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First-principles investigation of the phase stability and early stages of precipitation in Mg-Sn alloys
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Recently, remarkable experimental progress has been made toward understanding the metastable phases in
Mg-Sn alloys, a promising candidate for rare-earth free Mg alloys. However, the detailed structures, stability, and
formation mechanisms of these metastable phases at early stages of precipitation remain unclear. Here, we report
a first-principles study of the ground-state and finite-temperature phase stability of hexagonal closest packed
(HCP)- and face-centered cubic (FCC)-based phases in Mg-Sn alloys. The ground-state phases are searched by
the cluster expansion approach coupled with energy input from first-principles calculations. The Monte Carlo
simulations with Hamiltonian from the cluster expansion are performed to calculate the configurational free
energies and the corresponding metastable phase diagrams are constructed. Our calculations reveal rich varieties
of orderings on HCP and FCC lattices, metastable Mg3Sn phases with L12 and D019 structures, and possible
precursors for Guinier-Preston (G.P.) zones. Further analysis of the vibrational free energy indicates that L12

Mg3Sn is stabilized by vibrational entropy at high temperatures. A new precipitation sequence for Mg-Sn alloys
is suggested, i.e., supersaturated solid solution → G.P. zone → D019 Mg3Sn → L12 Mg3Sn → βMg2Sn.
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I. INTRODUCTION

The increasing demand for light-weight structural materi-
als has led to increased interest in Mg-based alloys, which,
however, is limited due to inadequate mechanical properties
and corrosion resistance compared with steels, Al-based, Ni-
based, or Ti-based alloys [1,2]. Among various Mg alloys,
Mg-Sn-based alloys, free of expensive rare-earth elements,
have become promising candidates for structural applications
due to high solubility of Sn in Mg (14.5 wt.% at 561 ◦C),
precipitate hardenability by β Mg2Sn phase, and good casta-
bility resulting from the eutectic reaction at 561 ◦C in Mg-Sn
system [1,3,4]. In the equilibrium phase diagram, the only
intermetallic phase Mg2Sn in Mg-Sn-based alloys has a melt-
ing point of 770 ◦C [3,4], which is much higher than that of
Mg17Al12 phase (462 ◦C) in Mg-Al alloys [4,5]. The presence
of stable β phase is shown to improve the strength and high-
temperature creep resistance via precipitation strengthening
[1]. The electrochemical properties of Mg-Sn alloys are also
appealing. Alloying of Sn is shown to inhibit the cathodic
H2 evolution in aqueous environment, thus improving the
corrosion resistance of Mg-Sn alloys [6,7]. The nontoxic
nature of Sn made Mg-Sn alloys biocompatible [8,9], thus
attractive for medical applications, such as orthopedic implant
[10] and bone screws [11].

Despite the merits of Mg-Sn alloys, the strengthening
Mg2Sn phase usually has a coarse distribution and lie on the
basal plane of Mg matrix [12] or at the grain boundaries
of as-cast Mg-Sn alloys [13], resulting in poor mechanical
response since the former is not effective in impeding gliding
of dislocations on basal plane [1] while the latter might be the
nucleation sites for voids during fracture process [14]. Due
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to its equilibrium nature, it takes a long time (e.g., weeks) to
reach peak hardness [15,16], making it difficult to improve
the mechanical properties in industrial practice. Consequently,
the search for metastable phases that has strengthening effects
has come to attention. In addition to the equilibrium β phase,
recent studies of the microstructures of cast, solutionized and
artificially aged (100–250 ◦C, lower than the typical aging
temperature to form β Mg2Sn phase [1]) Mg-9.8Sn (wt.%)
alloy showed the presence of Guinier-Preston (G.P.) zones and
metastable coherent precipitates with L12 structure [17,18].
During heating process with 20 K/min, D019 type Mg3Sn
phase starts to form in Mg-1.5Sn (at.%) solid solution at
101 ◦C, and is found to be responsible for its increased hard-
ness [19]. D019 Mg3Sn phase is also observed in as-solidified
microstructures of Mg-9.76Sn (wt.%) alloys processed by
a nonequilibrium melt spinning method [20]. Despite such
experimental progress, the detailed structures and stability of
these metastable phases (i.e., various G.P. zones, L12 and D019

Mg3Sn) and their roles in the early stages of precipitation
remain unclear.

The cluster expansion (CE) method with energy input from
first-principles calculations based on density functional theory
(DFT) has been proven to be a powerful tool to explore the
structures and stability of phases in various systems [21,22].
In the current work, CE calculations are performed for hexag-
onal closest packed (HCP) and face-centered cubic (FCC)
Mg-Sn alloys to search for the stable / metastable phases at
ground state and (semigrand) canonical lattice Monte Carlo
(MC) simulations are adopted to calculate the free energies
and phase diagrams. In Sec. II, the detailed methods and pa-
rameters of the DFT, CE, MC, and short-range order analysis
are given. In Sec. III, the ground-state structures and stability
of metastable phases from CE calculations are presented.
In Sec. IV, the finite-temperature stabilities of phases from
MC simulations are discussed and the corresponding phase
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diagrams are constructed. In Sec. V, the effect of lattice
vibrations on the stability of L12 phase is analyzed. In Sec. VI,
the nucleation of the metastable phases and precipitation
sequence are discussed.

