady state may be viewed
as an energetically favorable stable phase (see Supplemental
Note 1 in [67]). Therefore, we can obtain a new equilibrium
phase diagram, which includes four phases, i.e., liquid, QC,
Tri, and Int phase with respect to two parameters ε, ψ̄ , as
shown in Fig. 2(a). The coexistence regions are marked in
gray. Each simulation has been run for more than 100,000
time steps to guarantee that the profile of the atomic density
field is a steady state. We note that our phase diagram obtained
here is a little different from the one reported in Ref. [24]
wherein the Int phase does not appear. The enlarged detail
in Fig. 2(a) shows the positions of several typical growth
modes of QCs. Mode C located at (ε, ψ̄ ) = (0.25,−0.314)
is known for defect-free one-step growth mode (see Movie
S1 [67] for the recovered growth process) previously reported
in Ref. [24]. Modes A and B are for two kinds of new
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FIG. 2. Equilibrium phases explored by our PFC model, (a)
Equilibrium phase diagram with stable liquid, Tri, dodecagonal
QC, and Int phases is dependent on ε and ψ̄ at (b1, b2) = (0, 0).
Coexistence regions are shaded in gray. The area between two red
dotted lines is where the Int phase may appear during the Tri-QC
competitive growth process, while the pink dash-dotted line indicates
the linear instability threshold based on ω(k) = 0. Enlarged detail
in the white box is shown at the right site, wherein the positions
of different modes, A-D, for the formation of QCs are marked,
respectively. (b)–(d) The real-space patterns of three solid phases and
their diffraction patterns (inset). The white polygons outline the unit
cells of their respective tiling structures.

heterogeneous growth modes involving intermediate phases
and a multistep behavior. Mode D located at (ε, ψ̄ ) =
(0.33,−0.33) is for the homogeneous QCs nucleation mode.

To better focus on the multistep metastable behavior, we
numerically find the range as indicated between the two red
dotted lines in the phase diagram Fig. 2(a), where the Int
phase appears as a metastable state or a stable phase by
solving Eq. (2) with initially setting Tri and QC phases 50/50
distributed. It is clear that the region of Int phase that can

appear is larger than the region where it is a stable phase.
Also, the spinodal-like instability threshold determined by the
condition −ε + 3ψ̄2 = 0 discussed in Sec. II B is depicted as
pink dash-dotted line in Fig. 2(a). The deeply quenched liquid
becomes unstable with respect to any small modulations at the
point D, which locates above the instability threshold and still
in the region of QCs.

B. Heterogeneous QCs nucleation and growth

1. Single nucleus growth

As shown in Fig. 3, two different heterogeneous growth
modes of QCs from one nucleus are studied [see Modes A,B
in Fig. 2(a)]. In Mode A, the initialized QC nucleus firstly
grows up steadily in the undercooled liquid [Fig. 3(a1) and
3(a2)]. Then when the nucleus tends to contact with other QC
nuclei (due to the periodic boundary conditions), metastable
Tri structures appear as a bridging phase at the QC-QC bound-
aries [Fig. 3(a3)], and transform into an Int structure later
[Fig. 3(a4)]. A stable QC phase eventually occupies the whole
system after t = 1500 [Fig. 3(a5)]. It clearly shows a multistep
behavior of QC growth via the pathway of Tri→Int→QC.

In Mode B, we initially set one metastable Tri nucleus in
the undercooled liquid to study the kinetics of forming QC
phase. The QC structure is found to nucleate at the center of
the growing Tri nucleus when the Tri nucleus grows up to a
certain size [Fig. 3(b2)]. Then the Int structure nucleates at the
QC-Tri boundary [Fig. 3(b3)], that is, the solid-liquid growth
front of QC nucleus is surrounded by two layers of metastable
states (Tri and Int layers). After the solid structures occupy the
whole system, the Tri structure starts to vanish [Fig. 3(b4)],
then the Int structure. Finally, we have a stable QC phase after
t = 1850 [Fig. 3(b5)].

