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According to experimental observations, the temperature dependence of self-diffusion coefficient in most
body-centered cubic metals (bcc) exhibits non-Arrhenius behavior. The origin of this behavior is likely related
to anharmonic vibrational effects at elevated temperatures. However, it is still debated whether anharmonicity
affects more the formation or migration of monovacancies, which are known to govern the self-diffusion. In
this extensive atomistic simulation study we investigated thermodynamic properties of monovacancies in bcc
molybdenum, here taken as a representative model system, from zero temperature to the melting point. We
combined first-principles calculations and classical simulations based on three widely used interatomic potentials
for Mo. In our analysis we employ static and dynamic atomistic calculations as well as statistical sampling
techniques and thermodynamic integration to achieve thorough information about temperature variations of
vacancy formation and migration free energies and diffusivities. In addition, we carry out large-scale molecular
dynamics simulations that enable direct observation of high-temperature self-diffusion at the atomic scale. By
scrutinizing the results obtained by different models and methods, we conclude that the peculiar self-diffusion
behavior is likely caused by strong temperature dependence of the vacancy formation energy.
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I. INTRODUCTION

Self-diffusion via vacancy migration belongs to funda-
mental transport mechanisms in most metals and alloys.
Even though this phenomenon has been studied extensively
both experimentally and theoretically (for reviews see, e.g.,
Refs. [1–8]), theoretical predictions of diffusion behavior still
belong to very active areas of materials research. In particular,
the interpretation of experimental observations and the consis-
tency between experimental data and theoretical predictions
have attracted great attention in recent years [8–16].

The self-diffusion coefficient, Dself, can be expressed in
general as a product of the vacancy concentration, cvac, and
the single-vacancy diffusivity, Dvac, which depend on energies
and entropies associated with vacancy formation and vacancy
migration, respectively. These fundamental thermodynamic
properties can nowadays be determined with high accuracy for
T = 0 K by first-principles electronic structure methods based
on density functional theory (DFT). The obtained values are
generally consistent, although the influence of the employed
exchange-correlation functionals can be significant [8,17–20].
What remains challenging for ab initio methods is the de-
scription of diffusion at finite temperatures. Recent studies
[10,13,14,19,21,22] have confirmed that the aforementioned
vacancy energies/entropies are not necessarily constant but
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may vary with temperature, an assumption that has been
suggested by various authors in the past [23–27].

Finite-temperature effects have usually been considered in
electronic structure calculations via the quasiharmonic ap-
proximation. Nevertheless, it has been demonstrated recently
[13,14] that anharmonic vibrational effects contribute signif-
icantly to the vacancy formation energy at elevated temper-
atures and need to be taken into account to obtain quantita-
tive agreement with experimental data. However, an accurate
evaluation of the anharmonic contributions is computationally
very demanding and practically accessible only by combining
DFT calculations with efficient configurational sampling and
thermodynamic integration [28]. A direct evaluation of free
energies by DFT is prohibitive due to the high computational
cost of electronic structure calculations.

This limitation is much less severe for classical interatomic
potentials that can nowadays be employed in molecular dy-
namics (MD) simulations of many thousands of atoms and
simulation times exceeding several nanoseconds. Such times
and system sizes are sufficient to follow diffusion processes
at elevated temperatures and to obtain a direct compari-
son between theory and experiment. However, a well-known
drawback of classical interatomic potentials is their limited
transferability as well as the inability to explicitly capture
phenomena that result from the electronic interactions (e.g.,
electronic entropy, magnetism). Despite these limitations,
simulations with classical potentials can yield valuable in-
sights into dynamical aspects of diffusion. They can therefore
complement the findings of electronic structure calculations
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and reveal processes that are not directly accessible by DFT. In
addition, large-scale MD simulations following the dynamical
behavior of defects at elevated temperatures can serve for
validation of interatomic potentials in extensive regions of
configurational space.

The temperature dependence of diffusion coefficients in
metals depends strongly on their cohesive properties as well
as crystal structure. While face-centered cubic (fcc) metals
exhibit only slightly upward curvature in the Arrhenius de-
scription of self-diffusion coefficients, [1,23] the diffusion
behavior of body-centered cubic (bcc) metals shows much
more pronounced variations. Not only the diffusivities in
different bcc metals vary by several orders of magnitude at
identical homologous temperatures, but the self-diffusion in
most bcc metals does not follow the Arrhenius behavior and
increases at high temperature [24–26,29–31]. This trend is
most pronounced in the so-called anomalous bcc metals, such
as Ti, Zr, U, and Hf, which undergo a phase transformation to
the bcc structure only at elevated temperatures. In the case of
bcc Mo, experimentally determined self-diffusion coefficients
exhibit less strong but evident non-Arrhenius behavior [32]
with positive curvature and enhanced diffusion at tempera-
tures above 2000 K.

Several possible origins of the unusual self-diffusion in
bcc metals have been proposed, including additional transport
via self-interstitials or divacancies [24,30,33,34], temperature
dependence of the vacancy migration energy [25,35,36], and
temperature dependence of the vacancy formation energy
[19,23]. A significant contribution of divacancies to the self-
diffusion, which was the most widely accepted explanation
for the enhanced diffusivity at high temperatures in the past,
is now considered implausible [26,37–39]. Recent atomistic
simulations [15,16,40,41] have revealed that self-interstitials
can strongly enhance the self-diffusion but only in the anoma-
lous bcc metals (e.g., Zr, Ti, U). Hence, the most likely reason
responsible for the observed non-Arrhenius diffusion are the
temperature variations of the vacancy formation and migration
energies (E f

vac and Em
vac). However, it is not clear whether just

one of them dominates or both of contribute similarly.
The ab initio molecular dynamics (AIMD) simulations of

Mattsson et al. [19] showed that self-diffusion in Mo is asso-
ciated with a marked temperature dependence of vacancy for-
mation energy, in accordance with other DFT studies for fcc
metals [9,10,13,14,28]. Later, Sangiovanni et al. [42] investi-
gated vacancy jump rates in Mo using an accelerated nonequi-
librium AIMD which enabled to extend the investigated
temperature range down to 1000 K. Both studies employed
a surface-corrected AM05 exchange-correlation functional
that overestimates the vacancy formation energy [13,14]. In
addition, the convergence of vacancy formation energies at
finite temperatures using MD requires extensive simulation
times that are not achievable by AIMD calculations [13].

