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Displacive phase-field crystal model
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A phase-field crystal model that spontaneously undergoes displacive phase transitions is introduced by
explicitly studying a two-component two-dimensional square crystal reminiscent of a perovskite. When the
intercomponent free energy is a simple polynomial, the crystal undergoes displacive transitions in the 〈10〉
and 〈11〉 directions. When the interaction is a correlation function, displacements in any direction can occur.
This displacive phase-field crystal (DPFC) model maps to Landau-Ginzburg-Devonshire (LGD) theories for
ferroelectrics, and the DPFC and LGD models are compared in terms of phase transitions and domain walls.
Dynamical simulations of quadrijunctions were also performed and found stable spiraling quadrijunctions
and unstable nonspiraling quadrijunctions. Last, domain coarsening across a small-angle grain boundary
demonstrates multiple forms of non-mean-curvature-driven growth.
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I. INTRODUCTION

A fundamental problem limiting the utility of molec-
ular simulations is the problem of rare events. Namely,
current computational technology limits the timescale of or-
dinary molecular dynamics (MD) simulations to the order
of nanoseconds, which is too short to capture phenomena
of interest such as protein aggregation [1] and grain motion
[2]. Typical long-timescale methods, such as coarse-grained
molecular dynamics [3] and phase-field models [4], do not
model with atomic resolution. Other models retain atomistic
detail but require significant amounts of a priori information,
such as a transition catalog for kinetic Monte Carlo (KMC)
[5] and correct choices of collective variables for accelerated
MD [6,7].

Due to these difficulties, the phase-field crystal (PFC)
model has gained attention [8]. The PFC model retains atom-
istic detail, is capable of long-timescale simulations, and
does not require a priori knowledge about the process one
is attempting to simulate. However, unlike MD and KMC,
it is a free-energy-functional-based method. Meaning, unlike
in MD and KMC, whose potentials are functions of discrete
atomic coordinates, in PFC models, the free energy is a
function of smooth order parameters, which are interpreted as
values averaged over the timescale of atomic vibrations. As a
consequence of being a functional method, the extensive work
developing accurate potentials for molecular dynamics [9] are
not useful, and entirely new potentials must be developed for
every new material of interest. Despite some effort to connect
the PFC potentials to data from classical density-functional
theory [10–12], this approach has unfortunately only been
demonstrated to work for body-centered cubic materials. In
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practice, most PFC models are “empirical” in nature and are
fit to assorted data [13–16].

One important empirical model is the structural PFC
(XPFC) model [17,18]. In this model, the free energy is

F [n] =
∫

V

[
1

2
n2 − 1

6
n3 + 1

12
n4 − 1

2
nC ∗ n

]
dr, (1)

where F is the nondimensionalized free energy, n is the
nondimensionalized atomic density, V is the system volume,
C is an isotropic two-point correlation function, and C ∗
n ≡ ∫

V ′ C(|r − r′|)n(r′)dr′. Drawing inspiration from classi-
cal density-functional theory, the correlation function term is
called the “excess” free energy and the polynomial of n the
“ideal” energy [19]. The XPFC model’s successes are based
on the insight that putting peaks in the Fourier transform of
the two-point correlation function, Ĉ(q), at q = |q| values
where there are peaks in the materials diffraction pattern
stabilizes many structures. Purely motivated by simplicity, the
correlation function itself is defined as a sum or supremum
of Gaussians so that the q values where extrema occur can
be easily specified. As an added benefit, the elastic constants
can be controlled by specifying by the second derivative of
Ĉ at those extrema [17,18]. This approach is successful in
stabilizing fcc [18], hcp [20], and diamond [21], despite the
lack of connection between the correlation functions used in
these models and the correlation functions of real liquid-state
metals [22]. The connection between the Fourier transform of
the target crystal structure, the crystal’s structure factor, and Ĉ
was further explored in later work [23,24].

The XPFC model as originally conceived dealt only with
single-component crystals. As the vast majority of crystalline
materials are multicomponent, there have been a number of
extensions. The first extension dealt with substitutional and
interstitial alloys. In this case, instead of the free energy
being a function of the normalized atomic density of a sin-
gle component, F [nA], the free energy is a function of the
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total normalized density and a long-wavelength concentration
order parameter, F [n, c] [19,25,26]. In contrast to substi-
tutional alloys, in intermetallic alloys the “concentration”
order parameter varies on the length scale of the unit cell,
and the long-wavelength approximation is invalid. Instead,
intermetallic PFC models utilize an additional correlation
function to cause the “concentration” order parameter to
vary on the length scale of the unit cell [23,27]. When the
intermetallics have exact stoichiometries that do not readily
permit substitutions though, models are typically constructed
as explicit functions of the separate component densities,
F [nA, nB], instead [16,24].

Perovskites, which are of interest for applications ranging
from solar cells [28,29] to light-emitting diodes [30], are
examples of these intermetallics with exact stoichiometries.
Motivated by a desire to predict perovskite microstructure,
two of the authors recently introduced a simple PFC model
that stabilizes the basic perovskite crystal structure [24].
However, a major issue with this model is that it does not
exhibit ferroelectricity. At high temperatures, perovskites such
as PbTiO3 have a centrosymmetric crystal structure, and on
a decrease in temperature, they undergo displacive phase
transitions to noncentrosymmetric states [31]. The noncen-
trosymmetric crystal structures are the source of polarization
densities, and the ability of the materials to transform between
the multiple symmetry equivalent noncentrosymmetric states
on application of an external electric field is the source of the
ferroelectricity. The previously developed perovskite model,
like other prior multicomponent PFC models, only stabilizes
the centrosymmetric state [16,19,23–25,27], making polariza-
tion and ferroelectric phenomena impossible.

Although no PFC model exists that demonstrates a dis-
placive phase transition, there does exist a plethora of phase-
field models for modeling ferroelectrics. These models, also
known as Landau-Ginzburg-Devonshire (LGD) models, pos-
tulate a free energy as a function of a polarization vector, gra-
dients in the polarization vector, and elastic strain [32]. This
theory has been used to predict topological phase transitions
in ferroelectric nanoparticles [33], understand ferroelectric
switching and domain wall profiles in perovskites [34–36],
and much more [37]. As PFC models naturally incorporate
elasticity without requiring an explicit elastic field, Seymour
et al., based on similar work in magnetic systems by Faghihi
et al. [38,39], introduced a model [40] where the free energy is
not only a function of the normalized atomic density as usual
but also an explicit function of the polarization vector and its
gradient. This was accomplished by adding the polarization
terms of LGD models to a normal PFC functional [Eq. (1)]
and then introducing appropriate coupling terms between the
polarization and PFC terms in order to recover the traditional
LGD models in the phase-field limit. As might be apparent
from the descriptions alone, both Seymour’s model and LGD
models are quite complex.

In the present work, we introduce a phase-field crystal
model for displacive phase transitions that reproduces many
of the complex free energies and behaviors of LGD models,
without any explicit polarization field. Instead, the polariza-
tion is an emergent property. Section II introduces the dis-
placive phase-field crystal (DPFC) model in general and then
illustrates it by considering a simple square crystal (Fig. 1).

(a) Unpolarized (b) [10] polarized

(c) [11] polarized (d) Non-symmetric polarization

FIG. 1. Plots of the unpolarized and polarized states in the two-
component square crystal model. The yellow regions (corners and
center) are sites for component A, and the dark-blue regions are sites
for component B. The red lines are visual aids to show symmetries
of the unit cell. Notice that in (d), the site of the dark-blue region
possesses no special symmetries.

Using a few simple polynomial interaction terms between
the components, displacive transitions in the 〈10〉 and 〈11〉
directions are shown to be possible, and by using a correlation
function for the intercomponent interaction, positioning an
atom at any position in the unit cell is demonstrated to be
possible as well. Section III compares the DPFC model to
LGD theory. Last, Sec. IV verifies that the 〈10〉 displacive
transition is second order, examines the behavior of domain
walls and quadrijunctions, and makes predictions about the
interaction of domain walls with grain boundaries.