The growth processes observed in Fig. 3 are significantly
different from the one-step growth mode reported in Ref. [24]
[marked as Mode C in the phase diagram of Fig. 2(a)]. Modes
A and B demonstrate that a multistep behavior clearly exists
during nucleation and growth of QCs in the undercooled

FIG. 3. Growth process of QCs in the undercooled liquid matrix with one nucleus. (a1)–(a5) are the atomic density profiles for the growth
of a QC nucleus at (ε, ψ̄ ) = (0.30,−0.315), corresponding to Mode A in Fig. 2(a) at t = 50, 400, 600, 900, 1500, respectively. (b1)–(b5)
are for the growth of a Tri nucleus at (ε, ψ̄ ) = (0.2705, −0.315), corresponding to Mode B in Fig. 2(a) at t = 500, 750, 900, 1500, 1850,
respectively. See Movie S2 [67] for the evolution detail of the whole system. Note that (a2)–(a5) and (b1)–(b5) only show a quarter of the
simulated system in (a1).
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FIG. 4. The calculated average growth rate V normalized by
a/	t of Tri and QC nuclei versus the degree of undercooling ε during
one-step and multistep growth modes from the initially undercooled
liquid at ψ̄ = −0.315. The red circle marks the point where Tri
structure is unstable in the liquid and will transform to QC in the
first 500 time steps.

liquid. Tri structure is formed in the liquid-QC interface first,
which is followed by a “Tri-Int-QC” two-step structural phase
transformation, and this multistep process contributes to the
growth of the QC structure in the liquid (see Movie S1 and
S2 [67] for more growth information of the one-step mode
and the multistep mode). To understand the thermodynamic
and kinetic origins of the heterogeneous QC growth involving
metastable phases and a multistep behavior, we roughly esti-
mate the free energy change in a local region where liquid,
Tri, Int and QC phases appear sequentially during the growth
of QC in Fig. 3. We found that EQC < EInt < ETri < ELiquid.
Usually the pure Tri or Int phase in Fig. 3 is not energetically
favorable. However, when QC nuclei with different orienta-
tions coexist, if the energy gap between QC and Tri phases
is small and the QC-Tri interfacial energy is lower than that
between QC nuclei with different orientations, the metastable
Tri phase nucleating at the QC-QC boundaries may emerge as
a bridging layer between QC nuclei with different orientations
to reduce the total free energy of the system. Similarly, the
Int structure nucleating at the QC-Tri boundaries may also be
energetically favorable when the QC-Int interfacial energy is
lower than the QC-Tri interfacial energy. Overall, the multi-
step metastable phenomena in QC growths are more likely
to be found near the Tri-QC phase boundary in the phase
diagram than that far away from the boundary according to
our simulations. The thermodynamic origin shares a similar
mechanism reported in other nonclassical nucleating systems
[45]. When the relative magnitude of the free energy of these
solid phases is small, the bulk free energy increase due to the
appearance of the metastable phase can be counterbalanced by
the decrease of some solid-solid interfacial energy.

To examine the kinetic origin of the multistep growth
mode, we perform simulations of single Tri or QC nucleus
of equal size growing in the undercooled liquid with the same
ψ̄ = −0.315 under different values of ε, and measure their
average growth rates during the initial 500 dimensionless time
steps. As shown in Fig. 4, the simulated result indicates that
the average growth rate of both Tri and QC nuclei increases
with the increase of ε but their trends are different. In addition,

