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Understanding and quantifying mass-transport properties in multicomponent alloys poses the issues of (1)
harvesting the atomic scale data, (2) setting up and solving a complex mathematical problem, and (3) identifying
the underlying physics. This Rapid Communication demonstrates that the kinetic cluster expansion formalism
associated with the open-source code KINECLUE provides the means to solve the last two issues. The efficiency
of this framework is illustrated on the study of the temperature-composition dependence of the flux coupling
properties in Fe(C), Fe(O), and Fe(C,O) alloys, with a particular emphasis on the synergetic effects between
alloying elements.
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Mass transport controls the evolution towards equilibrium,
microstructure metastability, local segregations, and phase
transformations, and it is therefore at the core of materials
understanding, development, usage, and aging. For instance,
carburization and oxidation are concomitant phenomena in Fe
alloys due to the gas mixtures used in industrial processes
[1,2]. The knowledge of their relative kinetics is key to
monitoring the final microstructure [3]. Yet, equilibrium is
not always reached [4], and kinetics is also affected by the
evolving microstructure and vacancy content [5]. Moreover,
internal oxidation may produce vacancy fluxes [6,7], leading
to flux coupling [8]. Mass transport in crystals occurs via atom
and defect displacements so it is an atomic scale phenomenon,
and true understanding lies at this scale, while the change of
scale to a phenomenological description in terms of transport
coefficients provides practical models for materials scientists.

The scale transfer procedure is a challenging, still open,
mathematical problem which has been the focus of many
studies since the beginning of the 20th century. Given a
Markovian system represented by a set of configurations and
transitions between these configurations, transport coeffi-
cients can be expressed as an average over all possible tra-
jectories in the system, i.e., all combinations of successive
transitions. The difficulty lies in the theoretically infinite
number of these trajectories.

The integration over infinite trajectories is sometimes pos-
sible [9–12], but currently limited to simple systems. These
solutions are elegant and mathematically exact, but diffusion
is always limited in time and space in real-life materials,
which indicates that infinite integration is not mandatory.
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Indeed, other methods use cutoff distances to limit the integra-
tion [13,14], and from a numerical point of view, the results
are found very close to infinite integration for a sufficient
cutoff distance because the weight of kinetic trajectories de-
creases with trajectory length. Hence, these simpler and more
approximate models provide a fair compromise between com-
putability, generality, and accuracy. Nevertheless, the number
of trajectories to consider for a given cutoff distance is a fast
increasing function of the number of alloy components.

To our knowledge, there is one example of an analytical
calculation of solute diffusivity with a three-defect cluster
in a binary alloy [15], while other studies were performed
on infinitely dilute systems (containing monomers and pairs
only) [16–29], and databases that are currently soaring reduce
to these infinitely dilute systems [30–35].

Moreover, it was shown that small impurity concentrations
may have large thermodynamic effects [36], and it is expected
that the same happens for kinetic properties. Also, it is known
that solute-defect clusters larger than pairs are the most prob-
able cluster under certain conditions [37–39]. Ideal trapping
(e.g., immobile clusters) is often assumed [40,41] but there
are examples of clusters that are more mobile than monomer
species [42,43]. Therefore, neglecting clusters larger than
pairs is definitely questionable, but a model to evaluate their
contribution to mass transport is missing.

This Rapid Communication presents an effective frame-
work to quantify solute-point defect cluster contributions to
the transport coefficients in binary and ternary alloys. The
latter have not been treated at this level of precision while
they are technologically relevant and show complex and
rich kinetic phenomena. We focus on dilute systems but in
terms of modeling capabilities our approach considers up
to four interacting cluster components both in binary and
ternary alloys. We describe the general approach, methods,
and parametrization schemes, and then we apply those to
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FeC, FeO, and FeCO dilute alloys and study the concentration
effects on the flux coupling properties.

Our approach is based on a cluster expansion of the
Onsager matrix [44]. It requires the alloying elements to be
sufficiently dilute so that at each time the system can be
well separated into subsystems (called clusters) and that this
separation holds for a period of time long enough for clusters
to reach local equilibrium between their various internal con-
figurations. Under this assumption, cluster thermodynamic
and kinetic properties are intrinsic equilibrium cluster prop-
erties and can be computed separately for each cluster. The
separation is formally performed by setting a cutoff range
called the kinetic radius [44] beyond which the trajectories
of atoms and defects are assumed to be uncorrelated. This
kinetic radius is typically a few lattice parameters in length
(two in this study), and the corresponding concentration levels
required to validate the above-mentioned assumption typically
range between 0.1 and 1 at. %. Given the solubility limits of
C and O in Fe [37], this assumption is completely reasonable
for Fe(C,O) alloys.