Atomistic simulations that employ classical interatomic
potentials present a powerful tool for the investigation of
point defect properties at finite temperature. Several studies
have been performed for fcc metals [10,21,43–45] where non-
Arrhenius behavior is much less pronounced in comparison
with bcc metals. For instance, Carling et al. [10] found that
the slightly enhanced diffusion in Al at high temperature is

induced by temperature dependence of the vacancy formation
energy. The energy variation upon heating up to the melting
temperature amounted to only about 10%; a change that is
close to uncertainties of calculations as well as measurements.
For bcc metals, previous classical MD studies focused mostly
on the diffusion of a single vacancy, without detailed inves-
tigation of vacancy concentration [40,46–48]. More compre-
hensive investigations of self-diffusion were performed only
for the bcc phases of Zr [16,49], U [15,41], and Fe [22,50].
However, as already mentioned, the primary origin of non-
Arrhenius behavior in these metals are likely due to self-
interstitials [16,51] or, in the case of Fe, magnetic excitations
[52,53].

The main uncertainty in all classical calculations stems
from the limited reliability and transferability of the inter-
atomic potentials. Even though close attention is usually
paid to fitting of equilibrium bulk (e.g., cohesive, elastic
and vibrational properties) and defect properties (e.g., defect
formation and migration energies) at 0 K, there is no a priori
guarantee that the potentials will be able to capture correctly
also dynamical behavior of defects at elevated temperatures.
It is therefore important to assess the quantitative predictive
accuracy of interatomic potentials especially for complex
phenomena such as diffusion, which is affected by relatively
subtle variations resulting from collective behavior of many
atoms away from equilibrium.

In this work, we carry out a comprehensive analysis of
self-diffusion in the bcc transition metal molybdenum using
several classical interatomic potentials. We employ not only
distinct interatomic models but combine also various method-
ologies to obtain detailed information about thermodynamic
quantities governing diffusion and, in particular, to investigate
the role of anharmonicity in the temperature dependencies
of both the formation and migration energies and entropies.
The predictions of the classical potentials are compared to
experimental data as well as DFT results and hence provide
a thorough information about the reliability of the models
beyond the usual set of benchmark properties [54]. By using
several interatomic potentials we obtain additional insights
into features of each model that may be crucial for the correct
prediction of diffusion. Our study relies predominantly on
classical MD simulations, but we also exploit complementary
statistical methodologies such as transition path sampling [55]
and thermodynamic integration to achieve thorough informa-
tion about temperature variations of vacancy formation and
migration free energies and diffusivities.

The paper is organized as follows. In Sec. II, we provide a
brief description of the atomistic models and methodologies
used in this work and investigate fundamental material prop-
erties related to self-diffusion. Section III is devoted to in-
depth analysis of finite-temperature properties of vacancies.
Section IV presents results of large-scale molecular dynamics
simulations of self-diffusion. Finally, in Sec. V, we analyze
the results and present the main conclusions of our work.

II. COMPUTATIONAL MODELS AND METHODOLOGIES

There exist a number of interatomic potentials for atom-
istic simulations of pure molybdenum [48,54,56–64] and
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TABLE I. Fundamental properties of bcc Mo predicted by the FS
[56,57], MEAM [63], and ADP [15] interatomic potentials together
with reference DFT and experimental values (the listed properties
include lattice parameter at zero temperature a0 in Å, cohesive energy
Ecoh in eV/atom, elastic constants Ci j in GPa, melting temperature Tm

in K).

Exp. DFT FS MEAM ADP

a0 3.147a 3.163 3.147 3.167 3.1489
Ecoh 6.82b – 6.82 6.82 6.88
C11 477c 483 465 425 548
C12 155c 150 162 145 168
C44 111c 109 109 96 160
Tm 2890d – 2850 3220 2770

aReference [76].
bReference [77].
cReference [78].
dReference [79].

molybdenum-containing alloys [15,65–68]. For the purpose
of this work, we choose three representative many-body
potentials that reproduce not only fundamental properties of
bulk bcc Mo but also capture the formation and migration
energies of monovacancy well (see below).

The interatomic potentials employed in the study are:
(1) The Finnis and Sinclair (FS) potential [56], updated by

Ackland and Thetford [57].
(2) The modified embedded-atom method (MEAM) poten-

tial constructed by Park et al. [63].
(3) The angular-dependent potential (ADP) developed by

Starikov et al. [15].
The FS potential stems from the second-moment approx-

imation of the electronic density of states [69]. The MEAM
and ADP potentials are based on the embedded-atom method
[70] with additional terms designed to describe angular inter-
actions between atoms [71,72].

All classical simulations reported in this work were carried
out using the LAMMPS code [73]. The size of the simulation
blocks varied depending on the simulated property and is
specified below. A time step between 0.5 and 1.0 fs was
chosen for most MD simulations. As described in detail be-
low, various statistical ensembles including the microcanon-
ical NV E , canonical NV T , and isothermal-isobaric NPT
ensembles were employed. The Nose-Hoover thermostat and
barostat were used to control the temperature and pressure.

First-principles DFT computations were carried out using
the VASP code [74]. We used projector augmented wave
(PAW) method and the exchange-correlation functional within
the generalized-gradient approximation (GGA) in the form
of Perdew-Burke-Ernzerhof [75]. The Brillouin zone was
sampled using a 5×5×5 Monkhorst-Pack k-point mesh. The
cutoff energy of the plane-wave basis set was 500 eV. Unless
noted otherwise, the DFT simulation supercells contained 128
Mo atoms.

A. Elastic properties, melting and thermal expansion

Table I summarizes several fundamental properties pre-
dicted by the three potentials together with reference ex-

FIG. 1. Dependence of the lattice parameter on temperature pre-
dicted by three interatomic potentials and DFT calculations; refer-
ence experimental data are taken from Refs. [76,85,86] (the line is to
guide the eye).

perimental and DFT data. These properties are commonly
used either as target or benchmark quantities during potential
construction. For example, the FS potential was fitted to
reproduce accurately the experimental lattice constant and
elastic moduli. In the case of MEAM, the fitting was based
on a combination of ab initio computed elastic constants,
energies and interatomic forces. For ADP, the properties listed
in Table I were not explicitly included in the fitting database.
Instead, the ADP parametrization was fitted based on energies,
forces and stress components obtained from DFT calculations
for a number (typically about 100) diverse atomic configura-
tions [80–82].

For consistency, all values of Tm given in Table I were
computed in this work. The melting simulations were carried
out by heating a 6 nm thick bcc slab containing two free
(100) surfaces. The temperature was gradually increased from
2500 to 3500 K with a heating rate of 0.5 K/ps. The sim-
ulated system contained 5760 atoms with periodic boundary
conditions along two directions parallel to the free surfaces.
Initially, the atoms were arranged in the bcc lattice with lattice
parameter corresponding to zero pressure at T = 2500 K.
Simulations using the MEAM potential were performed with
an initial lattice parameter corresponding to zero pressure at
T = 3000 K due to a higher melting point predicted by this
potential. The simulation conditions guarantee small stresses
in the simulation block (less than 1 GPa) and accurate de-
termination of Tm (within ∼10 K) [83]. For the FS potential,
we obtained a value of Tm about 200 K lower than ∼3060 K
obtained in Ref. [84] based on thermodynamic integration. For
the MEAM and ADP potentials, our results agree closely with
the original references [15,63].