when ε decreases to a critical value, the growth rate of
QC nucleus is much larger than that of the Tri nucleus and
therefore the newly generated QC nucleus catches up with the
Tri-liquid boundary and exhibits a one-step mode afterwards.
We should note that the kinetics shown in Fig. 4 is mainly
determined by thermodynamics since PFC kinetic equation is
overdamped. The growth velocity of a new phase is roughly
proportional to the mobility of phase interface and the total
thermodynamic driving force, which includes the bulk free
energy differences and the interfacial energy between the new
and old phases. We roughly compared the bulk free energy
difference between metastable phases and the final stable
quasicrystal phase at different values of ε, and found that these
bulk free energy differences increase as increasing the value
of ε. The driving force and the growth velocity is larger at
higher ε, consistent with the result in Fig. 4. However the
fact that the growth velocity of the Tri nuclei becomes larger
above a critic value of ε than that of the QC nuclei should
be consistent with a larger total thermodynamic driven force
for the Tri nuclei than that for the QC nuclei. It is possible
when the interfacial energy between the Tri and liquid phases
is smaller than that of the interfacial energy between the QC
and liquid phases. It demonstrates that a faster growth rate
of the nucleus makes it kinetically more accessible. If the
growth rate of an initially seeded nucleus is larger than that of
the nucleus subsequently formed within it, a multistep growth
mode can happen. Our numerical results confirm that given
larger degree of undercooling (ε = 0.2715), the metastable
layers become thicker because the growth rate of Tri is much
faster. In addition, taking the growth of a metastable Tri
nucleus in the undercooled liquid as an example, even though
the growth rate of the QC structure is faster in Mode B,
the multistep phenomenon is still observable, because the
existent Tri structure has to spend extra time to transform
into QC first, as shown in Fig. S3 [67]. That is, for the one-
step mode of the QC formation, the degree of undercooling
has to be low enough to make sure that the growth rate
of the QC nucleus is fast enough to avoid the emergence
of metastable Tri state in the growth front. Otherwise, the
multistep mode will appear. In a word, the growth modes of
QC from undercooled liquid depend on the difference of the
growth rates between the stable QC and the metastable Tri
nuclei.

The result in Fig. 4 indicates that multistep growth of QC
in Mode B appears when the metastable Tri nuclei is kineti-
cally more accessible and its growth rate is larger. A similar
two-step growth mode is reported in MD simulations [25],
which suggests that the icosahedral clusters formed in the
growth front first give rise to the growth of dodecagonal QCs.
The MD result in Ref. [40] shows that the metastable body-
centered cubic (bcc) phase nucleates first in the undercooled
liquid, followed by the transformation to face-centered cubic
(fcc) ordering when the bcc nucleus reaches a critical size,
and metastable bcc-like ordering can also be found around the
interface of the critical fcc nucleus. We should note that the
kinetic effect on multistep growth of QC reported in Fig. 4 is
mainly of thermodynamic origin while the multistep growth
behavior in the MD results of Refs. [25,40] contains not
only kinetic effect driven by thermodynamics but also purely
kinetic effect and nucleation process.
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FIG. 5. The competitive growth between a QC nucleus and a Tri nucleus in a fluid phase shows a typical “liquid-Tri-Int-QC” transformation
pathway at (ε, ψ̄ ) = (0.305, −0.315). (a) Initial configuration of the simulated system with a QC nucleus and a Tri nucleus of the same size but
different orientations. (b)–(f) are snapshots at different dimensionless time steps t = 160, 1000, 1800, 3000, 6400, respectively. The ellipses in
(c) mark the nucleated sites of Int structures, while the red and white ellipses in (d),(e) mark the shrinking QC domain with the initial orientation
and the generated new-QC domain with a different orientation, respectively. In (e), the inset indicates the dislocations in the marked white
square box. Configuration evolutions in the yellow box of (f) will be employed to study the details of two-step structural transformations in
Fig. 9. Note that the simulating domain is 512	x × 512	x. See Movie S3 [67] for more evolution details.