II. MODEL FORMULATION

In general, the free energy of a two-component system
can be decomposed into the free energies of the individual
components, Fi, plus an interaction correction, FAB. Namely,

F [nA, nB] = FA[nA] + FB[nB] + FAB[nA, nB], (2)

where F is the total nondimensionalized free energy. The
nondimensionalized atomic density for component i, ni, is
defined by

ni = ρi − ρi,0

ρi,0
, (3)

where ρi is the actual atomic number density and ρi,0 is the
reference atomic number density. In general, FA and FB could
be any one-component free-energy model, with either three-
point [23,41,42] or only two-point [18,19] interactions. For
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FIG. 2. Schematic of polarization in one dimension. In the un-
polarized state, the nA (blue) and nB (red dashed) curves are exactly
180◦ out of phase. When the system polarizes, nB shifts (red solid).

simplicity, in this article FA[nA] and FB[nB] will be identical
XPFC models in the form of Eq. (1) [17,18]. The correlation
function itself is defined in Fourier space such that

ĈA(q) = ĈB(q) = max
j

[
b je

−(q−q j )2

2σ2
j

]
, (4)

where Ĉi is the Fourier transform of the isotropic two-point
correlation function for component i, q = |q|, qj are constants
that determine the crystal structure, σ j are standard deviations
that control the elastic constants, and bj are positive numbers
connected to the system temperature [18].

A. Symmetric transitions

The simplest method for modeling exact intermetallics is
to, following Taha et al., Taylor expand FAB in the variables
nA and nB. To fourth order, for the symmetric nA and nB

components

FAB =
∫

V

[
α2nAnB + α3

(
nAn2

B + n2
AnB

)

+ α4

2
n2

An2
B + α5

(
n3

AnB + nAn3
B

)]
dr. (5)

For additional simplicity, α5 = 0 henceforth. To explain why
Eq. (5) is sufficient for polarization, Landau models for the
one-dimensional (1D) and two-dimensional cases will be
explained.

1. One-dimensional crystal

Consider the case where the single-component correlation
function [Eq. (4)] is only a single Gaussian with a peak at
wave number q1 = 2π/a, where a is the lattice constant. In
one dimension, the polarization imagined is shown in Fig. 2.
The blue and red curves are the same shape but are phase
shifted relative to each other. In the unpolarized state, the
relevant phase shift, �x, between the two waves is exactly
a/2. In the polarized state on the other hand, the phase shift
�x = a/2 + δ, where δ is the nonzero displacement from the
centrosymmetric position.

The conditions for this displacive phase transition can be
understood with one-dimensional Landau theory. Since the
single-component correlation function contains only a single
peak, it is reasonable to use a one mode expansion for ni.
Namely,

nA(x) = n̄A + Aeiq1x + A∗e−iq1x (6)

and

nB(x) = n̄B + Beiq1x + B∗e−iq1x, (7)

where A and B are the amplitudes, A∗ and B∗ are the complex
conjugates of A and B, and n̄A = n̄B to ensure charge neutral-
ity. For the duration of this article, n̄A = 0 for simplicity. Since
F [nA, nB] = F [nB, nA], it is assumed that |A| = |B|. This is
equivalent to assuming that nB is a phase-shifted copy of nA.
Consequently, B can be expressed as

B = Aeiq1�x. (8)

Since FA and FB are independent of �x, only Eq. (5) must be
minimized to find the conditions for polarization. Plugging in
Eq. (6) and Eq. (7) into Eq. (5) in the simplified α3 = 0 case
results in

FAB

a
= −2α2|A|2 cos(q1δ) + α4|A|4[2 + cos(2q1δ)]. (9)

From Eq. (9) it is clear why α4 is necessary; without it, δ = 0
or δ = a/2 (depending on the sign of α2). The polarization
phenomena occurs because with α2 > 0, the nAnB term favors
δ = 0 while the n2

An2
B term favors δ = ±a/4. This competition

drives a displacive phase transition. More precisely, there is
polarization when α2, α4 > 0 and

α2

α4|A|2 < 2, (10)

with the value of the displacement itself being

δ = 1

q1
cos−1 α2

2α4|A|2 . (11)

The polarization condition, Eq. (10), can also be derived by
Taylor expanding Eq. (9)

FAB

a|A|2 ≈ (−2α2 + 3α4|A|2) + q2
1(α2 − 2α4|A|2)δ2

+ q4
1

(
− α2

12
+ 2

3
α4|A|2

)
δ4. (12)

As usual for a single-order-parameter quartic Landau model,
the equilibrium phase just depends on the sign of the quadratic
term.

2. Two-dimensional polarization

Unlike in one dimension, in two dimensions there are
many possible polarization directions. In this work, only a
square crystal is considered for simplicity. In the unpolarized
state [Fig. 1(a)], the phase shift, �r, between nA and nB

is (a/2, a/2). In the polarized state [Fig. 1(b)–1(d)], the nB

peaks are off-center, i.e., δ = �r − (a/2, a/2) = (δx, δy) is
nonzero.
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To understand the polarization process, Landau theory
analysis like in 1D is performed. Unfortunately, it is more
difficult. Since the square crystal structure is two dimensional
and cannot be stabilized by a single frequency [17,18], now ni

are expressed as more general Fourier series. Namely

nA(r) =
∑

hk

Ahkeiqhk ·r (13)

and

nB(r; �r) =
∑

hk

Ahkeiqhk ·(r+�r), (14)

where

qhk = hb̂1 + kb̂2 (15)

is a reciprocal lattice vector of the crystal, h and k are integers,
and b̂i is the ith primitive reciprocal lattice vector. It is worth
noting that during numerical simulations, it was discovered
that the approximation of Eq. (8) and Eq. (14) is not exactly
true. Meaning nB is not exactly a phase-shifted copy of nA,
and given the numerical nA, there is no �r that exactly
solves Eq. (14) for all amplitudes. For simplicity, however, the
approximation that a single parameter, the phase-shift vector
�r, can map Ahk to Bhk is made.

In addition to the phase-shift approximation, there are
other complications when converting this model into a Landau
model like in one dimension. Since the unpolarized state is
a member of the plane group p4mm, there are eight general
Wyckoff positions denoting equivalent positions in the unit
cell, and these real-space symmetries correspond to symme-
tries in the amplitudes [43]. If the Fourier series in Eq. (13)
has its origin at the corner of a unit cell, then one example
equivalency is that

nA(x, y) = nA(x,−y) ⇒ Ahk = Ahk̄ . (16)

This analysis for all Wyckoff positions implies that all A{hk}
are equal, where {·} denotes a family of hk pairs created by
the permutation and negation of the internal elements (e.g.,
{12} includes eight pairs: 12, 1̄2̄, 12̄, 1̄2, 21, 2̄1̄, 21̄, 2̄1). When
the structure polarizes in the [10] direction, however, the plane
group changes to p1m1. This plane group has only two general
Wyckoff positions, and the only amplitude symmetry is that
Ahk = Ah̄k . Consequently, A10 = A1̄0 but A10 
= A01 in general,
which further complicates the analytical free-energy expres-
sion. For simplicity, however, this complication is neglected
as A10 ≈ A01 still.

With these caveats, the bulk analytical free energy, FAB, as
a function of two modes A1 = A{10} and A2 = A{11} with α3 =
α4 = 0, is

FAB

α2A
= −2A2

1[cos(q1δx ) + cos(q1δy)]

+ 2A2
2{cos[q1(δx + δy)] + cos[q1(δx − δy)]}, (17)

or, in Taylor expanded form,

FAB

α2A
= 4

( − A2
1 + A2

2

) + q2
1

(
A2

1 − 2A2
2

)(
δ2

x + δ2
y

)

+ q4
1

(
− 1

12
A2

1 + A2
2

6

)(
δ4

x + δ4
y

) + q4
1A2

2δ
2
x δ

2
y , (18)

TABLE I. Table of parameter values for {10} polarizing model.

Quantity Value

b1 1.0
b2 0.98
q1 2π

q2 2π
√

2
σ1 2.0
σ2 2.0
α2 0.01
α3 0.05
α4 0.05
α5 0
a0 1.0
n̄ 0

= FAB,0 + 1

2
α
(
δ2

x + δ2
y

)

+ 1

4

[
�11

(
δ4

x + δ4
y

) + �12δ
2
x δ

2
y

]
, (19)

where FAB,0, α, �11, and �12 are defined as the corresponding
coefficients in Eq. (18). Equation (19) is exactly the fourth-
order Landau free energy for a two-component spin system
with cubic anisotropy [44]. Normally when constructing phe-
nomenological Landau models, one must be careful to only
include the terms that have the same symmetries as the crystal
under study. Because the PFC model has the crystal structure
built in, the resulting Landau model automatically contains
only the terms with the correct symmetries.