II. METHODOLOGY

A. Coarse graining of partition function

For a material at finite temperatures, the free energy usually
consists of the contributions from several mechanisms, i.e.,
lattice structures, atomic configurations, lattice vibrations,
excitations of electronic states and magnetic configurations if
the material displays magnetism. In principle, the free energy
can be calculated by the partition function [21,23],

Z =
∑

L

∑
σ∈L

∑
υ∈σ

∑
e∈υ

exp

[
−E (L, σ, υ, e)

kBT

]
, (1)

where E (L, σ, υ, e) is the energy the alloy, kB is the Boltz-
mann constant and T is the temperature. For a specific parent
lattice L, there are three degrees of freedom that contributes
to Z , i.e., the specific configuration of atoms (σ , the vector
of all occupation variables Ŝi for each site i on a given
lattice L), the vibrational state (υ, the displacement of atoms
from their ideal positions), the particular electronic state (e)
when ions are constrained to state σ and υ. The degrees
of freedom {L, σ, υ, e} defines the microstate of materials
on different scales and each summation defines an increas-
ingly coarser level of hierarchy. With the partition function
in Eq. (1), the free energy can, in principle, be calculated
by A = −kBT ln(Z ). However, for each atomic configuration
on a given lattice, calculating the total energies of so many
microstates for the lattice vibrations and electronic structures
is too computationally demanding. In practice, for a specific
atomic configuration on a given lattice, it is often assumed
that the atoms always relax to the equilibrium positions and
electronic structures reduces to the electronic ground state. As
such, Eq. (1) reduces to [21,23],

Z =
∑

L

∑
σ∈L

exp

[
−E∗(L, σ )

kBT

]
, (2)

where E∗(L, σ ) ≡ minv,e{E (L, σ, v, e)} is the energy of
atomic structure of lattice L, configuration σ , and optimized
atomic positions and electronic structure. For a structure with
given lattice L and configuration σ , E∗(L, σ ) can be obtained
by optimizing all degrees of freedom of the cell (i.e., volume,
shape, and internal atomic positions) by first-principles calcu-
lations.

B. DFT and phonon calculations

First-principles calculations based on DFT were employed
to calculate the ground-state structures and energies of or-
dering phases on HCP and FCC lattice of Mg-Sn alloys.
The ion-electron interaction was described by the projec-
tor augmented plane-wave method [24] and the exchange-
correlation functional was described by an improved gen-
eral gradient approximation of Perdew-Burke-Ernzerhof [25],
as implemented in the Vienna ab initio simulation package
(VASP, version 5.4) [26,27]. The pseudopotentials with 8

valence electrons for Mg and 14 valence electrons for Sn
were used. An energy cutoff of 520 eV was adopted for
the plane-wave expansion of the electronic wave functions.
The Methfessel-Paxton technique was adopted with smear-
ing parameter of 0.2 eV for integration over k points [28].
The Brillouin zone was sampled by γ -centered grids with
the k points per reciprocal atom over 10 000. For all the
configurations under consideration, all degrees of freedom
for the cell (e.g., volume, shape, and atomic positions) are
allowed to relax for structural optimization. To improve the
accuracy of energy calculations, static calculations with the
tetrahedron method incorporating Blöchl correction [29] were
adopted after structural relaxations. To analyze the effects of
lattice vibrations on the stability of phases, the force constants
matrices were calculated for several structures by the linear
response method [30], which, compared with the supercell
method, can better capture the splitting between longitudinal
and transverse optical phonon frequencies of Mg2Sn [31]. The
supercells with 96 (4 × 4 × 3 primitive cells), 96 (2 × 2 × 2
unit cells), 96 (2 × 2 × 3 primitive cells), and 108 (3 × 3 ×
3 primitive cells) atoms are used, respectively, for the force
constant calculations for Mg, Mg2Sn, D019, and L12 Mg3Sn,
with the k points per reciprocal atom over 6 000. Current
numerical tests show that the phonon density of states (DOS)
curves for D019 Mg3Sn from linear response method consists
of small imaginary parts, which may affect the accuracy of
vibrational free energy. Hence, in the analysis, the phonon
DOS for D019 Mg3Sn is obtained by the supercell method.
The YPHON package of Wang et al. [32] is adopted to extract
the force constant matrix from VASP output and calculate the
phonon DOS and dispersion.

C. Cluster expansion

The CE method is widely used to construct the Hamil-
tonian of different atomic configurations on a parent lattice
due to the fact that, for a cell of N atoms for binary system,
the energies of 2N structures need to be calculated, which
becomes formidable when N increases. In the CE approach,
the alloy is treated using the lattice model where the lattice
sites are fixed on the underlying Bravais lattice and a config-
uration σ is defined by specifying the occupation of each of
the N lattice sites. For each configuration, one assigns a set
of spin variables Ŝi (i = 1, 2, . . . , N) to each of the N sites
of the lattice, with Ŝi = 0, 1, . . . , M − 1 for M component
system. As such, it is proven that the energy of a given atomic
configuration on fixed lattice can be cast into [33],

ECE (σ ) = J0 +
∑

i

JiŜi(σ ) +
∑
j<i

Ji j Ŝi(σ )Ŝ j (σ )

+
∑

k< j<i

Ji jk Ŝi(σ )Ŝ j (σ )Ŝk (σ ) + . . . , (3)

where J0, Ji, Ji j , Ji jk are the effect cluster interactions (ECIs)
for empty, point, pair, and triplet clusters. In the CE formal-
ism, ECIs are dependent on the geometry of the corresponding
clusters but independent of the atomic occupations. Once
the ECIs are obtained by fitting to the energies of known
structures, the energy of any configuration can be readily
calculated by Eq. (3). Refer the clusters in CE as “figures”
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and define all symmetrically equivalent figures f belonging to
class F, then Eq. (3) can be written in a compact form [34],

ECE(σ ) = N
∑

F

DF JF �̄F (σ ), (4)

where DF ≡ OF /m is the number of figures in class F per
site, OF is the number of figures in class F, m is the number of
sites in class F, JF is the ECI for class F, �̄F is the averaged
correlation function for class F [34],

�̄F (σ ) = 1

OF

∑
f

Ŝ1(σ )Ŝ2(σ ) · · · Ŝm(σ ). (5)

With the Ising-like Hamiltonian [Eqs. (3) and (4)] for any con-
figuration on a given lattice, the free energy can be calculated
with the MC sampling method.