Figure 1 shows the thermal expansion of bcc Mo. For
reference, we compiled experimental data across various tem-
perature ranges [76,85,86]. The figure also contains results
of ab initio molecular dynamics simulations performed in
this work. The AIMD runs were performed using the NPT
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FIG. 2. A comparison of phonon-dispersion curves and phonon DOS curves for bcc Mo computed using three interatomic potentials
employed in this work. Experimental data are taken from Ref. [88], DFT results from Ref. [54].

ensemble at different temperatures and zero pressure. Here
we used �-point sampling, and a reduced plane-wave energy
cutoff of 300 eV. The MD simulations were run for 20 ± 3 ps
with a time step of 1 fs. The results obtained by AIMD
are in excellent quantitative agreement with the experimental
results. All three interatomic potentials reproduce the thermal
expansion well, with FS and ADP somewhat overestimating
while MEAM slightly underestimating the DFT and experi-
mental values.

B. Phonon dispersion

Vibrational properties are essential for analysis of finite-
temperature behavior as well as migration of vacancies. We
computed phonon dispersion spectra using all potentials by
means of the small displacement method as implemented
in the PHONOPY software package [87]. Figure 2 shows
the phonon dispersions along high-symmetry directions, in
comparison with the experimental data of Powell et al. [88]
and DFT results. [54] We can see that all three potentials give
similar results that are in accordance with the experimental

data apart from small differences in frequencies at some
zone boundaries. All potentials exhibit a softening of the LA
2/3[111] branch, but this weak softening related to the ω

lattice instability is unlikely to enhance self-diffusion as in
high-temperature stabilized bcc Ti or Zr [89,90].

Figure 2 also contains a comparison of phonon densities of
states (DOS) for all potentials with DFT reference data [54].
All potentials provide a good qualitative description of the
phonon DOS. The best quantitative agreement with the DFT
reference data is obtained for the MEAM potential.

C. Vacancy properties at zero temperature

As mentioned above, zero temperature properties of point
defects are often used during construction of interatomic po-
tentials. We calculated the formation and migration energies
for a monovacancy at zero pressure and zero temperature as

E f
vac = EN−1 − N − 1

N
EN , (1)
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TABLE II. Fundamental properties of a monovacancy in bcc Mo
(energies are given in eV, entropies in units of kB, attempt frequencies
in THz).

Exp. DFT FS MEAM ADP

E f
vac 3.0 ± 0.2a 2.80 2.55 2.96 2.81

3.24 ± 0.09b 2.97f

3.2 ± 0.1c 3.10g

3.0, 2.9i

3.13, 2.90j

S f
vac 1.5c 0.7g 2.32 0.51 1.96

2.6 ± 0.4b

Em
vac 1.23 ± 0.05d 1.20 1.30 1.65 1.30

1.30 ± 0.02e 1.28f

1.62 ± 0.27b 1.29h

1.35 ± 0.05c 1.30g

�0 15g 89 64 44

aReference [91].
bReference [93].
cReference [92].
dReference [96].
eReference [94].
fReference [95].
gReference [19].
hReference [42].
iReference [97].
jReference [98].

where N is the number of atoms in the supercell without
any defects (250- and 128-atom supercells were used for
classical potentials and DFT, respectively), and EN and EN−1

are the corresponding energies of a perfect bulk supercell and
of a supercell containing a single vacancy where all atomic
positions were relaxed, respectively.

According to Table II, MEAM and ADP predict a vacancy
formation energy E f

vac about 10% lower than the average
experimental value, [91–93] while for the FS potential the
energy is underestimated by about 20%. Note that the exper-
imental energies [91–93] were obtained at high temperature
and extrapolated to 0 K assuming temperature-independent
formation quantities.

We also investigated the stability of divacancies. According
to DFT calculations [99], the interaction between two vacan-
cies in bcc Mo is weak; slightly attractive (positive binding
energy) for the first-nearest-neighbor (1NN) configuration
while repulsive (negative binding energy) for the second-
nearest-neighbor (2NN) configuration. The FS and MEAM
potentials predict the correct hierarchy of the energies with an
overestimation of the attraction between vacancies. The ADP
shows vacancy repulsion also for the 1NN configuration. The
absolute binding energies, summarized in Table III, are small
for all models and hence divacancies are not expected to occur
frequently in the simulations and to contribute significantly to
diffusion.

To calculate the vacancy migration energy Em
vac at zero

pressure and zero temperature, we employed the nudged
elastic band (NEB) method [95,100]. Here we show only the
nearest-neighbor vacancy jump along the 〈111〉 direction. The
energy profiles along the minimum-energy path (MEP) are

TABLE III. Binding energies of 1NN and 2NN divacancies (in
eV). The DFT data are taken from Ref. [99].

DFT FS MEAM ADP

1NN 0.05 0.30 0.20 −0.23
2NN −0.22 −0.02 −0.04 −0.07

plotted in Fig. 3. We also investigated the second-nearest-
neighbor jump along the 〈100〉 direction. The migration en-
ergies of 4.3, 3.9, and 4.0 eV obtained for the FS, MEAM,
and ADP potentials, respectively, are significantly larger than
those for the nearest-neighbor jumps.

Results of our DFT calculations agree well with those
of Nguyen-Manh et al. [95] who employed an atomiclike
localized basis as implemented in the Plato code. Our DFT
values of formation and migration energies are slightly lower
than the values found in Ref. [95] which may be attributed to
the different basis sets. Dense k-point sampling is necessary
to obtain accurate and well converged migration energies
and NEB profiles. For the 53-atom cell a k-point sampling
smaller than 5×5×5 results in a double-hump NEB profile
with a local minimum in the middle of the MEP. From the
classical potentials, FS shows the best agreement with the
DFT results, both in terms of barrier height and shape. The
ADP potential predicts correctly the height of the migration
barrier, but its shape is qualitatively different. We verified
that the barrier is not affected by the size of the system (no
significant changes exist for systems containing 53, 127, and
249 atoms) or the number of images (11, 21, and 41 were
used). The largest discrepancy is obtained for the MEAM
potential which overestimates the migration barrier by more
than 0.3 eV. If we exclude the oldest experimental data [93],
both FS and ADP potentials agree closely with experimentally
estimated migration barriers.