Landau theory can be used to understand not only the exis-
tence of displacive phase transitions but also their direction. In
Eq. (19), if �12 > 2�11, then if polarization occurs it will be in
the 〈10〉 direction [44] (〈·〉 denotes a family of real variables
in the same manner that {·} denotes a family of reciprocal
space variables). If �12 < 2�11, on the other hand, then any
polarization will be in the 〈11〉 direction [44]. Parameters were
found such that both the 〈11〉 [Fig. 1(c)] and 〈10〉 [Fig. 1(b)]
polarizations occur in numerical simulation, using α3 = 0 and
α3 
= 0, respectively (Table I). In the normal parameter space
of the single-component PFC model, the quadratic coefficient
α in Eq. (19) is always positive, so polarization does not occur.
Parameters that analytically minimize the free energy and give
〈10〉 polarizations do exist but require α3, α4 
= 0 and an A{20}
mode. For brevity, this full expression is emitted.

B. Generic polarization

In order to model polarization in an arbitrary direction, the
free energy

FAB =
∫

V
nm

ACAB ∗ nm
B dr, (20)

where m is a positive integer, is used in place of Eq. (5).
The possibility of a displacive phase transition to an “arbi-
trary” direction is motivated by the fact that although such
a polarization is impossible in fourth-order Landau theory,
it is possible in eighth-order Landau theory [44]. Equation
(20) itself is phenomenologically motivated, and presumably,
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additional terms where the powers for nA and nB are not the
same could give rise to additional behavior. In the simple case
of a displacive transition in the square crystal, this term is
sufficient to describe all possible polarization states consistent
with the plane group. Substituting Eqs. (13) and (14) into
Eq. (20) gives

FAB(�r)

A =
∑

h1k1,...,hmkm,h1K1,...,hmKm

m∏
α=1

Ahαkα
AhαKα

× ĈAB(s)eis·�rδ−s,t , (21)

where the nA sum has hk indices, the nB sum has hK indices,

s =
m∑

l=1

qhlKl
, t =

m∑
l=1

qhl kl
, (22)

and s = |s|. If ni are Fourier expanded with two amplitudes as
in Sec. IIA2, then Eq. (21) simplifies to

FAB(�r)

A =
∑

s

cse
is·�r, (23)

where

cs =
2m∑

K=0

AK
1 A2m−K

2 Ns,KĈAB(|s|) (24)

and Ns,K is the number of vector sums in Eq. (21) such that
both s = −t and exactly K vectors of magnitude q1 are terms
in the sum s. Because Ns,K is an integer, it can be calculated
exactly, albeit with computational assistance.

Observe that Eq. (23) is in the form of a Fourier series
and has the same periodicity as FA and FB. Since s is a sum
of reciprocal lattice vectors, it is a reciprocal lattice vector as
well and can be referenced with indices hk. Although for finite
m there are only a finite set of s vectors, as m → ∞, s comes
to include all reciprocal lattice vectors. Consequently, in order
to create a desired FAB(�r), one simply needs to control cs,
which is accomplished through modifying ĈAB(s).

The fact that ĈAB is isotropic limits FAB to functions with
certain types of symmetries. Since N{hk},K are all equal, c{hk}
are all equal as well. This implies that FAB must be a member
of the p4mm plane group for similar reasons as explained in
Sec. IIA2. Further, if vectors shk and suv are distinct but of the
same magnitude, meaning (uv) 
∈ {hk} but

h2 + k2 = u2 + v2, (25)

then

chk

cuv

=
∑2m

K=0 AK
1 A2m−K

2 Nhk,K∑2m
K=0 AK

1 A2m−K
2 Nuv,K

, (26)

since their correlation function terms must be equal. An exam-
ple of coefficients that must satisfy Eq. (26) are c{34} and c{50},
as well as any other Pythagorean triple. In technical terms,
Eq. (25) is a Diophantine equation (whose general solution
is known) [45]. However, given these restrictions on allowed
FAB functions and ignoring the problematic terms that solve
Eq. (25), FAB is controlled by setting ĈAB according to

ĈAB,set (s) = cs∑2m
K=0 AK

1 A2m−K
2 Ns,K

. (27)

FIG. 3. FAB plot over a unit cell for a desired δ = (0.16, 0.34).
The color map goes from dark blue (lowest values) to light yel-
low (highest values). FAB contains eight equal minima as intended;
horizontal, vertical, and diagonal mirror planes; as well as various
fourfold rotation axes.

In order to validate that this method can create arbitrary
polarizations, it is necessary to choose cs values. As a simple
test, these coefficients were chosen to be the coefficients
from an expansion of a sum of delta functions that have
the eightfold symmetry required by a generic position in the
p4mm plane group [43]. Namely,

chk (x0, y0) = cos[2π (hx0 + ky0)] + cos[2π (hx0 − ky0)]

+ cos[2π (hy0 + kx0)] + cos[2π (hy0 − kx0)],

(28)

where �r = (x0, y0) (in units of the lattice constant). Al-
though in general A1 and A2 are functions of FAB, this makes
calculation of ĈAB,set challenging. An example FAB plot for
(x0, y0) = (0.66, 0.84) is shown in Fig. 3, where the single-
component amplitudes are used for Ai as in approximation,
which is reasonable when FAB is small.

Since Eq. (27) only specifies the value of ĈAB at points,
a simple extension of Eq. (4) is used for defining ĈAB(q).
Namely,

ĈAB(q) = max
j

[
b je

−(q−q j )2

2ς2
j

] + min
j

[
Bje

−(q−Q j )2

2ς2
j

]
, (29)

where

b j = 
ĈAB,set (q j )

Bj = 
ĈAB,set (Qj ), (30)

ĈAB,set (q j ) > 0, ĈAB,set (Qj ) < 0, and 
 is a scale factor. In
the limit where ς is small, Eq. (29) reduces to a sum. The
parameters listed in Table II were successfully used to create
the displacement in Fig. 1(d).

Note that since ĈAB is isotropic, the strain energy is pro-
portional to the displacement squared. If the displacement
is interpreted as a polarization, this is consistent with the

013802-5



ALSTER, ELDER, AND VOORHEES PHYSICAL REVIEW MATERIALS 4, 013802 (2020)

TABLE II. Table of parameter values for crystal with p =
(0.16, 0.34). The associated set of {hk} pairs is given for each
reciprocal wave-vector magnitude.

Quantity Value Vector set

q1 2π
√

8 {22}
q2 2π

√
10 {31}

q3 2π
√

20 {24}
Q1 2π

√
2 {11}

Q2 4π {20}
Q3 8π {40}
Q4 2π

√
18 {33}

m 4
b1 7.6531 × 10−4

b2 6.3636 × 10−3

b3 1.2671 × 10−1

B1 2.6224 × 10−4

B2 5.2784 × 10−4

B3 6.3886 × 10−2

B4 1.7314 × 10−1

ς 0.1
a0 1.0
n̄ 0

electrostriction effect. Strain energies proportional to the po-
larization are also possible, i.e., the piezoelectric effect, but
only if ĈAB is anisotropic, for example, if

FAB =
∫

V
nA

∂nB

∂x
. (31)

C. Dynamics

In order to create dynamic models from these free ener-
gies, the standard conserved local dynamics equations were
employed [16]. Namely,

∂ni

∂t
= ∇2 δF

δni
. (32)

In cases where the goal is to minimize the free energy, and
the path to equilibrium is not of interest, the global dynamics
equation,

∂ni

∂t
= − δF

δni
+ 1

V

∫
V

δF

δni
dr, (33)

can be used instead for computational efficiency [46].

III. COMPARISON TO LGD MODELS

Like traditional PFC models [47], the DPFC model can
be mapped to phase-field models, namely Landau-Ginzburg-
Devonshire models. In general, these models are of the form

F =
∫

V
[ fbulk (p) + fgrad(∇p) + felast (ε)

+ fc(p, ε) + felec(p, E )]dr, (34)

where fbulk is the bulk free-energy density, fgrad is the energy
due to gradients in the polarization, felast is the contribution
from the strain tensor ε, fc is the coupling energy between the

polarization and strain fields, and felec is the electrical energy
density as a result of the electric field E [37]. Mapping the
DPFC model to a LGD model is of interest because LGD
parameters have been calculated for real materials [33,48,49],
and, consequently, this is a possible method for PFC parame-
ters fitting.

Although the free energies in Sec. II were functions of
the displacement δ, LGD models are functions of the po-
larization, p. The connection between the displacement and
the polarization is explored in Appendix A, but the upshot
is that the displacement is proportional to the polarization.
The derivation of the LGD model from the DPFC model is
discussed below, and the analytic results for a three-amplitude
approximation for ni are found in Table III.