The full kinetic properties of the system are obtained by
summing all cluster contributions,

Lαβ =
∑

l,m,n

[VlXmYn]Lαβ (VlXmYn), (1)

where Lαβ is a total transport coefficient which characterizes
the whole system (αβ component of the Onsager matrix [45])
and the sum runs over all cluster types VlXmYn (l, m, n being
the number of vacancies, solute X , and solute Y in the cluster,
respectively). Each cluster type is characterized by concen-
tration [VlXmYn] (in m−3) and cluster transport coefficients
Lαβ (VlXmYn) (in m2/s). Here, these cluster transport coeffi-
cients are obtained using the KINECLUE code [44,46], which
implements the self-consistent mean-field (SCMF) method
[13,14,23] in an automated and efficient way, and cluster con-
centrations are computed with a low-temperature expansion
(LTE) approach [36,47–51].

The LTE of the free energy is performed around a reference
state (pure α-Fe), and each term in the expansion consists
in adding vacancies (V ) and/or solutes (X,Y ). Rigorously
speaking, the expansion is in terms of energy difference with
respect to the reference system, but as solution and formation
energies are large in these systems, the expansion is equiva-
lently performed in terms of cluster sizes. The partition func-
tion of a VlXmYn cluster reads ZVl XmYn = ∑

p gp exp(E p
b /kBT ),

where the sum runs over all internal configurations p of
cluster VlXmYn, each one having its geometrical multiplicity gp

accounting for configurational entropy, and its binding energy
E p

b (positive value means attraction), kB is the Boltzmann
constant, and T the absolute temperature. Let us define [α] =
exp(μα/kBT ), μα being the chemical potential of species
α = V, X,Y . In the LTE formalism, the nominal solute con-
centration [X ]T is expressed as

[X ]T =
∑

l,m,n

m[V ]l [X ]m[Y ]nZVl XmYn , (2)

and a similar expression holds for [V ]T and [Y ]T .
The SCMF method uses statistical mechanics to com-

pute transport coefficients from the knowledge of jump

mechanisms and jump rates. Not only are first nearest-
neighbor jumps considered in our calculations, but also
second- and third-nearest-neighbor jumps of interstitial so-
lutes around vacancies which happen to have small migration
barriers in these alloys [43].

Our methodology requires atomic scale input, namely,
binding energies for the LTE, and migration energies and
attempt frequencies for the SCMF. Binding energies were
taken from previously published ab initio data when available,
or computed from a lattice interaction model fitted to ∼130
ab initio binding energies that was developed previously [37].
This model uses two-body and three-body interactions to
capture the effect of local chemistry and local lattice relax-
ation. We used ∼45 previously computed ab initio migration
energies [43], and the remaining barriers were estimated with
a simple kinetically resolved activation barrier model [52]
where the activation energies are taken as the migration en-
ergies of isolated solutes or vacancy, and attempt frequencies
να are taken constant for each species and obtained from fitted
experimental data [23].

Irradiation maintains a supersaturation of point defects in
the bulk, creating a sustained flux of point defects from the
bulk to point defect sinks [53–55]. This point defect flux (only
vacancies in this study) creates a coupled flux of solutes due to
vacancy-solute interactions, and the magnitude of this coupled
flux is characterized by the flux coupling ratio η = LXV /LVV ,
X = C, O. Obviously, if only solute and vacancy monomers
are accounted for, η = 0. In a binary alloy, the infinitely dilute
drag ratio η∞ is obtained considering V , X , and V X clusters
only,

η∞ = LXV (V X )/LVV (V X )

1 + λV /[X ]
, (3)

where λVl Xm = ZVl Xm LVV (VlXm)/ZV X LVV (V X ). Here, includ-
ing concentration effects means including the mass-transport
contribution of clusters larger than V X pairs, and we will show
how these contributions change flux coupling properties by
comparing η and η∞.

The first-order concentration correction should include
either V X2 or V2X clusters. In the Fe(C) alloy, [V ]T � [C]T

and the V C2 cluster is found particularly stable due to the
formation of a covalent C-C bond in the vicinity of the
vacancy [37,56–58]. Hence, as a first step, let us add the
contribution from V C2 clusters only, and the drag ratio reads

η = [V C]LCV (V C) + [V C2]LC(V C2)

[V ]LVV (V ) + [V C]LVV (V C) + [V C2]LVV (V C2)
. (4)

Denoting χVl Xm = ZVl Xm LXV (VlXm)/ZV X LV X (V X ) and λ̃l =
[V ]l−1([X ]λVl X + λVl ), Eq. (4) is recast into

η

η∞
= 1 + [C]χV C2

1 + [C]2λV C2/λ̃1
. (5)