The vacancy formation entropy S f
vac corresponding to T =

300 K was obtained from the difference between the vi-

FIG. 3. A comparison of energy profiles along the minimum
energy path for vacancy migration along the 〈111〉 direction in bcc
Mo. Black triangles (DFTa ) mark results from Ref. [95].
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brational entropies of the bulk supercell and the supercell
containing a vacancy, both relaxed to zero pressure. [101]
The vibrational entropies were evaluated by integrating the
phonon DOS [102,103] calculated using the software package
PHONOPY.[87] We obtained similar values of S f

vac for the
FS (2.32kB) and ADP (1.96kB) potentials while a significantly
smaller value of 0.51kB was found for MEAM. The obtained
results agree well with other vacancy formation entropies
obtained for bcc metals (about 1−3kB) [4,50,104].

In addition, we employed transition state theory (TST)
to estimate the attempt frequencies �0 and vacancy jump
rates � (see below) for all interatomic potentials. Specifically,
we utilized two commonly used TST approaches derived by
Eyring [105] and by Vineyard [106]. According to Eyring’s
TST, the jump rate can be expressed as

� = kbT

h
exp

(
−�Fvib

kbT

)
exp

(
−Em

vac

kbT

)

= �0 exp

(
−Em

vac

kbT

)
, (2)

where kB and h are the Boltzmann and Planck’s constants, and
�Fvib is the difference between vibrational free energies of the
transition and equilibrium states. In Vineyard’s approach, the
attempt frequency is approximated as

�0 =
∏N

n=1 νn∏N−1
m=1 ν∗

m

, (3)

where νi and ν∗
i are the �-point phonon frequencies for

supercells corresponding to the equilibrium and transition
states, respectively, and N is the number of modes (except for
the translation modes). Both approaches become equivalent
at high temperatures [107]. The phonon frequencies and vi-
brational free energies were evaluated using PHONOPY [87].
In order to ensure convergence, a dense q-mesh has been
employed (up to 21 × 21 × 21) to evaluate the free energies.
The computed attempt frequencies from both approaches are
almost identical and are listed in Table II.

III. PROPERTIES OF VACANCIES AT FINITE
TEMPERATURES

Properties of monovacancies at absolute zero can be used
to estimate diffusion as a function of temperature assuming
Arrhenius relation. However, as mentioned in the Introduc-
tion, the energies and entropies of formation and migration
may be temperature dependent.

Previous studies with classical potentials
[10,21,22,49,50,108] and first-principles methods [13,14,19]
have revealed that the vacancy formation energy may be
strongly affected by anharmonicity, which leads to a marked
nonlinear temperature dependence of vacancy concentration.
However, much less is known about temperature dependence
of the migration energy. In the following sections, we
investigate the temperature variations of both formation and
migration thermodynamic quantities in detail using various
methodologies.

A. Temperature dependence of vacancy formation energy

The Gibbs free energy of vacancy formation G f
vac

determines the equilibrium vacancy concentration cvac

[10,13,49,109]. The equilibrium concentration at given
temperature and pressure is described as

cvac(T ) = exp

(
−G f

vac(T )

kBT

)

= exp

(
S f

vac(T )

kB

)
exp

(
−H f

vac(T )

kBT

)
, (4)

where H f
vac and S f

vac are the vacancy formation enthalpy and
entropy, respectively. Since at zero pressure H f

vac = E f
vac, we

will further use the term vacancy formation energy rather than
enthalpy, unless the two quantities need to be distinguished.
The focus of this section is to examine how the different
interatomic potentials predict the temperature dependencies of
E f

vac and S f
vac originating predominantly from anharmonicity

of lattice vibrations [14,22].

1. Dependence of vacancy formation energy
on the lattice expansion

As a first step, we considered how the vacancy formation
energy varies with the expansion of crystal lattice, in absence
of vibrational contributions. This calculation can be carried
out with classical potentials as well as first-principles methods
and hence serves as an additional benchmark of the employed
models.

For this purpose, we used a supercell (127-atom for DFT,
249-atom for potentials) containing a single vacancy and
gradually increased its volume up to the volume at the
melting temperature. The vacancy formation energies were
determined using Eq. (1) with respect to the bulk system at
the same volume. The resulting dependencies of E f

vac on lattice
expansion, plotted as function of the effective temperature Teff

corresponding to the given expansion �a/a0 (cf. Fig. 1), are
shown in Fig. 4. It is clearly seen that DFT as well as all
three potentials predict an increase of E f

vac with Teff (i.e., with
increasing volume). This increase is almost linear for DFT,
MEAM, and ADP while FS gives a much weaker, nonlinear
dependence.

The quasistatic dependence of E f
vac on volume, which

can be related to an effective temperature, suggests that the
vacancy formation energy is likely to increase with increas-
ing temperature. However, a rigorous determination of the
vacancy formation energy at finite temperature requires an
explicit consideration of atomic vibrations as obtained in MD
simulations.

2. Vacancy formation energy from MD simulations

We performed extensive finite-temperature MD simula-
tions using the NV T and NPT ensembles and large simu-
lation cells containing N = 432 atoms for the bulk system
and 431 atoms for the system with a single vacancy. As
the formation energies are obtained by subtracting ensemble
averages of highly fluctuating potential energies EN and EN−1,
the MD simulations need to follow the system for extended
time at each T [13,110]. Reliable sampling can be therefore
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FIG. 4. Dependence of monovacancy formation energy on the
effective temperature Teff. Additional DFT results marked by super-
scripts a and b were taken from Refs. [95] and [19], respectively.

performed only with classical potentials. All MD simulations
in our study were carried out for 30 ns, but even such long
times do not completely remove scatter in obtained E f

vac values
since the instantaneous variations of the total energy of the
system (especially at high temperatures) exceed significantly
the absolute value of the vacancy formation energy (see the
Appendix). Because of this sensitivity, it is necessary to
examine all aspects that may affect the results.

The NV T simulations were carried out at the volume
corresponding to perfect bulk system at zero pressure for
each temperature considered. As the volume for vacancy-
containing supercells should be slightly smaller, unrelaxed
systems with a vacancy are under small tensile hydrostatic
stress. In NPT simulations, the pressure was set to zero
which led to small differences in the volumes obtained for
systems with and without vacancy. The thermostat dumping
parameter regulating P and T was set to 10 ps. We did not
impose any restrictions on atoms during the MD simulations,
so that the vacancy can migrate and the average potential
energy of the system takes into account various possible defect
positions.