A. Bulk energy

The bulk, or Landau-Devonshire, free energy is derived
from the DPFC in the same manner as discussed in Sec. IIA2.
Three-dimensional Landau-Devonshire potentials used practi-
cally for modeling perovskites are either sixth or eighth order
[50,51], and the PFC model automatically gives the correct
symmetries for the bulk energy regardless of the order of the
expansion. To sixth order, the free energy of a perovskite is

fbulk = 1
2α

(
p2

x + p2
y

) + 1
4

[
γ11

(
p4

x + p4
y

) + γ12 p2
x p2

y

]
+ 1

6

[
ω111

(
p6

x + p6
y

) + ω112
(
p4

x p2
y + p2

x p4
y

)]
. (35)

B. Gradient energy

In LGD models for perovskites, the two-dimensional gra-
dient term is

fgrad = 1

2
g11

(
∂ px

∂x

2

+ ∂ py

∂y

2)
+ g12

∂ px

∂x

∂ py

∂y

+ g44

(
∂ px

∂y

2

+ ∂ py

∂x

2)
. (36)

Although many authors include a fourth gradient coefficient
[33,48,52], two of the coefficients are degenerate [35,53].

The gradient coefficients in our model are calculated by
imagining that nA is fixed, and the polarization gradients are
due to the offset �r between the sublattices in Eq. (14) being
a slowly varying function of position. The strained reciprocal
lattice vectors, qstr , are defined in terms of the Jacobian
of �r (the displacement gradient tensor in the language of
elasticity), u, and the unstrained reciprocal lattice vectors q.
Namely,

qstr = (u + I )−1 · q, (37)

where I is the identity matrix. If the strained wave vectors are
used in Eq. (14), then the difference in free energy from the
unstrained state will solely be due to the two-point correlation
function of the strained component. On Taylor expanding to
second order, this free-energy difference is exactly Eq. (36),
where

g11 = −q2
1Q̃2

3∑
i=1

|Ai|2Ĉ′′
BB(qi ),

g12 = g44 = −q2
1Q̃2|A2|2Ĉ′′

BB(q2), (38)
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TABLE III. Table of LGD parameter values. The amplitudes are the values that minimize the DPFC free energy.

Variable Expression

α −2q2
1Q̃2

(
6α4A4

1 − A2
1

(
α2 + 20α4A2

2 + 32α4A3A2 − 4α3A3 + 40α4A2
3

) + 2
{
6α4A4

2 + A2
2[α2 + 4A3(4α3 + 9α4A3)]

+ 2A2
3

(
α2 + 6α4A2

3

)})
γ11

1
3 q4

1Q̃4
{
12α4A4

1 − A2
1

[
α2 + 4

(
11α4A2

2 + 32α4A3A2 − 7α3A3 + 58α4A2
3

)] + 2
[
24α4A4

2 + A2
2

(
α2 + 204α4A2

3

+ 40α3A3

) + 8A2
3

(
α2 + 12α4A2

3

)]}
γ12 4q4

1Q̃4
[
8α4A4

2 + A2
2

(
α2 − 16α4A2

1 + 8α3A3 + 76α4A2
3

) + 4A2
1A2(α3 − 6α4A3) + 2α4

(
A2

1 − 4A2
3

)2]
ω111 − 1

60 q6
1Q̃6

[
36α4A4

1 − A2
1

(
α2 + 4

(
35α4A2

2 + 128α4A3A2 − 31α3A3 + 430α4A2
3

)) + 2
(
96α4A4

2 + A2
2(α2 + 4A3(34α3

+ 399α4A3)) + 32A2
3(α2 + 36α4A2

3)
)]

ω112
1
3 q4

1Q̃6
{
12α4A4

1 − A2
1

[
α2 + 4

(
11α4A2

2 + 32α4A3A2 − 7α3A3 + 58α4A2
3

)] + 2
[
24α4A4

2 + A2
2

(
α2 + 204α4A2

3

+ 40α3A3

) + 8A2
3

(
α2 + 12α4A2

3

)]}
c11 2

[
α2 + A2

1

( − 4α4 + b1q2
1

σ 2
1

+ 4
) + A2

2

(
12α4 + b2q2

1
σ 2

2
+ 4

) + 1
]

c12
2A2

2b2q2
1

σ 2
2

c44 2α2 − 8α4A2
1 + 24α4A2

2 + 24α4A2
3 + 2A2

2b2q2
1

σ 2
2

+ 8A2
1 + 8A2

2 + 8A2
3 + 2

g44
A2

2b2q2
1Q̃2

σ 2
2

g12
A2

2b2q2
1Q̃2

σ 2
2

g11 q2
1Q̃2

( A2
1b1

σ 2
1

+ A2
2b2

σ 2
2

+ A2
3b3

σ 2
3

)
Q̃ − e

a

and Q̃ is the proportionality constant connecting displacement
to polarization. This method for calculating the gradient coef-
ficients is similar to how elastic constants were originally cal-
culated for a single-component PFC model [40]. It was later
discovered that this method for calculating elastic constants is
incorrect since the average density changes when the system
is strained [54,55]. This critique could also be leveled against
this method of calculating the gradient coefficients. However,
because the electrostriction coefficients for this model are
approximately zero (see Sec. III C), density changes as a
function of polarization can be ignored.

C. Elastic energy

In addition to the free energies due to polarizations, there
are also free energies due to elastic strain. For a material with
cubic symmetry, the elastic energy in two dimensions is

felast = 1
2 c11

(
ε2

xx + ε2
yy

) + c12εxxεyy + 2c44ε
2
xy. (39)

The elastic constants are derived in the manner suggested by
Wang et al. [55], except the anisotropic variations of the am-
plitudes are neglected for simplicity. In order to avoid issues
with the stresses inherent in the undeformed state affecting
the elastic constants, the system pressure is set to zero in the
calculations. Namely, a linear term

∫
V β(nA + nB)dr is added

to the free energy, Eq. (2), and β is then solved so the system
pressure is zero.

In real materials, in addition to the purely elastic strain, the
fc energy couples the polarization and strain fields. Namely,
there are terms of the form −λi jklεi j pk pl , where λ is the
electrostrictive constant tensor [37]. The result of these terms
are that the spontaneous polarization causes a plastic strain
so that the unit cell shape changes. For example, PbTiO3

undergoes a cubic → tetragonal transition when polarization
occurs. Indeed, numerical simulations of the polarization pro-
cess verifies a square → rectangular transition. However, this
phenomenon, unlike in real systems, is very small. Using the
coefficients in Table I as a test case, the unit cell distortion
c/a � 1.0003. Because the distortion is so small, the elec-
trostriction constants are approximately zero in this work.

D. Electrostatic energy

The free energy due to the electrical energy density, felec,
is also important [33,35,37,49,56,57] and does not arise from
any of the DPFC terms. Part of the problem is that the
electrical energy is a function of the charge density, and the
charge density is not uniquely defined by the atomic density
profile alone. One possibility is to assume that A has a positive
charge, B an equal and opposite charge, and there are no other
charge sources. In this case, the charge density ρe ∝ nA − nB,
and the PFC electrostatic energy is

Felec = w

2

∫
|∇ϕ|2dr, (40)

where ϕ is the electric potential from Gauss’s law and w is
some constant. Because of the lack of strong core repulsions
in Eq. (5), when w is large, the atoms overlap to reduce
the electrical energy, i.e., nA = nB. On the other hand, when
w is small, the inclusion of this electrostatic energy did not
appear to make any qualitative difference for simulations with
periodic boundary conditions.

Consequently, this work neglects the contributions of felec

for simplicity, which corresponds to the limit of high dielectric
constant. Neglecting felec is in fact what early LGD models
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FIG. 4. Second-order phase transition calculated numerically
[Eq. (5)] and analytically [Eq. (36)]. The lines are power-law fits
with exponents 1/2.

did as well [48,52,58], and explicit electrostatic contributions
as well as external fields are left for future work.

IV. APPLICATIONS

A. Phase transitions

As a method for comparing the full numerical model to
the analytic LGD theory, a 〈10〉 displacive phase transition
was examined near the critical temperature. As predicted
by fourth-order Landau theory [44], the displacive phase
transition is second order. As can be seen in Fig. 4, the
numerical and analytical results match closely. This check
can be thought of as a verification of the Landau-Devonshire
[Eq. (35)] portion of the free energy.

