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Pump-driven normal-to-excitonic insulator transition: Josephson oscillations
and signatures of BEC-BCS crossover in time-resolved ARPES
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We consider a ground-state band insulator turning into a nonequilibrium excitonic insulator (NEQ-EI) upon
visiting properly selected and physically relevant highly excited states. The NEQ-EI phase, characterized by
self-sustained oscillations of the complex order parameter, neatly follows from a nonequilibrium Green’s
function treatment on the Konstantinov-Perel’ contour. We present the first ab initio band structure of LiF, a
ground-state bulk insulator, in different NEQ-EI states. We also show that NEQ-EI states can be generated
by currently available pump pulses. Peculiar fingerprints of the NEQ-EI phase in time-resolved angle-resolved
photoemission spectroscopy spectra are highlighted: (i) during the pump-driving, the system goes through a
BEC-BCS crossover and (ii) concomitantly the excitonic spectral structure undergoes a convex-to-concave shape
transition; (iii) attosecond pulses shone after the pump-driving at different times tdelay produce a photocurrent that
oscillates in tdelay with a pump-tunable frequency—we relate this phenomenon to the ac response of an exotic
Josephson junction.
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I. INTRODUCTION

At low enough temperature, small-gap insulators, semimet-
als, as well as metals with overlapping bands may turn
into excitonic insulators (EIs) due to the Coulomb electron-
hole attraction [1–7]. Theoretical and experimental works
on different materials, e.g., quantum Hall bilayers [8,9],
graphene bilayers [10–13], carbon nanotubes [14,15], and
chalcogenide-based structures [16–20], have addressed signa-
tures and properties of this equilibrium EI phase, including
dynamical responses to external laser pulses [21–26] and
adiabatic switching of electronic correlations [27]. One of the
most interesting signatures of the EI phase is the flattening of
the valence band, recently revealed in Ta2NiSe5 using angle-
resolved photoemission spectroscopy (ARPES) [28,29].

The past decade has seen a renewed interest in systems that
are semimetals [30,31] or insulators [32–38] in the ground
state but exhibit an EI phase in some (possibly pump-induced)
nonequilibrium (NEQ) excited state. The optical properties
of a NEQ-EI have been calculated by several authors in
the past [39–42] and were recently measured in bulk GaAs
[43]. However, it was not until 1993 that Östreichand and
Schönhammer pointed out a crucial difference between a
ground-state EI and a NEQ-EI [44]: in a NEQ-EI, the macro-
scopic polarization after the pump has been switched off
exhibits persistent, self-sustained oscillations with a finite,
time-independent amplitude and a frequency that depends on
the absorbed energy. A similar dynamical excited state of
matter has been independently shown to emerge in mean-field
approximations using an ansatz for the time-dependent order
parameter [32]. Here we provide an alternative derivation

based on nonequilibrium Green’s functions (NEGFs) and
show the equivalence between the pump-induced state [44]
and the dynamical excited state [32].

The stability of the NEQ-EI phase plays of course a cru-
cial role in applications to, e.g., optoelectronics [45]. Hanai
et al. have pointed out the existence of regimes for which
small fluctuations of the order parameter destroy the phase
(dynamical instability) [34], and they also studied the effects
of exciton-boson coupling [33]. Hannewald et al. studied the
NEQ-EI lifetime due to dephasing [46]. A beyond-mean-field
analysis including light-matter interaction and damping has
confirmed the existence of the NEQ-EI phase [36]. Real-time
first-principles studies are foreseeable in the near future for
quantitative, material-dependent predictions.

In this work, we apply the NEGF formalism to systems that
exhibit a NEQ-EI phase but are normal band insulators (BIs)
in the ground state, and we highlight the NEQ-EI fingerprints
visible in ARPES spectra. We first show the existence of
optimal pump pulses with subgap frequency (slightly off-
resonance with respect to the single-exciton energy), which
generate the same dynamical excited state [44] as an (excited)
self-consistent calculation. The proposed self-consistent the-
ory is also implemented in the ab-initio YAMBO code [47],
and the spectral function of a LiF bulk insulator in the NEQ-
EI phase is presented and discussed. Our main findings are
as follows: (i) the system undergoes a BEC-BCS crossover
[48,49] while driving it with the optimal pump-pulses; (ii)
during the BEC-BCS crossover, a convex-to-concave shape
transition in the excitonic structure of time-resolved ARPES
spectra occurs; (iii) the photocurrent generated by attosecond
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pulses shone at different times tdelay oscillates in tdelay with a
frequency that is larger than both the optimal pump frequency
and the exciton energy: we relate this phenomenon to the ac
response of an exotic Josephson junction.

The paper is organized as follows. In Sec. II we illustrate
the self-consistent NEGF approach to excited-state systems
and derive the equations to calculate the Green’s function. In
Sec. III we discuss the NEQ-EI phase diagram of a two-band
model Hamiltonian. We determine the critical conduction
density at the BEC-BCS crossover and the boundary between
the BI and NEQ-EI phases. We further illustrate how the
NEQ spectral function changes in these different regimes.
The simplifications of the two-band model are relaxed in
Sec. IV, where we present the spectral function of a LiF
bulk insulator in the NEQ-EI phase. In Sec. V we perform
real-time simulations and obtain the optimal pump pulse that
brings the system closest to the self-consistent NEGF results.
The time-resolved ARPES spectrum is calculated in Sec. VI
for different probe durations, highlighting the signatures of
the BEC-BCS crossover and the Josephson-like oscillations.
A summary of the main results and concluding remarks are
contained in Sec. VII.