2. Competitive growth of QC and Tri nuclei

To further study the emergence of the metastable Int phase
and more kinetic details during the multistep growth of QCs,
the competitive growth between one QC and one metastable
Tri nucleus has been studied, as shown in Fig. 5. By setting
the orientation difference of these two nuclei [Fig. 5(a)], the
transformation information, including whom the new phase
generates from, can be detected directly. First, the QC nucleus
and Tri nucleus both grow up and collide [Fig. 5(b)], where the
Tri nucleus grows obviously faster in accord with the growth
rate analysis in Fig. 3. After these two nuclei occupy the whole
system, the Int nuclei with three different orientations (marked
by ellipses) emerge along the QC-Tri boundaries [Fig. 5(c)].
Then the remaining Tri domain is rapidly eaten up by Int
domains with two dominating orientations. Meanwhile, a new
QC nucleus with its orientation different from the original
QC nucleus appears at the QC-Int boundary, and then takes
over the original QC gradually [Fig. 5(d)] via the motion of
the so-called dislocations in QCs, which can be detected by a
particular method [68,69], as shown in the inset of Fig. 5(e).
The newly generated Int structure survives for a longer time,
and finally a stable QC is formed [Fig. 5(f)].

It is known that the orientation relation between the prod-
uct phase and the mother phase in the structural transfor-
mation is crucial, because it significantly influences the co-
herency of the two-phase boundary, defect structures at the
incoherent interface and their interfacial energy. As shown in
Fig. 5(c), it is recognized that the orientation of the newly
generated Int nuclei is inherited from the original Tri nucleus,
not from the original QC structure. Similarly, the orientation
of the newly generated QC nucleus in Fig. 5(d) is determined

by the orientation of its adjacent Int structure, which is dif-
ferent from that of the original QC nucleus. Overall, a typical
“liquid-Tri-Int-QC” three-step QC growth is presented here.
The results in Fig. 5 clearly demonstrate that a multistep mode
involving metastable Tri and Int phases can be frequently
observed during the formation of QC from a liquid phase. This
nonclassical transformation pathway can trigger secondary
nucleation of QC and drastically influence the orientation
between QC nuclei, different from the classical nucleation
pathway, wherein a single step transition from mother phase
to product phase is assumed.

C. Homogeneous QC nucleation and growth

Another pathway for formation of QC from a liquid phase
is homogenous nucleation and growth. It would be interesting
to explore whether the metastable and multistage growth
kinetics of QCs occur during homogeneous nucleation and
growth or not. In the case of homogeneous nucleation, the
initially uniform liquid phase is unstable and decays spin-
odally. Figure 6 plots the growth rate versus the wave num-
ber for the spinodal-like instability by conducting the linear
stability analysis. According to the analysis in Sec. II B, the
magnitude of growth rate of the two length scale ordering
can be adjusted by changing the values of b1, b2, and ε, ψ̄ .
The plot in Fig. 6(a) shows that there are two kinds of length
scale ordering and the growth rate of the short length scale
ordering (k2) is much larger than that of the longer one (k1).
Figure 6(b) shows that the dispersion relation can be altered
by the parameters b1, b2. The growth rate for the long length
scale ordering could be larger than that of the short one.
The ordering state with faster growth rate is kinetically more
accessible.
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FIG. 6. Dispersion relation ω(k) at the state point (ε, ψ̄ ) =
(0.33, −0.33) for (a) (b1, b2) = (0, 0) and for (b) (b1, b2) =
(−0.001, 0.0003). In these two cases, both length scales (k1 and k2)
are unstable, but the growth rate of the smaller length scale in (a) is
much larger than that for the longer one, while in (b) the case is the
opposite. The insets show the details near ω = 0. The corresponding
simulated results are shown in Figs. 7 and 8.