Of course, displacive phase transitions can be both first and
second order. It is possible to change the order of the phase
transition by including higher-order couplings than Eq. (5),
for example, letting

FAB =
∫

V

(
α2nAnB + α4n2

An2
B + α6n3

An3
B

)
dr. (41)

This can be proved using the same method of analysis as
Sec. IIA1. For simplicity, however, first-order applications are
omitted and the parameters used for generating Fig. 4 are used
for the rest of Sec. IV, which only permit 〈10〉 polarizations.
These values are in Table I.

B. Domain walls

As a method for comparing the polarization gradient coeffi-
cients in our numerical model to the analytic LGD theory, an
isolated domain wall was numerically modeled. The system
was tested numerically in a 64 × 2 domain with periodic
boundary conditions and domain walls at the center and edges
of system. The method for calculating the displacements is
described in Appendix B. Compared with the Cahn-Hilliard
equation, many more types of domain walls are possible in
our system, including ↑↓, ↑→, and →← boundaries. In the
case of the ↑↓ walls simulated, known as Ising walls [59], the

FIG. 5. Displacement in the y direction across an Ising wall. The
points are the numerically calculated values, the red line is a fit
to Eq. (43) with ξ = 7.26, and the dashed line is the analytically
calculated ξ = 8.23 width. As explained in Appendix A, δy ∝ py.

math reduces to the one-dimensional case. For a sixth-order
bulk free energy, the analytic profile is

py(x) = p0

sinh
( x−x0

ξ

)
[
C + sinh2

( x−x0
ξ

)]1/2 , (42)

where

ξ = 1

2p0

√
g44

C(120ω111 p2
0 + 3γ11)

(43)

measures the interface width and C measures the contribution
of the sixth-order bulk energy term (the typical fourth-order
tanh profile occurs when C = 1) [60]. By fitting the results
of the numerical domain wall to Eq. (42), ξ and C were
calculated, and their values were used to make a seminumeric
estimate of g44 (Fig. 5). Namely, the value of p0 from a
numerical bulk polarization equilibration; A1, A2, and A3 from
a numerical bulk unpolarized state equilibration; and ω111 and
γ11 from the LGD model were combined with ξ = 7.26 and
C = 0.41 from Ising wall simulation to yield g44 = 0.19. In
comparison, the expression for g44 from the LGD model (Ta-
ble III) is g44 = 0.24. This implies that the method for calcu-
lating the polarization gradient energy coefficient is somewhat
reasonable.

C. Quadrijunctions

In “traditional” systems, such as soap froths and single-
phase grain structures, quadrijunctions (junctions where four
domain walls meet) are thermodynamically unstable and
split into trijunctions [61,62]. However, Cahn showed that
in a system similar to ours—an Ising-type stripe formation
model on a discrete, square lattice with two components—that
weak first and strong second-neighbor interactions stabilized
quadrijunctions [62]. Although quadrijunctions have not been
studied using LGD models to the authors’ knowledge, it was
thought that the DPFC model might stabilize quadrijunctions
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(a)

(b)

FIG. 6. The colors denote the four different polarization direc-
tions: [10], [01], [1̄0], and [01̄]. The white regions are domain
boundaries, and the axes are labeled in units of the lattice constant.
(a) The initial condition, with spiraling quadrijunctions at the corners
and center, and nonspiraling quadrijunctions at the midpoints of the
sides. (b) The system a short simulated time afterward. The spiraling
quadrijunctions remain stable, but the nonspiraling quadrijunctions
have decomposed into two trijunctions.

since. like in Cahn’s Ising model, there are four possible
domains.

This hypothesis was confirmed by simulating a 128 × 128
periodic domain with clockwise spiraling quadrijunctions (↑→

←↓)

at the system’s center and corners and head-to-head nonspir-
aling quadrijunctions (↑←

→↓) at the edges (Fig. 6). A large system
size was used to minimize the possibility of finite-size effects.
The nonspiraling quadrijunctions quickly decomposed into
trijunctions, but the spiraling junctions remained stable. This
is somewhat surprising, as although head-to-head boundaries
do not exist in real systems, this is attributed to an excess
charge accumulation at the interface, and our model lacks
explicit electrostatics terms [60].

D. Domain coarsening with dislocations

Although it is possible to simulate polarization domains
through LGD models [37], it is challenging to study the
interaction of polarizations with dislocations and grain bound-
aries using LGD models or traditional atomistic methods. In
contrast, this is possible using the DPFC model.

As an illustrative example, domain coarsening across a
low-angle symmetric grain boundary was simulated. First, the
low-angle boundary was initialized by using a plane-wave
expansion in the form of Eq. (6) for ni, and the standard
method was implemented for calculating the dimensions of
the periodic grains [46]. The maxima of the nB plane-wave
expansion were then located. A random number from a multi-
variable normal distribution was subsequently generated and
added to the stored position for the maxima. The plane-wave
version of nB was then discarded, and a new nB that was
the sum of multivariable Gaussians was created, with each
Gaussian centered on a moved maxima. In this way, a system
was generated such that the polarization in each unit cell was
random.

This system was then evolved using the dynamics of
Eq. (32), and the results are in Fig. 7. The central line of
dislocations clearly impedes the motion of the central [10]
domain. Additionally, the [01̄] region on the left grows down-
ward, despite this increasing the amount of interface. It is
thought that this occurs because the two interfaces created are
lower in energy than the single one is destroys, consistent with
g44, g12 < g11. Neither of these behaviors are motion by mean
curvature.

V. SUMMARY

The DPFC model provides a simple and computationally
efficient way to begin incorporating ferroelectricity into the
PFC model. It is possible to compare this model to LGD
models and get qualitatively reasonable results, and phenom-
ena that would be very challenging otherwise, such as the
interaction of dislocations with grain boundaries, can begin
to be studied. Given a suitable simple cubic model, the model
could also be extended to three dimensions, and more com-
plex displacive transitions, such those accomplished through
octahedral rotations in SrTiO3 [51], might also be possible.
Because of the important similarities between ferroelectric
and martensitic transformations, this paper could also form
the basis for a PFC model of the latter. Additionally, the ideas
introduced when creating “generic” displacements begins
the conversation about how one might model truly complex
materials, such as metal-organic frameworks, using the phase-
field crystal method.
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(a)

(b) (c)

FIG. 7. Polarization domain coarsening across a 3.8◦ tilt grain boundary at 9000 (a), 23 000 (b), and 48 000 (c) timesteps. The color scheme
and units are the same as for Fig. 6. The dislocations are recognizable as the line of strangely colored points down the middle and edges of
the figures. The dislocations impede the domain boundary motion of the central [10] domain. Further, the [01̄] region on the left side grows in
(a)–(c), despite this growth increasing the amount of boundary. The reason for this is hypothesized to be because ←→ interfaces are higher
energy than ←↓ and ↓→ interfaces. Thus, domain motion is not simply reduction of mean curvature.

Although the DPFC successfully simulates displacive tran-
sitions, there is room for improvement with regards to its
ability to simulate real perovskites. When PbTiO3 under-
goes a 〈10〉 displacive transition, it simultaneously under-
goes a cubic → tetragonal transition, and c/a = 1.18 [63].
Although the DPFC demonstrates a square → rectangu-

lar transition, c/a ≈ 1. The DPFC model has long-range
elastic interactions, but there are no long-range electro-
static contributions. It is also not possible to alter the po-
larization gradient energy coefficients independent of the
elastic constants. These improvements are left for future
work.
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APPENDIX A: DISPLACEMENT AND POLARIZATION

The definition of polarization is in fact not trivial and relies
on insights from the modern theory of polarization [64]. A
brief introduction is given here, with the definition used in
this paper given by Eq. (A10).

1. Circular mean

Given N real numbers, the mean is typically defined as

x̄ ≡ 1

N

N∑
j=1

x j (A1)

in the discrete case and

x̄ ≡ 1

a

∫ a

0
xP (x)dx (A2)

in the continuous case, where P (x), the probability density
function for x, is nonzero only in the interval [0, a]. However,
these definitions cause problems when calculating the means
of angles. For most purposes, it makes more sense for the
mean of 0◦ and 360◦ to not be 180◦, the result of Eq. (A1), but
rather 0◦ or 360◦. Consequently, the circular mean is defined
as

θ̄ ≡ Im ln
N∑

j=1

eiθ j . (A3)

This equation takes angles, converts them to Cartesian coordi-
nates on the unit circle, calculates the average of these points,
and then calculates the angle for that Cartesian point. In the
continuous case,

θ̄ = Im ln
∫ s+2π

s
eiθP (θ )dθ , (A4)

where s is any real number. The circular mean is multivalued
since angles themselves are not uniquely defined.