The temperature dependencies of E f
vac evaluated for all

three interatomic potentials are plotted in Fig. 5. The re-
sults of both NV T and NPT simulations (marked by empty
and full symbols, respectively) consistently show a non-
linear increase of E f

vac with temperature for all potentials.
The NV T results exhibit a scatter of about ±0.25 eV while
the thermostatting/barostatting in NPT simulations leads to
a better convergence and reduces the error in determining
E f

vac(T ) at a given temperature to ±0.15 eV. For MEAM
and ADP, the NV T simulations overestimate E f

vac values for
T > 1000 K in comparison with the NPT results. Figure 5
includes also DFT results from Ref. [19] that show a similar
trend but are shifted due to likely overestimation of the
vacancy formation energy by the AM05 exchange-correlation
functional.

The NPT results were fitted using second- and fourth-
order polynomials (thin and thick dotted lines in Fig. 5).
For the FS potential, the second-order polynomial captures
the temperature dependence of E f

vac very closely while for
the ADP and MEAM potentials fourth-order polynomials are
necessary to describe the sharp increases of E f

vac at high tem-
perature. By using the thermodynamic relation T dS/dT =
dH/dT = dE/dT and the calculated entropy at room temper-
ature (see Table II), we obtained the temperature dependence
of the vacancy formation entropy S f

vac, also shown for all
three potentials in Fig. 5 (bottom right). Although they yield
qualitatively different trends, the vacancy formation entropy
increases monotonously with T for all three potentials. It is
obvious that for E f

vac ∼ T 2 the entropy is a linear function of
temperature (as for the FS potential) while nonlinear S f

vac(T )
dependencies are obtained for the ADP and MEAM poten-
tials. The differences among the predictions of MEAM, ADP,
and FS models are reminiscent of those reported recently
for fcc aluminum. For temperatures ranging from 300 K to
the Al melting point, ab initio and neural-network potential
(trained on DFT data) calculations indicated linear versus
nonlinear dependences of S f on T , respectively [13,111].
Hence, these results as well as our findings suggest that a
monotonous increase of S f with T may be common to various
metals and possibly cause deviations from Arrhenius trends
in self-diffusivities. Furthermore, the assumption of a linear
temperature dependence of the vacancy formation entropy,
which was used in various studies [13,19,23], may not be
generally valid.

In comparison with the linear increase of E f
vac with the

effective temperature (cf. Fig. 4), the obtained results clearly
indicate that the explicit inclusion of vibrational contributions
leads to much stronger and nonlinear temperature dependen-
cies of E f

vac due to anharmonic effects.
From the knowledge of E f

vac(T ) we can compute the Gibbs
free energy G of vacancy formation by integrating the Gibbs-
Helmholtz equation,

G f
vac(T )

T
= E f

0 − T0S f
0

T0
−

∫ T

T0

E f
vac(T ′)
T ′2 dT ′,

G f
vac(T ) = E f

0

T

T0
− T S f

0 − T
∫ T

T0

E f
vac(T ′)
T ′2 dT ′, (5)

where T0 is a reference temperature (taken as 300 K), and
E f

0 and S f
0 are the vacancy formation energy and entropy,

respectively, at T0 and zero pressure.
The predicted temperature variations G f

vac(T ) are also dis-
played in Fig. 5, for both second- and fourth-order polynomial
fits. In addition, we also included linear dependencies G f

vac =
E f

0 − T S f
0 (dot-dashed lines) for comparison and in order to

highlight the deviations from the Arrhenius behavior due to
anharmonic effects. The results in Fig. 5 clearly show that the
standard evaluation of vacancy free energies based on constant
formation enthalpies and entropies is applicable only at low
temperatures. For elevated temperatures all three potentials
predict strong deviations from the linear behavior.

Figure 6 summarizes the predicted temperature depen-
dencies of the vacancy concentration. Assuming temperature
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FIG. 5. Temperature dependencies of the vacancy formation energies: dotted lines—E f
vac(T ); solid lines—Gf

vac(T ); dot-dash lines—Gf
vac

based on temperature-independent E f
vac. The MD results for NV T and NPT simulations are marked by symbols. DFT results from Ref. [19]

are shown in the FS graph. The temperature dependence of the vacancy formation entropy S f
vac is plotted in the bottom right panel.

independent vacancy formation enthalpies and entropies (cf.
Table II), we obtain a linear Arrhenius behavior for all three
potentials, marked by straight dashed lines in Fig. 6. When
taking into account the nonlinear temperature dependencies
of the free energies originating from anharmonic effects (cf.
Fig. 5), the predicted vacancy concentrations are strongly
enhanced at elevated temperatures and deviate from the Ar-
rhenius behavior for all potentials (marked by full lines in
Fig. 6). The figure contains also results extracted from large-
scale MD simulations discussed in Sec. IV.

The extrapolated vacancy concentrations at the corre-
sponding melting temperatures of the three potentials are
0.04%, 0.2%, and 0.4% for ADP, MEAM, and FS, respec-
tively. These theoretically predicted vacancy concentrations
are about one to two orders of magnitude larger than exper-
imental estimations from resistivity measurements [92,93],
marked by black lines in Fig. 6. Possible origins of this
discrepancy will be discussed below.

The concentration of divacancies c2vac depends on the
concentration of single vacancies and their binding energy
as c2vac ≈ c2

vac exp (Eb/kT ). Thus, even at the melting tem-
perature c2vac is about 3–4 orders lower than cvac and the
contribution of divacancies to self-diffusion can be neglected.

B. Temperature dependence of vacancy migration energy

In this section, we use several complementary methods to
evaluate the vacancy migration at finite temperatures. This
allows us to assess the accuracy of each method as well as
the consistency of the results.

1. Dependence of vacancy migration energy
on the lattice expansion

We first evaluated the dependence of the vacancy migration
energy on volume and related it to an effective temperature
based on the thermal expansion of the lattice. The calculations
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FIG. 6. A comparison of experimental and theoretical vacancy
concentrations as function of temperature; dashed lines correspond to
Arrhenius dependencies based on formation energy/entropy at zero
temperature, full lines take into account the temperature dependence
of E f

vac and S f
vac, points correspond to results of direct MD simulations

(see Sec. IV). The experimental data were taken from Refs. [93] (a)
and [92] (b).

were performed using classical potentials as well as DFT.
The results are plotted in Fig. 7. The DFT migration barrier
remains almost constant as the volume increases. In contrast,
all classical potentials predict a similar linear increase of the
migration barrier with increasing Teff (i.e., with increasing
volume).

FIG. 7. Dependence of vacancy migration energy on the effective
temperature Teff.