Figure 7 shows the evolution of QC growth during the
homogeneous nucleation process for Mode D in Fig. 2(a)
with the dispersion relation in Fig. 6(a). Consistent with the
analysis in Fig. 6(a), the small length scale crystal (i.e., Tri
phase) forms first due to the faster growth rate of such length
scale ordering, and the subsequent competing and coupling
of two length scale orderings lead to formation of some QC
precursors [i.e., local quasicrystalline structures, marked by
red circles in Fig. 7(b)] in the undercooled liquid. Later,
as the system further evolves, both length scale orderings
play a comparable role. The QC structure then nucleates
near the grain boundary of Tri phase [Fig. 7(c)], where the
high interfacial energy can easily trigger the nucleation of
QCs. After the appearance of the QC phase, the existent Tri
structure transforms to the stable QC phase via the “Tri-Int-
QC” two-step transitions [Figs. 7(d) and 7(e)], and finally the
stable QC is formed [Fig. 7(f)].

According to the result in Fig. 6(b), the growth rate of the
long length scale ordering could be larger than that of the

short one by altering the parameters b1, b2. Figure 8 shows the
evolution of QC growth from an initially uniform liquid phase
with the dispersion relation in Fig. 6(b). The Tri crystal with
a larger lattice constant reciprocal to k1 is expected to form
first, but it is in fact not observable before the nucleation of
QC structures [Figs. 8(b) and 8(c)] due to the further evolution
of two length scale orderings. Then metastable Tri structures
occur at the QC-liquid boundary to reduce the boundary
energy [Fig. 8(d)], and finally transform to stable QC through
metastable Int states [(Figs. 8(e) and 8(f)].

The results presented in Figs. 7 and 8 suggest that there are
also multistep modes involving metastable Tri and Int phases
during homogeneous QC growth. The relative contribution of
two length scale orderings affects the growth dynamics of
QCs, especially in the earliest stage of nucleation. We also
find that QCs can always be recovered when two length scales
comparably contribute to the system, no matter which length
scale dominates in the beginning.

The metastable phenomena may have qualitative similarity
to the two-step theory proposed in Refs. [26,27], where QCs
are quite far from the onset of instability and form from
a periodic state via the nonlinear time-dependent process.
However, our results further show the fascinating multistep
metastable behavior to form QCs and an involved metastable
Int state arising during the transition from a periodic structure
to a quasicrystalline structure. In the following sections, the
structure of Int and its correlation with Tri and QC structures
will be studied.

D. Structural correlation of “Tri-Int-QC” transitions

The “liquid→Tri→Int→QC” multistep growth pathway
of QCs is ubiquitous in all our simulated cases. As shown in
Figs. 2(b)–2(d), the diffraction patterns of three solid phases

FIG. 7. Local snapshots of the homogeneous nucleation process for Mode D in Fig. 2(a) with the dispersion relation displayed in Fig. 6(a).
(a)–(f) are snapshots at t = 3000, 3068, 3160, 3420, 3580, 5560, respectively. The red circles in (b) mark the nucleation precursors of QCs with
local quasicrystalline structures, and the orange ellipses in (d) and (e) mark the emergent Int structures. See Movie S4 [67] for the evolution
detail of the whole system.
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FIG. 8. Local snapshots of the homogeneous nucleation process for the case with (ε, ψ̄ ) = (0.33, −0.33) and (b1, b2) = (−0.001, 0.0003).
The dispersion relation in this case is displayed in Fig. 6(b). (a)–(f) are snapshots at t = 9310, 9340, 9350, 9360, 9390, 9620, respectively. The
orange ellipse in (e) marks the emergent Int structure. See Movie S5 [67] for the evolution detail of the whole system.

apparently have structural analogy, wherein the diffraction
peaks of the Int phase include those of the Tri phase, while it is
part of those of QC phase. In addition, during the “Tri-Int-QC”
structural transformation, the product phase and parent phase
always have the same orientation. This evidence indicates
that there is intrinsic structural correlation between these
three solid phases related to their deeper hidden transition
mechanism, although we can qualitatively understand that the
multistep behavior is energetically favorable or kinetically
more accessible.