2. Multivalued polarization

The circular mean is useful for calculating means of other
periodic fields, not just angles. The dipole moment of a finite
system is

μ =
∫

V
rρe(r)dr, (A5)

where μ the dipole moment and ρe is the charge density.
How is the dipole moment for a bulk material expressed? One
commonly encountered and intuitive definition of polarization
is that it is the dipole moment per unit cell. However, this

results in a polarization that is origin dependent. Namely, in
1D

μ

a
= 1

a

∫ s+a

s
xρe(x)dx (A6)

is a function of the origin s [64]. Notice, however, that
Eq. (A4) is origin independent since eiθ is periodic.

Drawing inspiration from this concept, in the modern
theory of polarization [65,66] the polarization is defined as

p = e

2π
Im ln

∫
ei 2π

a (
∑N

l Zl xl −
∑M

j x j )|ψ (x)|2dx, (A7)

where e is the electron charge, N is the number of nuclei, M
is the number of electrons, eZl is the charge of nucleus l , ψ is
the (N + M )-particle wave function, and x = (x1, . . . , xN+M ).

Consequently, an ideal PFC polarization model would
track the electrons in the system as well as the nuclei. In our
model, however, there are only the atomic densities. In order
to calculate a polarization, it is assumed, as in Sec. III D, that
the charge density is ρe ∝ (ρA − ρB), and it is further assumed
that there are no other charges in the system. Thus, we let

p = ec

2π
Im ln

∫ s+a

s

∫ s+a

s
eiq(xA−xB )|ψ (xA, xB)|2dxAdxB,

(A8)
where ec is the charge proportionality constant. It seems
reasonable to guess that

|ψ (xA, xB)|2 = P (xA, xB) = ρA(xA)

aρ̄A

ρB(xB)

aρ̄B
, (A9)

since then
∫
P (xA, xB)dxAdxB = 1. However, the impact of

differing assumptions deserves further research. Thus,

p = ec

2π
Im ln

∫ s+a

s
eiqxAρA(xA)dxA

×
∫ s+a

s
e−iqxBρB(xB)dxB. (A10)

This polarization is multivalued, and the polarization tradi-
tionally used in LGD models corresponds to the polarization
difference, namely �p = p(δ) − p(δ = 0).

3. Delta functions

Let us confirm that Eq. (A10) gives the correct result in the
case of point charges. In this case,

ρA = ρA0δ f

(
x − a

4

)
, (A11)

ρB = ρB0δ f

(
x − 3a

4
− δ

)
, (A12)

where δ f is the Dirac delta function. Thus,

p = ec

(
1

2
− δ

a
+ n

)
, n ∈ Z. (A13)

This is exactly the polarization lattice calculated using con-
ventional methods [64]. Choosing the n = 0 branch,

�p =
(

ec

2
− ecδ

a

)
− ec

2
= −ecδ

a
. (A14)
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4. PFC polarization

In this case, ρi are defined by Eqs. (3), (6), and (7). Then

p = ec

2π
Im ln

A2π2

q2
e2π i(−δ/a+1/2). (A15)

If A 
= 0, then

�p = −ecδ

a
(A16)

as before. However, if A = 0, then the polarization is unde-
fined since the ln 0 is undefined. In a square 2D system, each
polarization component is defined the same as in 1D, and

pi = ec

2π
Im ln

∫
V

eiqxi,AρA(xA)dxA

×
∫

V
e−iqxi,BρB(xB)dxB. (A17)

Note that even if ρi are general expansions of the form
Eq. (13) and (14), the polarization is only a function of the
first modes because q = 2π/a = |q{10}|. Algebraically, this is
expressed in the integral∫

V
e−iqxρB(x, y)dxdy = −A10e−iqδx . (A18)

Consequently, Eq. (A17) only depends on the first mode of ρi,
and

�p = −ecδ

a
∝ − δ

a
(A19)

(unless A{10} = 0, in which case the polarization is undefined).

APPENDIX B: CALCULATING POLARIZATIONS

Displacements were calculated for numerical simulations
as follows. First, the maxima of nA and nB were calculated
by fitting to a quadratic paraboloid, as described in Ref. [67].
These maxima were interpreted as the atomic positions. Then
for each B atom, the four nearest A atoms were calculated.
The displacement vector was defined to be the vector from
the centroid of these four A atoms to B. Note that under this
definition, the displacement vector is calculated incorrectly at
dislocations. This is the origin of the off-colored regions at
the dislocations in Fig. 7. A possible alternative, albeit more
complicated, approach for calculating the displacement vector
is to equilibrate the entire system in the unpolarized state and
then to define the displacement as the offset in the atomic
positions compared to the unpolarized reference structure.
This approach has the advantage of giving meaningful values
at dislocations.

[1] A. Morriss-Andrews and J.-E. Shea, Annu. Rev. Phys. Chem.
66, 643 (2015).

[2] A. Yamanaka, K. McReynolds, and P. W. Voorhees, Acta Mater.
133, 160 (2017).

[3] S. O. Nielsen, C. F. Lopez, G. Srinivas, and M. L. Klein,
J. Phys.: Condens. Matter 16, R481 (2004).

[4] W. J. Boettinger, J. A. Warren, C. Beckermann, and A. Karma,
Annu. Rev. Mater. Res. 32, 163 (2002).

[5] A. Chatterjee and D. G. Vlachos, J. Comput,-Aided Mater. Des.
14, 253 (2007).

[6] A. Laio and F. L. Gervasio, Rep. Prog. Phys. 71, 126601 (2008).
[7] A. Z. Guo, E. Sevgen, H. Sidky, J. K. Whitmer, J. A. Hubbell,

and J. J. de Pablo, J. Chem. Phys. 148, 134108 (2018).
[8] K. R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).
[9] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and

W. M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992).
[10] A. Jaatinen, C. V. Achim, K. R. Elder, and T. Ala-Nissila, Phys.

Rev. E 80, 031602 (2009).
[11] K.-A. Wu, A. Adland, and A. Karma, Phys. Rev. E 81, 061601

(2010).
[12] N. Pisutha-Arnond, V. W. L. Chan, M. Iyer, V. Gavini, and K.

Thornton, Phys. Rev. E 87, 013313 (2013).
[13] V. Fallah, N. Ofori-Opoku, J. Stolle, N. Provatas, and S.

Esmaeili, Acta Mater. 61, 3653 (2013).
[14] V. Fallah, B. Langelier, N. Ofori-Opoku, B. Raeisinia,

N. Provatas, and S. Esmaeili, Acta Mater. 103, 290
(2016).

[15] P. Hirvonen, M. M. Ervasti, Z. Fan, M. Jalalvand, M. Seymour,
S. M. Vaez Allaei, N. Provatas, A. Harju, K. R. Elder, and T.
Ala-Nissila, Phys. Rev. B 94, 035414 (2016).

[16] D. Taha, S. K. Mkhonta, K. R. Elder, and Z.-f. Huang, Phys.
Rev. Lett. 118, 255501 (2017).

[17] M. Greenwood, N. Provatas, and J. Rottler, Phys. Rev. Lett. 105,
045702 (2010).

[18] M. Greenwood, J. Rottler, and N. Provatas, Phys. Rev. E 83,
031601 (2011).

[19] K. R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant,
Phys. Rev. B 75, 064107 (2007).

[20] J. Luce and K. Thornton, APS March Meeting Abstracts (2018),
p. V12.007.

[21] V. W. L. Chan, An in-depth examination of a thermodynamic
framework for the phase-field crystal model, Ph.D. thesis,
University of Michigan, 2015.

[22] Y. Waseda, The Structure of Non-Crystalline Materials: Liq-
uids and Amorphous Solids (McGraw-Hill, New York, 1980),
pp. 254–291.

[23] E. Alster, K. R. Elder, J. J. Hoyt, and P. W. Voorhees, Phys. Rev.
E 95, 022105 (2017).

[24] E. Alster, D. Montiel, K. Thornton, and P. W. Voorhees, Phys.
Rev. Mater. 1, 060801 (2017).

[25] M. Greenwood, N. Ofori-Opoku, J. Rottler, and N. Provatas,
Phys. Rev. B 84, 064104 (2011).

[26] K. L. M. Elder, M. Seymour, M. Lee, M. Hilke, and N. Provatas,
Philos. Trans. R. Soc., A 376, 20170211 (2018).

[27] Y. Huang, J. Wang, Z. Wang, J. Li, and C. Guo, Phys. Rev. E
95, 043307 (2017).

[28] W.-J. Yin, J.-H. Yang, J. Kang, Y. Yan, and S.-H. Wei, J. Mater.
Chem. A 3, 8926 (2015).