In the current work, the MAPS code in alloy theoretic
automated toolkit (ATAT) [35–37] is adopted to generate
various atomic configurations on lattice and perform the CE
calculations for HCP and FCC Mg-Sn alloys. In CE, the pair,
triplet, and quadruplet clusters, in addition to empty and point
clusters, are adopted and the corresponding ECIs are used to
fit the energy from DFT calculations. The numbers of different
clusters are varied to adjust the number of fitting ECIs to min-
imize the leave-one-out cross validation (LOOCV) [35,36].
In this study, convergence of CE is reached once LOOCV
is smaller than 5 meV/atom, no new ground state with at
most 16 atoms is predicted by CE, and the ECIs do not
change significantly if more structures from DFT calculations
are added. All structures with up to 14 and 12 atoms are
searched, respectively, to yield converged CE results for HCP
and FCC, which are then adopted to search for relatively
stable orderings with energy less than 5 meV/atom above
the convex hull within 0 < xSn < 25 at.%. The criterion of 5
meV/atom is chosen since it is approximately the error bar for
the energies predicted by converged CE. The orderings with
relatively lower predicted energies are then calculated using
DFT and included in the CE fitting afterward. Eventually,
among the 228 and 317 structures included in the training of
ECIs for HCP and FCC lattices, the largest structures have 18
and 16 atoms with the final LOOCV score being 3.5 and 3.1
meV/atom, respectively.

In CE method, it is assumed that the structures have the
same symmetry of the parent lattice and atoms always sit on
the ideal lattice sites, which, in general, is not the case for
relaxed structures in DFT calculations. Previous calculations
have shown that including the over relaxed structures will
adversely affect the convergence and reliability of CE [38].
To deal with this issue, the following methods are adopted
previously: (1) set a threshold value for lattice distortion [37];
(2) set a threshold value for the relaxations of atoms using
normalized mean square displacements [38] or number of
atoms within a shell [39]; (3) fix the shape of the lattice
and only relax the volume and internal atomic positions [40];
(4) use the structure and energy at the inflection point in
the relaxation path of the structures that do not resemble the
underlying lattice [41]; (5) limit the range of concentrations
if, outside a concentration range, the structures tend to relax
away from the original lattice [37]. In the current work, two
criterions are adopted to characterize the relaxation magnitude

of lattice vectors and atomic positions. For the lattice vectors,
the extent of relaxation without isotropic volume change or
rigid rotation can be measured by the 2-norm of the distortion
matrix [42],

d = ‖(D + DT )/2 − I3‖2, (6)

where I3 is the 3 × 3 identity matrix and D is the matrix
required to transform the matrix of ideal lattice vectors (L0)
to the relaxed one (Lrlx) in a volume conserving manner,

D = [
L0/V (1/3)

0

]−1 · [
Lrlx/V (1/3)

rlx

]
, (7)

where V0 and Vrlx are the volumes of the ideal and relaxed
structures, respectively. This criterion for lattice distortion
is implemented in ATAT [35–37]. As for the relaxations of
internal atomic positions, the normalized mean square dis-
placement (NMSD) is proposed by Nguyen et al. to measure
the displacement of atoms from their reference positions [38],

NMSD = 1

NV 2/3
0

[∑
k

(
Rrlx

k − R0
k

)2

]
· 100%, (8)

where Rrlx
k and R0

k are the Cartesian positions of kth atom in
the relaxed and initial cell, respectively. The criterion of lattice
distortion [d , Eq. (6)] and NMSD are adopted to examine
the relaxation of structures, and for consistence, the structures
with d < 0.1 are included in the fitting of ECIs for both HCP
and FCC lattices.

D. Monte Carlo simulations

The free energies of HCP and FCC lattices as a function
of composition and temperature are calculated using MC
simulations with the input Hamiltonian from converged CE.
The configurational space is sampled using semigrand canon-
ical MC, where the chemical potential, volume, temperature
and total number of lattice sites are fixed while the number
of atoms of each species is allowed to change by flipping
the spins of lattice sites [43]. In the current calculations,
equilibrium is reached once the standard deviation in averaged
concentration (q = 2x − 1, where x is the molar fraction of
solute) in semigrand canonical MC is less than 10−4 or that
of the energy in canonical MC is less than 0.1 meV/atom.
After equilibration, the microstates sampling the low energy
region of the configurational space are taken to calculate the
thermodynamic averages and the free energy is calculated by
thermodynamic integration [43]. Treating the discontinuities
in thermodynamic quantities as possible phase transforma-
tions, the phase diagram can be calculated using the results
of MC simulations, by scanning over fixed chemical potential
or temperature. All MC simulations and phase boundary
calculations are performed by EMC2 and PHB code in ATAT,
respectively. Detailed parameters of CE and MC calculations
are listed in Table I.