In this section, we select a region of the simulating system
in Fig. 5 to analyze the structural evolution by employing
the circularly averaged structure factor S(k) [70], defined as
S(k) = 〈|ψ̂k|2〉, where ψ̂k is the Fourier transform of density
field ψ (�r). Figure 9 shows how the structural factor changes
with time during the dynamic process of “Tri-Int-QC” struc-
tural transformation. The result in Fig. 9 clearly exhibits the
two-step behavior of two length scale orderings. Note that
the locations of two peak values of S(k), k1, and k2, are
two intrinsic length scales that are necessary to form QCs
[14,24]. At the initial stage, the amplitude of S(k2) quickly
reaches a peak while the amplitude of S(k1) is almost zero
before t = 800, which corresponds to the formation of Tri
phase with the period k2. After t = 800, the amplitude of
S(k1) grows up gradually with the decrease of S(k2) until
both S(k1) and S(k2) reach a plateau and S(k2) > S(k1) in the
range from t = 2000 to t = 5600, which is corresponding to
the formation of the Int phase. After t = 5600, S(k1) keeps
increasing with continuous decrease of S(k2). At t = 6400,
they both become stable, which corresponds to the formation
of a final stable QC structure. It is interesting to note that the
profile of the structure factor for Int and QC structures [see
rows t = 2000 and t = 6400 of Fig. 9(b)] is analogous, where
the difference is that S(k2) > S(k1) for the Int structure while
S(k1) > S(k2) for the QC structure.

The evolving details of the structural factor demonstrate
that the competing and coupling between the two intrinsic
length scale orderings give rise to the structural origin of
the multistep growth of QC, wherein the relative increasing
(decreasing) contribution of long (short) length scale k1 (k2)
leads to formation of Tri structure first, then followed by the
Int structure, and finally the formation of the stable QC phase.

E. Tiling structure of Int phase

One-dimensional (1D) quasicrystalline order is argued to
exit between a 2D QC and a 2D crystal [71], because an
intermediate phase between crystals and QCs, which is shown
containing periodic ordering and quasicrystalline ordering,

FIG. 9. Dynamic process of “Tri-Int-QC” structural transforma-
tion in a specific region marked as yellow box in Fig. 5(f). (a)
Evolution of peak values of averaged structure factor S(k1) and S(k2)
during the transition process. (b) Upper row: circularly averaged
structure factor. Bottom row: real-space snapshots.
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FIG. 10. Structural characterization of the Int phase. (a) The tiling structure of the calculated Int phase at (ε, ψ̄ ) = (0.32, −0.315). (b) Two
unit cells of the aperiodic sequence. (c) Schematic plots of the characteristic length scales of Int structure. (d) Radial distribution functions of
Int structure in (a), and QC structure at (ε, ψ̄ ) = (0.26, −0.315). Note that r is normalized by the unit short length scale a/(2 cos(π/12)).

has been reported in the quasicrystalline substrate system [28].
In our multistep simulation results, the Int structure always
happens as an intermediate state during “Tri-QC” structural
transformations. Thus it is also expected to be a structure
bridge of both periodicity and quasiperiodicity, which will be
illustrated by structural characterization in this section.

In Fig. 10, we obtain the formation of a large Int structure
at (ε, ψ̄ ) = (0.32,−0.315) in a system of 2048	x × 2048	x
and characterize this structure by tiling analysis and radial
distribution function g(r). Figure 10(a) shows that in one
direction, rectangular chains insert irregularly and make the
random sequence of rectangular-triangular array which con-
tains two unit cells, short (S) and long (L) as shown in
Fig. 10(b). We also surprisingly find that the sequence exhibits
aperiodic order. Moreover, in all the “Tri-Int-QC” structural
transformations of our multistep growth cases, we find the
generated Int and QC structures own the same orientation as
the parent Tri structure. Specifically, the orientation parallel
to transition direction at “Tri-Int” or “Int-QC” boundaries
aligns with a specific orientation of Int structure, i.e., the
aperiodic orientation. It is energetically favorable that two
orientations of 2D Int structure could match with one periodic
orientation of Tri structure and one aperiodic orientation of
QC structure at the same time. These evidences indicate
that the aperiodicity of Int structure is suggested to be the
unique quasiperiodic order of dodecagonal QC. Two unit cells
and their shortest length scales in the Int structure shown
as the sketches in Figs. 10(b) and 10(c) are identified from
the calculated profile of the radial distribution function g(r)
[Fig. 10(d)]. In comparison with the g(r) of QC structure,
which has two dominant shortest length scale peaks, the g(r)
of Int structure has three separate peaks at the second shortest
length scale, which is caused by the existence of rectangular