[29] D. Bi, W. Tress, M. I. Dar, P. Gao, J. Luo, C. Renevier,
K. Schenk, A. Abate, F. Giordano, J.-P. Correa Baena, J.-D.
Decoppet, S. M. Zakeeruddin, M. K. Nazeeruddin, M. Gra tzel,
and A. Hagfeldt, Sci. Adv. 2, e1501170 (2016).

[30] Z.-K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R.
Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos,

013802-12

https://doi.org/10.1146/annurev-physchem-040513-103738
https://doi.org/10.1146/annurev-physchem-040513-103738
https://doi.org/10.1146/annurev-physchem-040513-103738
https://doi.org/10.1146/annurev-physchem-040513-103738
https://doi.org/10.1016/j.actamat.2017.05.022
https://doi.org/10.1016/j.actamat.2017.05.022
https://doi.org/10.1016/j.actamat.2017.05.022
https://doi.org/10.1016/j.actamat.2017.05.022
https://doi.org/10.1088/0953-8984/16/15/R03
https://doi.org/10.1088/0953-8984/16/15/R03
https://doi.org/10.1088/0953-8984/16/15/R03
https://doi.org/10.1088/0953-8984/16/15/R03
https://doi.org/10.1146/annurev.matsci.32.101901.155803
https://doi.org/10.1146/annurev.matsci.32.101901.155803
https://doi.org/10.1146/annurev.matsci.32.101901.155803
https://doi.org/10.1146/annurev.matsci.32.101901.155803
https://doi.org/10.1007/s10820-006-9042-9
https://doi.org/10.1007/s10820-006-9042-9
https://doi.org/10.1007/s10820-006-9042-9
https://doi.org/10.1007/s10820-006-9042-9
https://doi.org/10.1088/0034-4885/71/12/126601
https://doi.org/10.1088/0034-4885/71/12/126601
https://doi.org/10.1088/0034-4885/71/12/126601
https://doi.org/10.1088/0034-4885/71/12/126601
https://doi.org/10.1063/1.5020733
https://doi.org/10.1063/1.5020733
https://doi.org/10.1063/1.5020733
https://doi.org/10.1063/1.5020733
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1103/PhysRevE.70.051605
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1021/ja00051a040
https://doi.org/10.1103/PhysRevE.80.031602
https://doi.org/10.1103/PhysRevE.80.031602
https://doi.org/10.1103/PhysRevE.80.031602
https://doi.org/10.1103/PhysRevE.80.031602
https://doi.org/10.1103/PhysRevE.81.061601
https://doi.org/10.1103/PhysRevE.81.061601
https://doi.org/10.1103/PhysRevE.81.061601
https://doi.org/10.1103/PhysRevE.81.061601
https://doi.org/10.1103/PhysRevE.87.013313
https://doi.org/10.1103/PhysRevE.87.013313
https://doi.org/10.1103/PhysRevE.87.013313
https://doi.org/10.1103/PhysRevE.87.013313
https://doi.org/10.1016/j.actamat.2013.02.053
https://doi.org/10.1016/j.actamat.2013.02.053
https://doi.org/10.1016/j.actamat.2013.02.053
https://doi.org/10.1016/j.actamat.2013.02.053
https://doi.org/10.1016/j.actamat.2015.09.027
https://doi.org/10.1016/j.actamat.2015.09.027
https://doi.org/10.1016/j.actamat.2015.09.027
https://doi.org/10.1016/j.actamat.2015.09.027
https://doi.org/10.1103/PhysRevB.94.035414
https://doi.org/10.1103/PhysRevB.94.035414
https://doi.org/10.1103/PhysRevB.94.035414
https://doi.org/10.1103/PhysRevB.94.035414
https://doi.org/10.1103/PhysRevLett.118.255501
https://doi.org/10.1103/PhysRevLett.118.255501
https://doi.org/10.1103/PhysRevLett.118.255501
https://doi.org/10.1103/PhysRevLett.118.255501
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevLett.105.045702
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevE.83.031601
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://doi.org/10.1103/PhysRevB.75.064107
https://ui.adsabs.harvard.edu/abs/2018APS..MARV12007L/abstract
https://doi.org/10.1103/PhysRevE.95.022105
https://doi.org/10.1103/PhysRevE.95.022105
https://doi.org/10.1103/PhysRevE.95.022105
https://doi.org/10.1103/PhysRevE.95.022105
https://doi.org/10.1103/PhysRevMaterials.1.060801
https://doi.org/10.1103/PhysRevMaterials.1.060801
https://doi.org/10.1103/PhysRevMaterials.1.060801
https://doi.org/10.1103/PhysRevMaterials.1.060801
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1103/PhysRevB.84.064104
https://doi.org/10.1098/rsta.2017.0211
https://doi.org/10.1098/rsta.2017.0211
https://doi.org/10.1098/rsta.2017.0211
https://doi.org/10.1098/rsta.2017.0211
https://doi.org/10.1103/PhysRevE.95.043307
https://doi.org/10.1103/PhysRevE.95.043307
https://doi.org/10.1103/PhysRevE.95.043307
https://doi.org/10.1103/PhysRevE.95.043307
https://doi.org/10.1039/C4TA05033A
https://doi.org/10.1039/C4TA05033A
https://doi.org/10.1039/C4TA05033A
https://doi.org/10.1039/C4TA05033A
https://doi.org/10.1126/sciadv.1501170
https://doi.org/10.1126/sciadv.1501170
https://doi.org/10.1126/sciadv.1501170
https://doi.org/10.1126/sciadv.1501170


DISPLACIVE PHASE-FIELD CRYSTAL MODEL PHYSICAL REVIEW MATERIALS 4, 013802 (2020)

D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, and R. H.
Friend, Nat. Nanotechnol. 9, 687 (2014).

[31] M. J. Haun, E. Furman, S. J. Jang, H. A. McKinstry, and L. E.
Cross, J. Appl. Phys. 62, 3331 (1987).

[32] B. A. Strukov and A. P. Levanyuk, Ferroelectric Phenomena in
Crystals (Springer, Berlin, 1998).

[33] J. Mangeri, Y. Espinal, A. Jokisaari, S. Pamir Alpay, S.
Nakhmanson, and O. Heinonen, Nanoscale 9, 1616 (2017).

[34] S. Liu, I. Grinberg, and A. M. Rappe, Nature 534, 360 (2016).
[35] J. Hlinka and P. Márton, Phys. Rev. B 74, 104104 (2006).
[36] P. Marton, I. Rychetsky, and J. Hlinka, Phys. Rev. B 81, 144125

(2010).
[37] L.-Q. Chen, J. Am. Ceram. Soc. 91, 1835 (2008).
[38] N. Faghihi, N. Provatas, K. R. Elder, M. Grant, and M.

Karttunen, Phys. Rev. E 88, 032407 (2013).
[39] N. Faghihi, S. Mkhonta, K. R. Elder, and M. Grant, Eur. Phys.

J. B 91, 55 (2018).
[40] M. Seymour, F. Sanches, K. Elder, and N. Provatas, Phys. Rev.

B 92, 184109 (2015).
[41] M. Seymour and N. Provatas, Phys. Rev. B 93, 035447 (2016).
[42] Z. L. Wang, Z. Liu, and Z. F. Huang, Phys. Rev. B 97,

180102(R) (2018).
[43] Edited by M. I. Aroyo, International Tables for Crystallogra-

phy, Vol. A (International Union of Crystallography, Chester,
England, 2016).

[44] S. Galam, Phys. Rev. B 31, 1554 (1985).
[45] H. Cohen, in Number Theory (Springer, New York, 2007),

pp. 1–8.
[46] J. Mellenthin, A. Karma, and M. Plapp, Phys. Rev. B 78,

184110 (2008).
[47] N. Goldenfeld, B. P. Athreya, and J. A. Dantzig, Phys. Rev. E

72, 020601(R) (2005).
[48] Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett.

78, 3878 (2001).

[49] H.-L. Hu and L.-Q. Chen, J. Am. Ceram. Soc. 81, 492
(1998).

[50] D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108
(2001).

[51] K. M. Rabe, M. Dawber, C. Lichtensteiger, C. H. Ahn, and J.-M.
Triscone, Physics of Ferroelectrics, Topics in Applied Physics,
Vol. 105 (Springer, Berlin, Heidelberg, 2007), pp. 1–30.

[52] S. Nambu and D. A. Sagala, Phys. Rev. B 50, 5838 (1994).
[53] W. Cao, Ferroelectrics 375, 28 (2008).
[54] N. Pisutha-Arnond, V. W. L. Chan, K. R. Elder, and K.