2. Evaluation of the migration free energy via
transition interface sampling

Transition interface sampling (TIS) [55,112] is a method
for computing kinetic properties of diffusive processes asso-
ciated with crossing of a large free energy barrier, i.e., rare
events on the time scale accessible to molecular dynamics.
The TIS method employs a Monte Carlo (MC) framework in
trajectory space to sample the ensemble of phase space trajec-
tories between two stable states A and B (the initial and final
position of the vacancy) separated by a free energy barrier.
This allows for a direct evaluation of the migration rate. In
the TIS framework a set of nonintersecting interfaces defined
by a progress order parameter λi are introduced between the
stable states. We sampled the ensemble of trajectories using
a shooting algorithm [113], where a slight perturbation of the
momenta is performed for a configuration randomly selected
from a trial migration path. A new trajectory is then generated
by integrating the equations of motion forward and backward
in time from the modified configuration. This trajectory is
accepted in the MC step if it crosses the interface λi and starts
and ends in one of the stable states A or B. The migration
rate �, i.e., the number of vacancy jumps per unit time, is
then calculated from the product of the flux through the first
interface 〈φ〉0 and the probability P(λB|λA) that a trajectory
reaches state B given that the system has crossed the first
interface,

� = 〈φ〉0P(λB|λA), (6)

where the flux 〈φ〉0 is calculated using MD simulations in the
initial state A and counting the number of positive crossings
per unit time [55,114]. The crossing probability from A to B
is calculated by matching the individual crossing histograms
obtained from the path ensemble per interface P(λi+1|λi) with
the weighted histogram analysis method [115].

The TIS simulations were performed using a python wrap-
per together with the LAMMPS code. The MD trajectories
were created in the NV T ensemble with a Nosé-Hoover
thermostat and a time step of 0.5 fs for all simulations.
A 4 × 4 × 4 supercell containing 127 atoms with a single
vacancy and minimum image periodic boundary conditions
was used in all simulations. The path ensembles were sampled
using the replica exchange TIS approach [116,117]. For each
temperature, we performed at least 1500 moves per interface
with a combination of 45% shooting moves, 45% of exchange
moves and 10% exchanges between forward (AB) and back-
ward (BA) ensembles. The order parameter used in the TIS
simulations is the distance λ = dvac between the equilibrium
position of the vacancy and a selected atom chosen from
its first nearest neighbors. The definitions of the stable-state
regions (first interface) and all the interfaces are listed in
the Appendix. The positions of interfaces were selected such
that there was at least 10% overlapping of the corresponding
crossing histograms. The diffusivities obtained from the TIS
simulations are shown in Fig. 9.

3. Evaluation of the migration free energy via
thermodynamic integration

Alternatively, the migration free energy may be obtained
using a thermodynamic integration (TI). This approach is
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FIG. 8. The migration free-energy profiles for FS (a), ADP (b), and MEAM (c) at different temperatures. (d) The temperature-dependent
migration free-energy barriers (dots) and second-order polynomial fits (solid lines).

based on the observation that the derivative of the migration
free energy Gm

vac(T ) with respect to the migration distance μm

is equal to the negative of the mean force on the migrating
atom projected along the migration path,

∂Gm
vac(T )

∂μm
= −〈Fm · em〉μm , (7)

where Fm is the atomic force on the migrating atom and em

is the migration direction. The subscript μm on the right-hand
side denotes that the thermal average is taken at a given migra-
tion distance. We evaluated Eq. (7) in the NV T ensemble with
thermal expansion taken into account via the temperature-
dependent lattice parameter (cf. Fig. 1). The migration free-
energy profile is then obtained by integrating Eq. (7) along
the migration path.

Our results are shown in Fig. 8. The free-energy barriers
decrease with increasing temperature for all three interatomic
potentials, which indicates that the vibrational entropy for the
saddle point configuration is larger than that of the vacancy in
equilibrium. A second-order polynomial fit of the migration
free-energy barrier gives very small second-order coefficients
for all three interatomic potentials. As the non-Arrhenius
behavior gives rise to the second-order terms, these results
indicate that the anharmonic contributions to the migration
free energy are small.

4. Atomistic simulation of single-vacancy diffusion

The most direct way to obtain Dvac is via MD simulations
of single vacancy diffusion. We performed a series of MD
simulations using periodic supercells containing 1999 Mo
atoms (i.e., 2000 atoms arranged in a bcc lattice with a single
vacancy). Each simulation was carried out in the NV E en-
semble, with the volume adjusted to obtain zero pressure. The
diffusion coefficients were extracted from the mean-square
displacements (δr2

i ) of all atoms in the system as

Dvac =
N∑

i=1

δr2
i /6t . (8)

MD times of 2 ns were found sufficient for reliable de-
termination of Dvac at high temperatures while much longer
times of up to 50 ns were necessary to achieve a sufficient
number of jump events at lower temperatures. The obtained
diffusivities were used for evaluation of the self-diffusion
coefficients (see the final section).

5. Summary of single-vacancy diffusion results

A summary of single-vacancy diffusivities evaluated using
TIS (empty symbols), TI (full lines), and MD (full symbols)
methods, together with Arrhenius relations obtained from
TST (dashed lines) based on attempt frequencies and migra-
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FIG. 9. Single-vacancy diffusivities calculated with three differ-
ent interatomic potentials. Dashed lines correspond to temperature
independent TST rates (i.e., Arrhenius behavior), solid lines mark
TI results, the open and solid symbols correspond to TIS and MD
results, respectively.

tion barriers at T = 0 (cf. Table 2) is presented in Fig. 9 for
the temperature range of 500–2850 K.

For each interatomic potential, all methods provide con-
sistent results with some quantitative differences. Overall, the
observed deviation from the linear Arrhenius behavior is small
and significant only for the FS potential at high temperature
(see the inset in Fig. 9). As expected, the slopes are consis-
tent at low temperatures with the calculated zero-temperature
migration barriers. Near the melting temperature all consid-
ered models converge to similar values of about 10−8 m2/s.

IV. DIRECT MD SIMULATIONS OF SELF-DIFFUSION

The calculations presented in the previous Section exam-
ined the temperature dependence of vacancy formation and
migration separately. The computational efficiency of classi-
cal interatomic potentials enables one to follow the complete
process of self-diffusion, including the spontaneous creation
and migration of defects directly in large-scale molecular
dynamics simulations. Even though sufficient statistical sam-
pling and equilibrium conditions can still be reached only for
elevated temperatures, such simulations provide independent
insights and additional validation. We conducted a series
of MD simulations using the ADP and FS potentials. High
computational costs did not allow us to obtain converged
results for the MEAM potential.