E. Short-range order analysis

To analyze the evolution of short-range order (SRO) at
finite temperatures, the Warren-Cowley SRO parameter is
adopted and the SRO for four nearest neighboring (NN) shells
are calculated. For a binary alloy with fixed composition and
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TABLE I. Detailed parameters of the CE and MC calculations for HCP and FCC lattices. The number of structures in the training,
maximum number of atoms of structures, number of pair, triplet, and quadruplet clusters, leave-one-out cross-validation score (LOOCV,
meV/atom) [35,36], and size of the MC simulation cells (No. of primitive cells).

Lattice No. training DFT calc. Max. No. atoms No. pair No. triplet No. quadruplet LOOCV MC cell

HCP 228 18 11 15 0 3.1 37 × 37 × 20
FCC 317 16 23 12 16 3.5 39 × 39 × 39

temperature (T ), the Warren-Cowley SRO is defined by [44]

αlmn(x, T ) = 1 − PA(B)
lmn (x, T )

x
, (9)

where x is the nominal molar fraction of B and PA(B)
lmn (x, T ) is

the conditional probability that given an A atom at the origin,
there is a B atom at shell (lmn). If αlmn > 0, then A-A pairs
are preferred at shell (lmn) since PA(B)

lmn (x, T ) < x, leading to
clustering tendency; conversely, αlmn < 0 or PA(B)

lmn (x, T ) > x
indicates that A-B pairs are preferred and results in order-
ing tendency. If the atoms are randomly distributed, then
PA(B)

lmn (x, T ) = x and αlmn = 0, leading to solid solution phase
without SRO. In the context of generalized Ising model, the
Warren-Cowley SRO can also be defined by [45]

αlmn(x) = 〈�̄lmn〉 − q2

1 − q2
, (10)

where 〈�̄lmn〉 is the averaged correlation for pair clusters at
shell (lmn) [see Eq. (5)], and q (= 2x − 1) is the concentration
in generalized Ising model with q = −1 and q = 1 referring
to pure A and pure B, respectively. For the structures from
canonical MC simulations, Eq. (10) is adopted to calculate
the SRO of four NN shells as a function of temperature.

III. GROUND-STATE STRUCTURES AND STABILITY

In the CE calculations, the relaxed structures from DFT
calculations are examined via the lattice distortion [Eq. (6)]
and NMSD to determine whether the structures should be

included in the fitting of ECIs. In Figs. 1 and 2, the lattice
distortion and NMSD as a function of xSn and their distribu-
tions are shown for relaxation of HCP and FCC orderings.
Generally, both the lattice distortion and NMSD become
larger as xSn increases from zero, then decreases as xSn

approaches unit. In the middle region, the lattice distortion
and NMSD are significantly larger because the alloy prefers
to stay in the lattice of the stable intermetallic compound
Mg2Sn, thus deviating from ideal lattices. Comparatively, the
lattice distortion of HCP is generally larger than that of FCC,
since the c/a ratio of HCP Mg and Sn are different and while
FCC, by definition, always remains cubic. For both HCP and
FCC, the lattice distortion drops around 0.1 while NMSD
drops at 1%. For consistency, the lattice distortion criterion
is chosen to select relaxed structures for the training of ECIs
and those with distortion larger than 0.1 is excluded, which is
recommended in ATAT [37].

In the current work, the CEs are performed in two steps;
first, converged CEs are obtained and all structures with up
to 14 and 12 atoms are searched for ground states for HCP
and FCC, respectively; then, all the structures with up to 18
and 16 atoms and with xSn � 25 at.% are searched using
the energies predicted by previously converged CE and those
with energies less than 5 meV/atom above the corresponding
convex hull are calculated by DFT and further included in
the training of the final converged CE. The ECI energies
and CE results for HCP and FCC are shown, respectively,
in Figs. 3 and 4, where the energies input from DFT, the
corresponding energies from CE fitting, the metastable and
global convex hulls of formation energy are plotted, with the

FIG. 1. Relaxation of orderings on HCP lattice as a function of the molar fraction of Sn (left) and its histogram (right) evaluated by the
lattice distortion (a) and normalized mean square displacement (b).
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FIG. 2. Relaxation of orderings on FCC lattice as a function of the molar fraction of Sn (left) and its histogram (right) evaluated by the
lattice distortion (a) and normalized mean square displacement (b).

energies of HCP Mg and body-centered tetragonal (BCT)
Sn as references. Note that α Sn (face-centered diamond),
i.e., the ground-state structure of Sn, is not chosen as energy
reference, since α Sn is only stable below 298 K [4], while
we aim to study the precipitation at high temperatures. The
pair and triplet clusters are enough to depict the energies of
orderings on HCP lattice [Fig. 3(a)], while quadruplet clusters
also contribute to the energies of FCC lattice [Fig. 4(a)]. In
both cases, the magnitude of the ECI energy decreases with
increasing size of clusters (i.e., largest two-site distance within
the cluster). The cutoff distance for pair and triplet interactions
for CE of HCP lattice are 7.82 and 5.54 Å, respectively; while
that for the pair, triplet and quadruplet interactions for CE of
FCC lattice are 13.92, 6.39 and 5.53, respectively. As shown
in the convex hulls of formation energies [Figs. 3(b) and 4(b)],
D019 Mg3Sn, B19 MgSn, and D019 MgSn3 are predicted to be
on the HCP convex hull, while L12 Mg3Sn and L10 MgSn

are on the FCC convex hull. In agreement with previous
experimental results, the D019 and L12 Mg3Sn phases are
identified on the metastable convex hull with energies 32
and 7 meV/atom above the global convex hull, respectively,
which indicates that L12 is more stable than D019 Mg3Sn.
The relative stability of L12 and D019 Mg3Sn explains the fact
that L12 Mg3Sn can be readily formed in aged samples while
formation of D019 Mg3Sn requires increased cooling rate or
lowered aging temperatures [17,19,20].