units. The prevalent rectangular unit, which is constructed by
both short and long characteristic length scales, exhibits a
perfect linking unit between Tri structure (formed by short
length scale) and QC structure (dominated by long length
scale). This indicates that the rectangular unit plays a crucial
role in formation of the Int structure and eventually causing
the two-step structural transformations.

Furthermore, by changing the intrinsic length scales of the
model to k1 = 2π/a and k2 = 4πcos(π/5)/a, decagonal (ten-
fold) QC can be obtained. In this condition, multistep growth
behavior of QCs also exists in certain parameter space and a
new Int structure of decagonal QC is also found, as shown
in Fig. S4 [67]. Similarly, two unit cells, containing isosceles
triangle and rectangle units, can be recognized to define this
structure. We note that the Int phase in our simulations is
different from the intermediate phase found previously in
the quasicrystalline substrate system [28], although they both
bridge the periodicity and quasiperiodicity. The Archimedean
tiling (33 · 42) structure in Ref. [28] is the result of mechan-
ical cooperation of the particle-particle and particle-substrate
interactions, while our Int phase exists inherently in the two
length scale models and can be stable in certain parameter
space. On the other hand, from the perspective of tiling and
unit cell analysis, our Int phase can be constructed by two
shortest characteristic length scales, while the Archimedean
tiling structure [28], even though having simple square and
triangle units, is hard to construct as it is such a long-range
aperiodic sequence in one direction with some simple two-
length-scale potential. Moreover, a similar structure, called
the compressed hexagonal phase, has been reported in a
cluster QC system by molecular dynamics simulations [16],
while we suggest that it is a 1D aperiodic structure based on
this work.
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IV. CONCLUSIONS

In summary, an unconventional multistep growth behavior
of QCs due to the existence of the metastable Tri and Int
phases is discovered in both heterogeneous and homogeneous
nucleation and growth processes investigated by phase field
crystal simulations. In comparison to the one-step growth
mode of QCs [24], these new growth modes of QCs are found
in a specific parameter space near the Tri-QC boundary in
the phase diagram. In this parameter space, the metastable
Tri phase is kinetically more accessible if the growth rate of
one length-scale ordering is much larger than the other based
on the linear stability analysis of the undercooled fluid phase.
Furthermore, in the presence of QC-Tri phase coexistence the
appearance of the metastable Int phase at the QC-Tri boundary
can be energetically favorable. Because the newly formed QC-
Int interface may further reduce the QC-Tri interfacial energy
and the distortion energy of the lattice mismatch at the QC-Tri
boundary when the relative magnitude of the free energy
difference of three solid phases is relatively small, the increase
of the bulk free energy of the Int phase is offset by reducing

the excess energy due to the QC-Tri phase coexistence. The
metastable Int phase that always appears at the “Tri-QC”
transition pathway has the intrinsic structural correlation with
Tri and QC phases. Specifically, the Int structure is proven to
be a 1D aperiodic structure to bridge the Tri and QC structure
by the analysis of structure factor evolution, radial distribution
functions, and tiling construction. Our results presented here
demonstrate that the metastable multistep growth behavior is
a key feature of a nonequilibrium phase transition during the
nucleation and growth of QCs.
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