The MD simulation blocks consisted of a slab with two
free surfaces that mimic a system with open boundaries.
This simulation setup was employed previously in a study
of equilibrium defect concentration in iron [50]. The main
purpose of the free surfaces is to regulate the formation and
removal of point defects that govern diffusion in the sys-
tem. The defects are generated spontaneously due to thermal
fluctuations, either at the surface or in the bulk as Frenkel
pairs. This simulation setup therefore imposes no restrictions

FIG. 10. Snapshots from MD simulations at T = 2400 K with
open surfaces. Panels (a)–(c) show evolution of defects and their
trajectories during the MD run (only atoms with the highest displace-
ments are drawn); panel (d) depicts the final configuration quenched
to T = 0 where only atoms with the highest potential energy, i.e.,
surface atoms and atoms surrounding vacancies are shown.

on the type of defect that may be present, in contrast to
bulk systems without free surfaces where the formation of
Frenkel pairs is the only possible way how point defects can
be generated. As the Frenkel pair has a very high formation
energy (>8 eV in bcc Mo), its formation is rare. Provided that
the open system is simulated for a sufficiently long time, it
is possible to estimate not only the types (i.e., monovacancy,
divacancy, interstitial, etc.) and concentrations of the point
defects at given conditions but also the overall self-diffusion
coefficient Dself. Our previous simulations for Zr [16] revealed
that point defect concentration reaches its equilibrium value
after t ≈ 0.5 ns at T ≈ 0.7Tm.

Figure 10 presents several snapshots illustrating the evo-
lution of the system simulated for T ≈ 2400 K using the
ADP potential (only atoms with large displacements are
shown). The size of our models was 40a× 80a × 30a (a
is the lattice parameter) along the x = [100], y = [010] and
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z = [001] crystallographic directions. The free surfaces were
oriented perpendicular to the x direction and had a total area
of 2 × 2400a2 Å2, which was sufficient for a spontaneous and
independent creation and annihilation of defects.

The total number of atoms in the the block was 165 600.
For a reliable evaluation of the diffusion coefficients, we
divided the block into three regions—two regions within 10a
from each surface (containing in total 91 200 atoms), and a
central region in between (containing in total 74 400 atoms)
for which the diffusion coefficient was evaluated from the
mean-square displacements (MSD) of atoms (δr2

i ) as Dself =
N−1 ∑N

i=1 δr2
i /6t , where N is the number of atoms in the

central region and t is the simulation time. The exclusion of
the surface regions ensures that the predicted self-diffusivities
indeed correspond to bulk values and are not affected by any
surface effects. Our tests show that the thickness of the surface
region can be decreased to 5a without affecting the obtained
diffusion coefficients significantly.

All MD simulations were performed in the NV E ensemble
at lattice parameters corresponding to the simulated tem-
peratures. It should be noted that the temperature slightly
decreases during equilibration due to formation of defects,
but this decrease is negligible (about 2–3 K during the first
nanosecond). Typical simulation times were about 2.5 ns after
equilibration. Equilibrium defect concentrations could only
be reached for simulation temperatures close to the melting
point.

By tracking the number of defects present in the bulk re-
gion during the simulation we were able to determine whether
the equilibrium concentration has been reached. This was
done by quenching the atomic configurations to zero tem-
perature at regular intervals during the MD run and detecting
atoms with high potential energies. Such approach yields both
the number of defects in the system and their positions. An
additional validation of the steady state conditions is obtained
from the evaluation of Dself via MSD(T ) when the slope does
not change once the equilibrium has been reached [16].

The large-scale MD simulations reveal that for both inter-
atomic potentials and all temperatures investigated the only
type of defect present is the monovacancy. This outcome is
consistent with experimental observations [91] as well as the-
oretical assumptions as the formation energies of divacancies
and self-interstitials in bcc Mo are significantly (about 2–3
times) larger than that of a monovacancy [118–121]. We also
did not observe any diffusion via concerted motion of several
atoms, as found recently for Ti. [90]

The vacancy concentrations extracted from the MD simu-
lations are included in Fig. 6 (FS and ADP results are marked
by triangles and circles, respectively). They agree well with
the non-Arrhenius dependence obtained from the temperature
dependent formation free energies, and further confirm the
deviations due to anharmonicity at high temperatures.

V. DISCUSSION AND CONCLUSIONS

The final outcome of our study summarizing both theoret-
ical and experimental self-diffusion coefficients in bcc Mo is
presented in Fig. 11. The most recent experimental data from
Ref. [32] that cover a broad temperature range are marked
by black squares together with additional high-temperature

FIG. 11. A comparison of theoretical and experimental temper-
ature dependencies of self-diffusion coefficients for bcc Mo; blue
triangles and red circles show the results of the direct large-scale
MD simulations performed with FS and ADP potentials, respec-
tively; bold solid and thin dashed lines correspond to cvacDvac with
temperature-dependent and temperature-independent energies, re-
spectively. The experimental data (Refs. [32,122–125]) are marked
by superscripts.

experimental results plotted by black lines [122–125]. The
analytic predictions of Dself = cvacDvac are shown in Fig. 11
by lines, with dashed and full lines corresponding to tem-
perature independent, i.e., Arrhenius-like, and temperature
dependent vacancy free energies, respectively. For the latter
case, it is evident that all three potentials predict a clear
upward curvature of Dself, which is most pronounced for
the MEAM potential. The self-diffusion coefficients obtained
directly from MD large-scale simulations using the FS and
ADP potentials agree well with the analytic results.

The results compiled in Fig. 11 reveal that, among all
considered vacancy characteristics, it is the temperature de-
pendence of the vacancy formation energy that governs the
non-Arrhenius behavior of Dself in bcc Mo. Even though
single-vacancy diffusivities exhibit also deviations from
Arrhenius behavior at elevated temperatures (see Fig. 9), these
variations are insignificant in comparison with the changes
of E f

vac.
What remains puzzling is the discrepancy between the

theoretically predicted vacancy concentrations (cf. Fig. 6)
and experimental data. Our results as well as previous DFT
estimates [19,42] consistently show vacancy concentrations
close to the melting temperature that are one to two orders
of magnitude larger than those obtained from resistivity mea-
surements [92,93]. Even though these measurements tend
to be very accurate, there are several sources of uncertain-
ties when interpreting the experimental data, namely, the
amount of impurities, vacancy loss during quenching, and the
value of specific resistivity associated with a single vacancy,
which is needed to convert the measured resistivity values
to absolute vacancy concentrations. It is obvious from the
existing resistivity analyses [92,93] as well as from other
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techniques, such as positron annihilation spectroscopy or
specific heat measurements [126], that the experimentally
determined equilibrium vacancy concentrations close to the
melting point are uncertain, spanning the range between 10−5

and 10−2. It should also be noted that the experimental esti-
mates typically assume a temperature-independent formation
energy.