The ordering phases on or slightly above (within 5
meV/atom) the HCP metastable convex hull are shown in
Fig. 5, where the primitive cells are indicated by the dashed
red lines. Besides D019 [Fig. 5(a)] and B19 [Fig 5(b)], which
are on the HCP convex hull, the Sn concentration follows
xSn < 25 at.% for the other orderings. Viewed along the
[0001] axis, the D019 phase is made of the switching layers
of pure Mg and zigzagged arrangements of Mg / Sn rods on

FIG. 3. (a) Effective cluster interaction energies of the clusters in CE for HCP Mg-Sn lattice, where the clusters are ordered with increasing
size (largest two-site distance) within the cluster. (b) Formation energies of orderings on the HCP lattice from DFT calculations and cluster
expansion (CE). The metastable HCP convex hull and global convex hull are also shown. The structures on the HCP convex hull are labeled.
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FIG. 4. (a) Effective cluster interaction energies of the clusters in CE for FCC lattice, where the clusters are ordered with increasing
size (largest two-site distance) within the cluster. (b) Formation energies of orderings on the FCC lattice from DFT calculations and cluster
expansion (CE). The metastable FCC convex hull and global convex hull are also shown. The structures on the FCC convex hull are labeled.

(011̄0) plane while B19 phase is made of switching layers of
pure Mg and Sn on (011̄0) plane. For all the other orderings
with energy slightly above the convex hull between pure
Mg and D019, various patterns of atomic arrangements are
identified. The most popular arrangements of Sn atoms are
indicated by the blue lines in Figs. 5(a), 5(c), and 5(d). Note
that these zigzagged arrangements of Sn rods are the basic
building blocks of the D019 phase, where such arrangements
are stacked compactly with pure Mg. The popularity of such
building block is reasonable from a thermodynamic perspec-

tive, considering that it is the basic unit of D019 on the HCP
convex hull and more layers of pure Mg are present between
the zigzagged arrangements of Sn rods for orderings with
xSn < 25 at.% to maintain the overall concentration. Previous
studies also revealed such zigzagged patterns of solute rods
in Mg-based rare earth alloys, such as Mg-Nd [39] and Mg-
Sc systems [46], where, similar to the current results, D019

structure with 25 at.% solute is on the HCP convex hull
of formation energies. Apart from such zigzagged building
block, other types of arrangements, although less frequently
observed, are also identified, such as two-atom rods of Sn

FIG. 5. Schematic crystal structures of orderings on or with energies less than 5 meV/atom above the metastable HCP convex hull.
Orderings are shown as viewed along the [0001] axis. The symbols for the atoms are shown in the figure. The triangular basal layers are
stacked with an “ …ABAB …” sequence when viewed along this axis. The dashed red lines indicate the primitive cell for the ordering phases;
the blue lines connect the Sn atoms for the most common building block of the orderings with xSn < 25 at.%. The structure files shown in this
figure in VASP format can be downloaded in the Supplemental Material [55].
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FIG. 6. Schematic crystal structures of orderings on or with energies less than 5 meV/atom above the metastable FCC convex hull.
Orderings are shown as viewed along the [001] axis. Relative to this zone axis, the crystal structure can be viewed as a stacking of two centered
square lattices. The dashed red rectangles are for the primitive cells of ordering phases; the most common building block for orderings with
xSn < 25 at.% is indicated by blue rectangles. The structure files shown in this figure in VASP format can be downloaded in the Supplemental
Material [55].

[Fig. 5(e)], single-atom rods of Sn [Figs. 5(f) and 5(g)], planar
arrangements of switching Sn and Mg atoms [Fig. 5(h)].

The ordering phases on FCC lattice with low energies
are also studied to reveal the preferred pattern of atomic
arrangements. Apart from L12 [Fig. 6(a)] and L10 [Fig. 6(b)],
other ordering phases with xSn < 25 at.% and slightly above
(within 5 meV/atom) the FCC metastable convex hull are
shown [Figs. 6(c) to 6(g)]. Viewed along the [001] direction,
the atomic arrangements are examined, where the switching
rods of Mg and Sn are found to prevail in these ordering
phases (as indicated by blue rectangles), thus becoming the
building block for ordering phases on FCC lattice. As shown
in Fig. 6, most ordering phases, including L12 and L10, can
be formed by different arrangements of such building block
and pure Mg. Note that circles colored half in blue and half
in red indicate that one in every two sites is occupied by Sn
atoms along the [001] direction, which can also be categorized
as such building blocks. Similar to the case of HCP, the
prevalence of such building block can be readily explained
thermodynamically, since the stacking of such building block
and pure Mg leads to the L12 and L10 phases, which are on
the FCC convex hull, hence it is energetically favored. We will
show, in Sec. VI, that such building blocks in HCP and FCC
lattice play a fundamental role in the formation of coherent
precipitates at early stages of precipitation.