Thornton, Phys. Rev. B 87, 014103 (2013).
[55] Z.-L. Wang, Z.-F. Huang, and Z. Liu, Phys. Rev. B 97, 144112

(2018).
[56] Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Appl. Phys. Lett.

81, 427 (2002).
[57] B. Lee, S. M. Nakhmanson, and O. Heinonen, Appl. Phys. Lett.

104, 262906 (2014).
[58] Y. L. Li, S. Y. Hu, Z. K. Liu, and L. Q. Chen, Acta Mater. 50,

395 (2002).
[59] R. K. Behera, C.-W. Lee, D. Lee, A. N. Morozovska, S. B.

Sinnott, A. Asthagiri, V. Gopalan, and S. R. Phillpot, J. Phys.:
Condens. Matter 23, 175902 (2011).

[60] B. Meyer and D. Vanderbilt, Phys. Rev. B 65, 104111
(2002).

[61] E. Holm, D. Srolovitz, and J. Cahn, Acta Metall. Mater. 41,
1119 (1993).

[62] J. Cahn and E. Van Vleck, Acta Mater. 47, 4627 (1999).
[63] A. Jain, J. R. Errington, and T. M. Truskett, Soft Matter 9, 3866

(2013).
[64] N. A. Spaldin, J. Solid State Chem. 195, 2 (2012).
[65] R. Resta, Phys. Rev. Lett. 80, 1800 (1998).
[66] R. Resta, Eur. Phys. J. B 91, 100 (2018).
[67] E. J. Schwalbach, J. A. Warren, K.-A. Wu, and P. W. Voorhees,

Phys. Rev. E 88, 023306 (2013).

013802-13

https://doi.org/10.1038/nnano.2014.149
https://doi.org/10.1038/nnano.2014.149
https://doi.org/10.1038/nnano.2014.149
https://doi.org/10.1038/nnano.2014.149
https://doi.org/10.1063/1.339293
https://doi.org/10.1063/1.339293
https://doi.org/10.1063/1.339293
https://doi.org/10.1063/1.339293
https://doi.org/10.1039/C6NR09111C
https://doi.org/10.1039/C6NR09111C
https://doi.org/10.1039/C6NR09111C
https://doi.org/10.1039/C6NR09111C
https://doi.org/10.1038/nature18286
https://doi.org/10.1038/nature18286
https://doi.org/10.1038/nature18286
https://doi.org/10.1038/nature18286
https://doi.org/10.1103/PhysRevB.74.104104
https://doi.org/10.1103/PhysRevB.74.104104
https://doi.org/10.1103/PhysRevB.74.104104
https://doi.org/10.1103/PhysRevB.74.104104
https://doi.org/10.1103/PhysRevB.81.144125
https://doi.org/10.1103/PhysRevB.81.144125
https://doi.org/10.1103/PhysRevB.81.144125
https://doi.org/10.1103/PhysRevB.81.144125
https://doi.org/10.1111/j.1551-2916.2008.02413.x
https://doi.org/10.1111/j.1551-2916.2008.02413.x
https://doi.org/10.1111/j.1551-2916.2008.02413.x
https://doi.org/10.1111/j.1551-2916.2008.02413.x
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1103/PhysRevE.88.032407
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1140/epjb/e2018-80543-9
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.92.184109
https://doi.org/10.1103/PhysRevB.93.035447
https://doi.org/10.1103/PhysRevB.93.035447
https://doi.org/10.1103/PhysRevB.93.035447
https://doi.org/10.1103/PhysRevB.93.035447
https://doi.org/10.1103/PhysRevB.97.180102
https://doi.org/10.1103/PhysRevB.97.180102
https://doi.org/10.1103/PhysRevB.97.180102
https://doi.org/10.1103/PhysRevB.97.180102
https://doi.org/10.1103/PhysRevB.31.1554
https://doi.org/10.1103/PhysRevB.31.1554
https://doi.org/10.1103/PhysRevB.31.1554
https://doi.org/10.1103/PhysRevB.31.1554
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevB.78.184110
https://doi.org/10.1103/PhysRevE.72.020601
https://doi.org/10.1103/PhysRevE.72.020601
https://doi.org/10.1103/PhysRevE.72.020601
https://doi.org/10.1103/PhysRevE.72.020601
https://doi.org/10.1063/1.1377855
https://doi.org/10.1063/1.1377855
https://doi.org/10.1063/1.1377855
https://doi.org/10.1063/1.1377855
https://doi.org/10.1111/j.1151-2916.1998.tb02367.x
https://doi.org/10.1111/j.1151-2916.1998.tb02367.x
https://doi.org/10.1111/j.1151-2916.1998.tb02367.x
https://doi.org/10.1111/j.1151-2916.1998.tb02367.x
https://doi.org/10.1103/PhysRevB.63.094108
https://doi.org/10.1103/PhysRevB.63.094108
https://doi.org/10.1103/PhysRevB.63.094108
https://doi.org/10.1103/PhysRevB.63.094108
https://doi.org/10.1103/PhysRevB.50.5838
https://doi.org/10.1103/PhysRevB.50.5838
https://doi.org/10.1103/PhysRevB.50.5838
https://doi.org/10.1103/PhysRevB.50.5838
https://doi.org/10.1080/00150190802437845
https://doi.org/10.1080/00150190802437845
https://doi.org/10.1080/00150190802437845
https://doi.org/10.1080/00150190802437845
https://doi.org/10.1103/PhysRevB.87.014103
https://doi.org/10.1103/PhysRevB.87.014103
https://doi.org/10.1103/PhysRevB.87.014103
https://doi.org/10.1103/PhysRevB.87.014103
https://doi.org/10.1103/PhysRevB.97.144112
https://doi.org/10.1103/PhysRevB.97.144112
https://doi.org/10.1103/PhysRevB.97.144112
https://doi.org/10.1103/PhysRevB.97.144112
https://doi.org/10.1063/1.1492025
https://doi.org/10.1063/1.1492025
https://doi.org/10.1063/1.1492025
https://doi.org/10.1063/1.1492025
https://doi.org/10.1063/1.4887068
https://doi.org/10.1063/1.4887068
https://doi.org/10.1063/1.4887068
https://doi.org/10.1063/1.4887068
https://doi.org/10.1016/S1359-6454(01)00360-3
https://doi.org/10.1016/S1359-6454(01)00360-3
https://doi.org/10.1016/S1359-6454(01)00360-3
https://doi.org/10.1016/S1359-6454(01)00360-3
https://doi.org/10.1088/0953-8984/23/17/175902
https://doi.org/10.1088/0953-8984/23/17/175902
https://doi.org/10.1088/0953-8984/23/17/175902
https://doi.org/10.1088/0953-8984/23/17/175902
https://doi.org/10.1103/PhysRevB.65.104111
https://doi.org/10.1103/PhysRevB.65.104111
https://doi.org/10.1103/PhysRevB.65.104111
https://doi.org/10.1103/PhysRevB.65.104111
https://doi.org/10.1016/0956-7151(93)90160-T
https://doi.org/10.1016/0956-7151(93)90160-T
https://doi.org/10.1016/0956-7151(93)90160-T
https://doi.org/10.1016/0956-7151(93)90160-T
https://doi.org/10.1016/S1359-6454(99)00321-3
https://doi.org/10.1016/S1359-6454(99)00321-3
https://doi.org/10.1016/S1359-6454(99)00321-3
https://doi.org/10.1016/S1359-6454(99)00321-3
https://doi.org/10.1039/c3sm27785b
https://doi.org/10.1039/c3sm27785b
https://doi.org/10.1039/c3sm27785b
https://doi.org/10.1039/c3sm27785b
https://doi.org/10.1016/j.jssc.2012.05.010
https://doi.org/10.1016/j.jssc.2012.05.010
https://doi.org/10.1016/j.jssc.2012.05.010
https://doi.org/10.1016/j.jssc.2012.05.010
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1103/PhysRevLett.80.1800
https://doi.org/10.1140/epjb/e2018-90089-5
https://doi.org/10.1140/epjb/e2018-90089-5
https://doi.org/10.1140/epjb/e2018-90089-5
https://doi.org/10.1140/epjb/e2018-90089-5
https://doi.org/10.1103/PhysRevE.88.023306
https://doi.org/10.1103/PhysRevE.88.023306
https://doi.org/10.1103/PhysRevE.88.023306
https://doi.org/10.1103/PhysRevE.88.023306