Note that λVl Xm and χVl Xm are ratios of intrinsic cluster prop-
erties. The top plot of Fig. 1 shows a drastic effect of V C2

clusters on the drag ratio as η and η∞ have opposite signs for
T < 410 K. In Fe(C) alloys supersaturated with vacancies at
room temperature, the infinitely dilute model would suggest
a decrease of C segregation at point defect sinks, whereas a
more comprehensive model including V C2 clusters yields the
opposite conclusion.
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FIG. 1. Top: Drag ratio η as a function of temperature
with/without the contribution from V C2 clusters at [C]T = 10−3.
Bottom: Various ratios of cluster quantities as a function of tem-
perature. The ones in the bottom legend depend on [C]T while the
ones in the top legend are combinations of intrinsic cluster properties.
All curves are independent of [V ]T . Open symbols and dashed lines
represent negative quantities.

Over the whole temperature range, there are more V C2

clusters than V C clusters (red line), but the latter diffuse
much faster than the former (green symbols) leading to a
competition between thermodynamics and kinetics. In re-
gion 1, the (positive) V C2 contribution prevails in LV C. In
regions 2 and 3, the (negative) V C contribution prevails in
LV C despite the fact that most C atoms are found in V C2

clusters.
The |χV C2 | curve shows that there will be no concentration

effects unless the solid solution is supersaturated with C,
for instance, [C]T > 10−5 at T = 300 K or T < 500 K at
[C]T = 10−3, which are largely above solubility limits at these
temperatures [37,59,60].

Fe(O) alloys show two specific features: a very low O
solubility limit (see Ref. [37] and references therein) and a
very strong V -O binding energy (1.43 eV [37,61–63]). From
a kinetic point of view, it was proposed that V3O clusters could
contribute significantly to the alloy kinetic properties since
the O atom stabilizes the trivacancy while still allowing it to
diffuse rapidly [43]. However, the kinetic properties of VlOm

clusters were not fully accounted for, as the mobility of these
clusters was estimated from one low-energy migration path
only.

With KINECLUE [46] we are now able to go much further
and compute the full transport coefficient matrices for a whole
set of clusters, taking into account kinetic correlations. We
considered clusters V , V2, V3, O, O2, O3, V O, V O2, V2O, and

FIG. 2. Drag ratio in the FeO alloy compared with the infinitely
dilute case as a function of vacancy and oxygen concentration at T =
400 K. The plot is split into several regions, each corresponding to
different dominating cluster contributions to total concentrations and
transport coefficients, as shown in Table I. The open squares show the
O solubility limit as a function of [V ]T and the open circles show the
equilibrium vacancy concentration as a function of [O]T . The black
diamond symbol marks the equilibrium point [36,37].

V3O, and η/η∞ reads

η

η∞
= 1 + [O]χV O2 + [V ](χV2O + [V ]χV3O)

1 + ([O]2λV O2 + λ̃2 + λ̃3)/λ̃1
. (6)

Figure 2 shows the evolution of this ratio as a function of [O]T

and [V ]T at T = 400 K.
There are three main regions in Fig. 2: the white region

around the equilibrium point where flux coupling happens es-
sentially as if the system was infinitely dilute (the contribution
from V O pairs prevails); the blue region on the right-hand side
where η � η∞; and the colored region from red to yellow to
green where η � η∞. Contrary to Fe(C) alloys, all clusters
considered here produce positive flux coupling, but the vari-
ation in terms of magnitude is much higher in Fe(O) alloys.
These large variations stem from the interplay between cluster
thermodynamics (VlOm clusters are very stable) and cluster
kinetics (apart from V3 and V3O, VlOm clusters diffuse slowly).
The plot is divided further into 18 regions labeled from
“a” to “r,” each having a specific combination of dominant
clusters for nominal concentrations and transport coefficients,
as detailed in Table I. The complexity of Fig. 2 demonstrates
that cluster thermodynamic and kinetic properties must neces-
sarily be considered concurrently to explain the variations of
flux coupling properties over the full composition range.

To study the ternary Fe(C,O) alloy, we considered all VlOm

clusters from the previous example and added clusters C,
C2, C3, V C, V2C, V C2, V3C, OC, O2C, OC2, and V OC. The
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TABLE I. Dominating clusters in each region of Fig. 2. Columns
[V ]T and [O]T show the largest cluster contribution in the total
concentration of vacancies and oxygen atoms, respectively. Columns
LVV and LOV show the largest cluster contribution in the transport
coefficients.