IV. FINITE-TEMPERATURE STABILITY
AND PHASE DIAGRAM

The finite-temperature stability of the phases on the
metastable HCP and FCC convex hull and their corresponding
phase diagrams are constructed by the semigrand canoni-
cal MC simulations, where the total number of lattice sites
are fixed and spins for atoms are flipped under constant
chemical potential, to search for the state that minimizes the

Hamiltonian [43]. To show the principle for phase diagram
calculations, the results of MC scans over temperatures and
chemical potentials are shown in Figs. 7 and 8. At constant
temperatures, the MC simulations yield the convex hull of free
energies, where the straight lines connecting the neighboring
phases are the common tangent for two-phase equilibria.
As temperature increases, the single-phase regions become
wider and the convex hull become smoother, approaching the
energy curve for the corresponding solid solution phase at
high temperatures. For all the temperatures investigated, the
free energy of HCP is lower than that of FCC if xSn < 10

FIG. 7. Free energy convex hull as a function of the molar
fraction of Sn at finite temperatures from the semigrand canonical
MC simulations for HCP and FCC lattices with the red line and blue
line, respectively. Note that the MC simulations directly yields the
energy convex hull, not the energy of each phases.
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FIG. 8. Illustration of the phase diagram calculations from the
MC simulations for HCP lattice. Note that the results of molar
fraction of Sn vs. temperature naturally reveals the pattern of the
phase diagrams of orderings on HCP lattice.

at.% approximately, while FCC is more stable for xSn > 10
at.%. Moreover, the MC scans were performed with constant
chemical potentials that stabilize different ground states. Us-
ing the results of HCP lattice for illustration, the evolution of
xSn as a function of temperature is plotted in Fig. 8, which
perfectly reveals the pattern of the underlying HCP phase
diagram. As can be seen in Fig. 8, the sudden changes (or
discontinuities) in the xSn(T ) indicates phase transformations,
which justifies the use of discontinuities to detect the phase
boundaries. It is worth mentioning that, despite the numerical
uncertainty, all xSn(T ) converges to one of the ground-state
phases at 0 K, indicating zero configurational entropy at 0 K
since no uncertainty of occupancy is allowed.

The boundaries for the ground-state phases and solid so-
lutions, determined by detecting the discontinuities of ther-
modynamic quantities from MC simulations, are shown in

FIG. 9. Phase diagram of the metastable orderings on the HCP
convex hull with free energies from semigrand canonical MC simu-
lations using CE Hamiltonian.

FIG. 10. Phase diagram of the metastable orderings on the FCC
convex hull with energies from semigrand canonical MC simulations
using CE Hamiltonian.

Figs. 9–11, where the single phase regions are colored. On
HCP lattice, the stable regions of D019 Mg3Sn, B19 MgSn,
and D019 MgSn3, along with HCP solid solutions, are re-
vealed. Note that when the two-phase regions are very narrow,
it is difficult to determine the nature of the reaction (e.g.,
T = 720 K and xSn = 45 at.%) from MC simulations, since
the results of MC are innately affected by the randomness
and much larger simulation cells are needed to improve the
accuracy. The region for D019 MgSn3 is very narrow and
agrees with the ground-state convex hull of orderings on
HCP lattice, where the energy of D019 MgSn3 is almost on
the straight line connecting B19 and HCP Sn (1 meV/atom
difference). For orderings on FCC lattice, the diagram of L12

Mg3Sn, L10 MgSn and solid solution phase are shown in
Fig. 10, where a eutectoid reaction (i.e., FCC solid solution
→ L12 Mg3Sn + L10 MgSn) is detected. In both cases of
HCP and FCC, the orderings at xSn = 25 at.% (D019 and L12)

FIG. 11. Phase diagram of the metastable orderings on both HCP
and FCC lattices.
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FIG. 12. Warren-Cowley short-range order parameters as a function of temperature for HCP (a) and FCC (b) Mg-20Sn (at.%) from the
structures of canonical MC simulations. The results for the first four nearest-neighboring shells are shown.

are more stable than the ones at xSn = 50 at.% (B19 and L10)
with respect to temperature increase. Using the same reference
for energy (i.e., HCP Mg and BCT Sn), the phase diagram
orderings on both HCP and FCC is plotted together in Fig. 11.
As expected from the free energy convex hulls (Fig. 7), the
HCP solid solution remains stable under all the temperatures
investigated for xSn ∼< 10 at.% and the orderings on the FCC
lattice are stable at regions of larger xSn. At T = 850 K and
xSn = 13 at.%, an eutectoid reaction (i.e., FCC solid solution
→ HCP solid solution + L12 Mg3Sn) is revealed. It should
be noted that, the calculated phase boundaries and reactions
are only approximate, due to the innate error in DFT energies
and neglected effects such as thermal electronic contribution,
thermal expansion and anharmonic vibrations [47]. However,
the topology of phase diagrams and the nature of the reactions
from the calculations of coupled CE and MC with DFT
energy input are expected to be reliable [39,46]. Note that,
in the phase diagrams from Monte Carlo simulations, some
of the phase boundaries are not smooth, which is due to the
randomness in MC method. Such non-smooth feature in phase
diagrams is not expected in reality due to the fact that the
macro-states of the material system are the statistical averages
over a large number of subsystems on microscale while, in
MC simulations at atomic scale (54760 and 59319 atoms for
the case of HCP and FCC, respectively), the fluctuations in
the results (i.e., energy, concentration, temperature, etc.) due
to the randomness are inevitable. Hence the phase diagrams
are presented without further modifications.