The present simulation results consistently show that there
is a contribution from the anharmonicity of lattice vibra-
tions that significantly increases the vacancy concentration
at elevated temperatures. In this view, the interpretation of
resistivity measurements therefore likely underestimates the
quenching loss and/or overestimates the specific resistiv-
ity, resulting in vacancy concentrations that might be too
low. However, it should be noted that the uncertainties of
0.2–0.3 eV in the computed 0 K formation energies and
of more than 1 kB in the formation entropies (cf. Table II)
lead to variations in the predicted vacancy concentrations of
more than one order of magnitude at elevated temperature
and several orders of magnitude at low temperatures (see
Fig. 6).

Finally, our in-depth validation of three widely used inter-
atomic potentials for Mo provides valuable insights. The final
comparison of self-diffusion coefficients in Fig. 11 shows a
remarkable agreement between experimental data of Maier
et al. [32] and theoretical predictions obtained by the MEAM
potential. However, based on our analysis this result is for-
tuitous. As the MEAM potential strongly overestimates the
vacancy migration energy in comparison to DFT, it exhibits
a much steeper temperature dependence. Even more impor-
tantly, the melting temperature predicted by MEAM is more
than 300 K higher than that of the other two potentials and
the experimental value (cf. Table I), which leads to effectively
lower cvac at a given temperature. If the MEAM results were
normalized to the melting temperatures of the other potentials,
the MEAM and ADP self-diffusion coefficients would reach
similar values of about 10−11 m2/s at the melting point. The
interatomic potentials therefore give similar descriptions of
the temperature dependence of self-diffusion coefficient on
the homologous temperature T/Tm, and the quantitative dif-
ferences visible in Fig. 11 originate primarily from different
values of the vacancy formation energies and entropies at
T = 0 K.

In summary, our analysis employing static and dynamic
atomistic calculations as well as statistical sampling tech-
niques and thermodynamic integration shows that the peculiar
non-Arrhenius self-diffusion behavior of bcc Mo is likely
mainly caused by strong temperature dependence of the va-
cancy formation energy. This outcome, supported by other
related theoretical studies, is of great importance for inter-
pretation of future as well as past diffusion measurements.
However, as the theoretically predicted temperature variations
also exhibit significant scatter, a fully quantitative agreement
between experiment and theory is still to be reached. The
second main outcome of our study is related to in-depth
validation of interatomic potentials. It is evident that the
reliability of their predictions for complex materials phenom-
ena such as self-diffusion cannot be ascertained based on a

few fundamental properties but require a thorough multilevel
assessment.
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APPENDIX: SUPPLEMENTAL MATERIAL

Here we provide additional information regarding the sim-
ulations carried out in this work. Figure 12 shows potential
energy variations obtained in MD simulations at different
time-averaging. In Table IV we summarize data used for
TIS simulations. Namely, Table IV contains definitions of the
stable-state regions (first interface) and all the interfaces.

FIG. 12. An example of potential energy variations from an
NV T MD simulation (using the FS potential) of 432 atom supercell
containing a single vacancy at T = 1600 K; the gray lines, black
lines, and red points correspond to averaging over 0.05, 1, and 10 ns,
respectively.
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TABLE IV. Positions of the interfaces at different temperatures for FS, ADP, and MEAM interatomic potentials.

T (K) Interface positions dvac

FS
500 0.24, 0.36, 0.44, 0.48, 0.56, 0.6, 0.67, 0.72, 0.82, 0.90, 0.97, 1.09, 1.21, 1.37, 1.54, 1.64, 1.84, 1.91, 1.99, 2.06
700 0.32, 0.56, 0.6, 0.72, 0.76, 0.82, 0.89, 0.98, 1.02, 1.09, 1.23, 1.36, 1.64, 1.82, 1.91, 1.99, 2.06
900 0.37, 0.45, 0.52, 0.6, 0.63, 0.67, 0.72, 0.78, 0.82, 0.89, 1.09, 1.29, 1.37, 1.45, 1.64, 1.82, 1.91, 1.99, 2.06
1100 0.42, 0.52, 0.6, 0.67, 0.72, 0.82, 0.90, 1.09, 1.29, 1.37, 1.45, 1.64, 1.85, 1.91, 1.99, 2.06
1400 0.43, 0.6, 0.82, 0.97, 1.09, 1.37, 1.64, 1.91, 1.99, 2.06
1900 0.51, 0.6, 0.67, 0.72, 0.82, 0.88, 1.09, 1.18, 1.37, 1.45, 1.19, 1.37, 1.45, 1.64, 1.84, 1.91, 1.99, 2.06
ADP
500 0.19, 0.24, 0.36, 0.44, 0.48, 0.56, 0.60, 0.67, 0.72, 0.82, 0.90, 0.97, 1.09, 1.21, 1.37, 1.54, 1.64, 1.84, 1.91, 1.99, 2.06
700 0.22, 0.25, 0.32, 0.38, 0.44, 0.56, 0.6, 0.72, 0.76, 0.82, 0.89, 0.98, 1.02, 1.09, 1.23, 1.37, 1.64, 1.82, 1.91, 1.99, 2.06
900 0.28, 0.32, 0.37, 0.44, 0.52, 0.6, 0.67, 0.78, 0.89, 0.97, 1.09, 1.29, 1.37, 1.45, 1.64, 1.82, 1.91, 1.99, 2.06
1200 0.34, 0.38, 0.42, 0.52, 0.6, 0.67, 0.72, 0.82, 0.90, 1.09, 1.29, 1.37, 1.45, 1.64, 1.85, 1.91, 1.99, 2.06
1400 0.32, 0.43, 0.6, 0.82, 0.97, 1.09, 1.37, 1.6, 1.64, 1.82, 1.9, 1.99, 2.06
1800 0.39, 0.47. 0.6, 0.82, 0.97, 1.09, 1.37, 1.57, 1.64, 1.82, 1.9, 1.99, 2.06
MEAM
1500 0.34, 0.44, 0.56, 0.63, 0.72, 0.82, 0.92, 1.09, 1.18, 1.37, 1.64, 1.91, 1.99, 2.06
1700 0.38, 0.44, 0.56, 0.63, 0.72, 0.82, 0.92, 1.09, 1.18, 1.37, 1.64, 1.91, 1.99, 2.06
1900 0.4, 0.44, 0.56, 0.63, 0.72, 0.82, 0.92, 1.09, 1.18, 1.37, 1.64, 1.91, 1.99, 2.06
2100 0.45, 0.56, 0.63, 0.72, 0.82, 0.92, 1.09, 1.18, 1.37, 1.64, 1.91, 1.99, 2.06
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