Region [V ]T [O]T LVV LOV Region [V ]T [O]T LVV LOV

a V O V V O j V V O2 V V3O
b V V O V V O k V O2 V O2 V V3O
c V V O V V3O l V2O V O2 V V3O
d V V2O V V3O m V2O V2O V3O V3O
e V V2O V3 V3O n V O2 V O2 V O2 V O2

f V3 V2O V3 V3O o V O2 O V V O
g V3 V3O V3 V3O p V O2 O V O2 V O
h V V O2 V V O q V O2 O V O2 V O2

i V O2 V O2 V V O r V O2 O3 V O2 V O2

latter cluster is particularly interesting because it contains
all three species. The three off-diagonal coefficients of the
V OC cluster Onsager matrix are all positive below 600 K,
whereas above that temperature, LV C(V OC) and LOC(V OC)
become negative, so the same cluster generates both positive
and negative flux coupling.

Figure 3 shows two flux coupling coefficients at 500 K for
both equilibrium vacancy concentration and constant super-
saturated vacancy concentration. In the latter case there is a
thermodynamic competition between C and O atoms to bind
with the limited number of available vacancies, leading to
abrupt changes in species chemical potentials. This thermody-
namic effect modifies the full cluster distribution and explains
the seeming discontinuities in kinetic properties.

At equilibrium vacancy concentration and O concentration
larger than 3 × 10−9, V O2 clusters provide the main contri-
bution to both LVV and LOV coefficients. Hence the total drag
ratio can be approximated by the V O2 cluster drag ratio which
is close to 2 because in this strongly bound cluster, the V
drags two O atoms. At lower O concentration, the isolated
V contribution prevails in the LVV coefficient and since this
cluster does not contribute to flux coupling, the total drag ratio
decreases. We observe a similar behavior for a supersaturation
of vacancies, except that the threshold O concentration value
is higher, and that at low O concentration, other vacancy-rich
clusters are involved. Except at high [C]T and low [O]T , both
LVV and LOV coefficients are dominated by VlOm clusters so
the effect of C on the LOV /LVV drag ratio is negligible.

For the LCV /LVV drag ratio, there is a change in sign
as [O]T increases because V OC [LCV (V OC) > 0] dominates

FIG. 3. Examples of flux coupling coefficients in the ternary Fe(C,O) alloy for equilibrium and supersaturated vacancy concentration at
T = 500 K. Coefficients of the first column are always positive, while the sign is indicated for the second column, and we plot the absolute
value. For each region we indicated the cluster having the main contribution to the off-diagonal coefficient, and the cluster having the main
contribution to the LVV coefficients, both separated by a “/” sign.
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over V C [LCV (V C) < 0]. For supersaturated vacancies and
while isolated V dominate the LVV coefficient, the magni-
tude of the LCV /LVV ratio is independent of [O]T because
VlCn clusters prevail in both coefficients. Nevertheless, [O]T

controls the sign of flux coupling by binding with vacan-
cies and thereby reducing the concentration of V2C clus-
ters [LCV (V2C) > 0] in favor of V C clusters. For [O]T >

2 × 10−7, the flux coupling ratio decreases with [O]T and
increases with [C]T , which is understandable once the dom-
inating clusters are known.

We presented a framework aiming at computing and ra-
tionalizing the mass-transport properties of dilute multicom-
ponent systems. Our methodology relies on intrinsic thermo-
dynamic and kinetic properties of clusters, which are com-
puted combining ab initio calculations and the KINECLUE

code. The decomposition of the Onsager matrix into clus-
ter contributions is a powerful and practical approach to
the extreme complexity of diffusion in multicomponent
alloys.

Taking into account clusters larger than pairs, our study
sheds light on the flux coupling properties of dilute Fe
alloys. Assuming that the system is locally at equilibrium,
thermodynamics controls the cluster population, and abrupt
changes occur at some threshold solute concentration values.

Then, knowing the intrinsic kinetic properties of each cluster,
the kinetic properties of a given cluster population can be
computed and analyzed. We found that quite often, the most
thermodynamically stable cluster is not the one controlling
flux coupling, as shown, for instance, in Fe(C) and Fe(C,O)
alloys.

Our methodology is a general and effective tool to go
from atomic jump frequencies to continuous transport coef-
ficients. The study of the sensibility of our model to atomic
scale input (binding and migration energies) is beyond the
aim of our study, but KINECLUE does provide the tools to
perform such an analysis, as it was done in dilute FeC
alloys, for instance [44]. The cluster formalism makes it
possible to study dilute multicomponent systems that are
closer to real-life materials and home to richer and more
diverse physical phenomena. Moreover, the outputs of our
framework are thermodynamic and kinetic properties of clus-
ters, which turn out to be the inputs required for cluster
dynamics simulations (e.g., Ref. [64]). The concentrations
computed at steady state with low-temperature expansions
in this study could be obtained as a function of time with
cluster dynamics, enabling quantitative predictions of time-
dependent thermodynamic and kinetic properties in transient
systems.
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