In the heat treatment of alloys, the ordering/clustering
tendency plays an important role at the early stages of pre-
cipitation. Short-range order (SRO) parameter is usually used
to quantify the ordering/clustering tendency in alloys [44,45].
To analyze the evolution of SRO in the systems, the canonical
MC simulations are performed and the Warren-Cowley SRO
parameters α for four NN shells of the output structures are
analyzed following the definition from Eq. (10). Irrespective
of the shells under consideration, there will always be positive
SRO parameters, even for perfectly ordered structures (at 0
K), which indicates SRO exists if SRO parameters for some
of the shells are significantly smaller than zero. As shown

in Fig. 12, SRO parameters for all the shells approach zero
up to 2500 K for the current calculations. However, the SRO
parameters are not exactly zero at temperatures well above
the transition to solid solution, indicating that the atoms in the
solid solution phase are not randomly distributed and there
always is some degree of SRO at high temperatures. For HCP,
the Warren-Cowley SRO parameters for the 1st and 2nd NN
are always negative and those for 3rd and 4th stay positive;
while for FCC, the SRO parameter for 1st and 3rd NN are
negative and those for 2nd and 4th remain positive, indicating
the ordering (α < 0) / clustering (α > 0) tendencies differ
at different shells. In both cases, the 1st NN prefers ordering,
meaning that attractive interaction between Mg and Sn atoms
is preferred. Additionally, the phase transformations can also
be revealed by the sudden change of SRO parameters. As
temperature decreases, there will be transformations from
solid solution to D019 or L12 phases, caused by the changing
magnitude of SRO parameters for all the shells, although their
signs do not change. Further decreasing of temperature leads
to the precipitation of pure Mg from the ordered phases (D019

or L12), which is only caused by magnitude of clustering (not
ordering) tendencies.

V. EFFECT OF LATTICE VIBRATIONS
ON L12 MG3SN STABILITY

As mentioned before, the phase boundaries obtained from
the MC simulations with coupled CE and DFT energies are
not accurate enough to compare with experiments due to the
innate inaccuracy in DFT energies and the neglected effects.
One of neglected effects is the free energy due to lattice vibra-
tions. Previous first-principles calculations [48] and molecular
dynamics simulations with angular dependent potential [49]
for θ ′ and θ Al2Cu show that θ ′ is stable at low temperatures
while θ is stabilized by vibrational entropy as temperature
increases. This indicates that the effect of lattice vibrations
can play an important role in stabilizing competitive phases
when their enthalpies of formation are close to each other. In
the current work, the effect of vibrational free energy on the
stability of phases at xSn = 25 at.%, i.e., D019 Mg3Sn, L12
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FIG. 13. The phonon dispersion relation and heat capacity from linear response method. Note that the experimental dispersion relation of
Kearney et al. [50] and the heat capacity of Jelinek et al. [52] are adopted to validate the calculations.

Mg3Sn and mixture of pure Mg and β Mg2Sn, are analyzed
with the phonon density of states determined by the force
constant matrix calculated by the linear response method [30]
with harmonic approximation. To test the accuracy of har-
monic phonon calculations, the calculated phonon dispersion
relation and the heat capacity (CV ) of Mg2Sn are compared
to the experiments. As shown in Fig. 13(a), the calculated
phonon dispersion relation generally agrees well with the ex-
periment of Kearney et al. [50], except for some disagreement
at high-frequency branches. In principle, the low frequency
phonon modes (hence low energy) will contribute much more
to the thermodynamics according to Boltzmann statistics [51],
and disagreement in the high-frequency branch is expected
to affect the thermodynamics insignificantly. The calculated
CV agrees well with experiments up to 300K, where the
experimental data is available [52]. Therefore, the methods
and parameters in harmonic phonon calculations are expected
to be reliable.

The free energies consisting of ground-state static energy
and vibrational free energy for Mg, Mg2Sn, D019, and L12

Mg3Sn, are shown in Fig. 14. The mixture of Mg and Mg2Sn
with overall 25 at.% Sn, i.e., 25at.% Mg and 75at.% Mg2Sn, is
the most stable at low temperatures and L12 Mg3Sn becomes
the stable one when T > 353 K, while D019 Mg3Sn always
remains metastable. Despite the inaccuracies in the transition
temperature, it is clearly shown that L12 structure becomes
stable at high temperatures due to vibrational free energy. This
is similar to the case of the competition between θ ′ and θ

Al2Cu [48,49] and suggests the L12 Mg3Sn phase may be
included in the equilibrium phase diagram for Mg-Sn alloys
at finite temperature.

VI. EARLY STAGES OF PRECIPITATION

In the microstructures of Mg-9.8Sn (wt.%) alloy aged at
100 ∼ 250 ◦C, G.P. zone and L12 Mg3Sn on the basal plane
of HCP matrix are observed [17,18]. And the D019 Mg3Sn
phase on the basal plane are also observed in the as-solidified
microstructure with increased cooling rate or lowered aging
temperature [19,20]. Previously, the precipitation sequence of

supersaturated solid solution → G.P. zone → L12 Mg3Sn →
βMg2Sn is proposed in accordance with the experimental
observations [17]. However, the role of D019 Mg3Sn and
detailed steps of how G.P. zone transforms to β Mg2Sn are
not discussed.

In the current work, many ordering phases close to the HCP
and FCC convex hulls (within 5 meV/atom) are predicted,
in addition to the phases on the metastable convex hulls.
In the following, the roles of these ordering phases in the
early stages of precipitation are analyzed. Among the many
ordering phases on the HCP lattice, several have layered Sn
atoms on the basal plane of HCP matrix, although the layers
are only partially occupied by Sn atoms. One of the orderings

FIG. 14. Free energies with contributions from ground-state
static energy and vibrational free energy of Mg-25Sn (at.%) alloy
in D019 structure, L12 structure and as a mixture of Mg and Mg2Sn
with overall 25 at.% Sn (i.e., 25at.% Mg and 75at.% Mg2Sn). It is
shown that the L12 and D019 can be stabilized by vibrational entropy
and L12 becomes the stable phase at high temperatures. The dashed
line indicates the transition temperature between L12 Mg3Sn and β

Mg2Sn.
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FIG. 15. Orderings on HCP and FCC lattice predicted by the current CEs that are likely to be related to the early stages of precipitation.
Potential G.P. zone on HCP lattice viewed along [0001] (a) and [21̄1̄0] direction (b); (c) potential G.P. zone on FCC lattice (viewed along
[001]) where the layered region resembles L12 symmetry. The red dashed lines indicate the primitive cell for the ordering phase; the blue lines
in (a) indicate the arrangement of Sn atoms that resembles the most common building block of orderings on HCP lattice; the green dashed
rectangles indicate the regions on the HCP and FCC G.P. zones in (b) and (c) that resemble D019 and L12 Mg3Sn, respectively. The structure
files shown in this figure in VASP format can be downloaded in the Supplemental Material [55].

with a nominal composition of 12.5 at.% Sn is viewed along
[0001] and [21̄1̄0] and shown in Figs. 15(a) and 15(b). The
Sn atoms are aligned in a zigzagged fashion on the basal
plane [blue lines in Fig. 15(a)], with a layer spacing equal
to lattice parameter along c axis of HCP Mg. Viewed along
both [0001] and [21̄1̄0] directions, half of some lattice sites
are occupied by Sn atoms. Compared with the D019 Mg3Sn
structure, it is obvious that this ordering is exactly one layer
of D019 Mg3Sn [dashed green rectangles in Fig. 15(b)] and
one layer of pure Mg stacked repeatedly, with the thickness
of each layer being the lattice parameter along c axis of HCP
matrix. Although the alloys in experiments have a smaller xSn

(i.e., 9.8 wt.% is equivalent to 2.2 at.% [17]), the solute atoms
will segregate at the solid / liquid interface in the solidification
process and diffusion of Sn atoms will also occur at high-
temperature solutioning treatment, leading to Sn enriched
regions. Thus, the coherent ordering in Figs. 15(a) and 15(b)
is a potential G.P. zone in Mg-Sn alloys, which is likely to be
the precursor for the formation of D019 Mg3Sn phase in Mg
matrix. Furthermore, it is well known that the close-packed
planes of HCP and FCC are stacked in “· · · ABABAB · · · ” and
“· · · ABCABC · · · ” fashion, respectively, and that the stacking
fault region in HCP lattice resembles FCC structure [18].
Considering that D019 and L12 Mg3Sn have the same stoi-
chiometry, it is very likely layers of L12 Mg3Sn are formed
by the advent of stacking fault in HCP matrix with D019

ordering [17] and then rearrangement of Sn atoms without
long distance diffusion (larger than a few lattice parameters),
resulting in layers of L12 Mg3Sn embedded in the FCC parent
lattice of Mg; see the green dashed rectangles in Fig. 15(c).
Eventually, the transformation from L12 Mg3Sn to β Mg2Sn,

both of which have FCC symmetry, can readily proceed on
the basal plane of HCP matrix, by the further enrichment and
rearrangement of Sn atoms. So far, the physical picture of
the precipitation sequence, i.e., supersaturated solid solution
→ G.P. zone → D019 Mg3Sn → L12 Mg3Sn → βMg2Sn,
is complete. Note that the current proposed sequence also
explains why the L12 Mg3Sn and β Mg2Sn plates are aligned
on the basal plane of HCP matrix [17]. Recently, Wang et al.
[53] proposed a method to obtain the precipitation sequence
based on the monotonic decrease of the formation energy per
solute atom, which shows good agreement with experiments.
Note that our proposed precipitation sequence exactly follows
the energy decrease criterion of Wang et al. [53]. The spacing
between the Sn-rich layers in experiments might be different
from Fig. 15, due to the fact that xSn of alloys in experiment is
usually much smaller (∼2 at.%) than the overall concentration
of those orderings in Fig. 15, i.e., xSn = 12.5 at.%. Another
effect that might contribute to spacing of Sn rich layers is
the constitutive strain energy [54], which is not incorporated
in the current real-space CE, since CSE can be long-ranged
while real-space CE only accounts for short-range interactions
[34].

VII. CONCLUSIONS

In the current work, first-principles DFT calculations, CE
and MC, are adopted to study the ground-state and finite-
temperature structures and stability of the orderings on HCP
and FCC Mg-Sn alloys, and the indications on the early stages
of precipitation are discussed. Coupling CE and DFT, it is
found that D019 Mg3Sn, B19 MgSn and D019 MgSn3 are pre-
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dicted to be on the HCP convex hull while L12 Mg3Sn and L10

MgSn are on the FCC convex hull. Particularly, L12 Mg3Sn
and D019 Mg3Sn are 7 meV/atom and 32 meV/atom above
the global convex hull, indicating that L12 Mg3Sn can be
more easily observed, in agreement with experiments. Apart
from the structures exactly on the metastable convex hulls,
many ordering phases, including structures that resemble the
G.P. zone in experiments, are predicted to be very close to
the corresponding convex hulls. Using the CE Hamiltonian as
input for MC simulations, the phase diagrams for the order-
ings on HCP and FCC lattices are constructed by detecting
the discontinuities in the thermodynamic quantities. As ex-
pected, D019 and L12 Mg3Sn have large stable regions on the
HCP and FCC phase diagrams, respectively, while only L12

Mg3Sn is stable when phases on both lattices are considered
together. Analysis of the effect of lattice vibrations on phase

stability indicates that L12 Mg3Sn is stabilized by vibrational
entropy and become the stable phase at high temperatures.
The role of the coherent orderings in the early stages of
precipitation is discussed and the precipitation sequence of
supersaturated solid solution → G.P. zone → D019 Mg3Sn →
L12 Mg3Sn → βMg2Sn is proposed.
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