II. MODEL HAMILTONIAN AND EXCITED-STATE
GREEN’S FUNCTION

To describe the main qualitative aspects of the NEQ-EI
phase, we initially discard several complications of realistic
materials. We consider a one-dimensional spinless insulator
with one valence band and one conduction band separated by
a direct gap of magnitude εg, and we assume that the intraband
repulsion between the electrons is negligible. A similar model
has been proposed in Ref. [50] to discuss excitons within the
time-dependent density functional theory (TDDFT) and more
recently in Refs. [21–23] to drive out-of-equilibrium systems
that are EI in the ground state. In Sec. IV we apply the NEGF
theory to LiF and relax all the simplifications of the model;
multiple bands and valleys, intraband and interband repulsion,
band anisotropies and degeneracies, as well as spin-exchange
effects will all be taken into account.

The explicit form of the model Hamiltonian reads

Ĥ =
∑

k

(εvk v̂
†
k v̂k + εck ĉ†

k ĉk ) − U0

∑
k

ĉ†
k ĉk

+ 1

N
∑
k1k2q

Uq v̂
†
k1+qĉ†

k2−qĉk2 v̂k1 , (1)

where v̂k (ĉk) annihilates an electron of momentum k in the
valence (conduction) band, Uq is the Coulomb interaction, and
N is the number of discretized k-points. As we have ignored
the intraband interaction, the equilibrium Hartree potential is
zero for valence electrons and it is equal to U for conduc-
tion electrons. Consistently, the positive background interacts
only with the conduction electrons; see the last term in the
first row.

The Hamiltonian in Eq. (1) is invariant under the “local”
gauge transformation ĉ → eiθ ĉ for the conduction-band oper-
ators. This gauge symmetry is broken by any state with a non-
vanishing average 〈ĉ†

k v̂k〉 since under a gauge transformation
〈ĉ†

k v̂k〉 → e−iθ 〈ĉ†
k v̂k〉. The conserved quantity associated with

this gauge symmetry is the number of electrons Nc in the con-
duction band (hence the number of electrons Nv in the valence
band is conserved as well). Each many-body eigenstate is then
characterized by a well-defined number of electrons Nc and
Nv . A nonvanishing 〈ĉ†

k v̂k〉 is therefore possible only provided
that several many-body eigenstates with different Nc and Nv ,
constrained by (Nc + Nv )/N = 1, become degenerate in the
thermodynamic limit. This can happen for the ground-state
multiplet (in this case, the exciton energy εx � 0) and/or
for excited-state multiplets. In this work, we are especially
interested in the latter scenario.

We consider εg/U0 large enough for the exciton energy
to satisfy 0 � εx � εg. Then, the ground state is nondegen-
erate and it consists of a fully occupied valence band and a
completely empty conduction band (consequently the ground-
state average of the interaction with the positive background
vanishes). To investigate the existence of a NEQ-EI phase,
we use the NEGF formalism. In NEGF the fundamental
quantity is the Keldysh-Green’s function, which for our model
Hamiltonian reads [51]

Gαβ

k (z, z′) = 1

i

Tr[T {e−i
∫

dz̄Ĥ (z̄)ψ̂αk (z)ψ̂†
βk (z′)}]

Tr[T {e−i
∫

dz̄Ĥ (z̄)}] , (2)

where ψ̂αk = v̂k, ĉk for α = v, c. In Eq. (2) the arguments
z, z′ as well as the integral over z̄ run on the Konstantinov-
Perel’ contour [52] consisting of a forward and backward
branch (0,∞) ∪ (∞, 0) joined to a vertical imaginary track
(0,−iβ), with β the inverse temperature; T is the contour
ordering operator. In the absence of external fields, Ĥ (z) = Ĥ
for z on the forward or backward branches. If the system is
initially in thermal equilibrium at chemical potential μ, then
the Hamiltonian on the imaginary track is Ĥ (z) ≡ ĤM = Ĥ −
μN̂ , with N̂ = N̂v + N̂c and N̂α ≡ ∑

k ψ̂
†
αkψ̂αk the number

operator for electrons in band α. This choice of ĤM does
indeed correspond to averaging with the thermal equilibrium
density matrix ρ̂ = e−β(Ĥ−μN̂ )/Z , Z being the partition func-
tion. The resulting Gαβ

k (z, z′) in Eq. (2) is the Matsubara
Green’s function for both z and z′ on the vertical track and
the equilibrium real-time Green’s function for z and z′ on the
forward or backward branches [51].

To calculate the Green’s function in some excited state, we
must average with an excited density matrix ρ̂ = e−βĤM

/Z ,
where ĤM is a self-adjoint operator with the property
[ĤM, Ĥ ] = 0. Here we consider

ĤM = Ĥ − μvN̂v − μcN̂c, (3)

with μv 
= μc. This ĤM commutes with Ĥ since [N̂α, Ĥ ] = 0.
For Uq = 0 and zero temperature, averaging with ρ̂ is equiva-
lent to averaging over a state with the valence- (conduction-)
band populated up to the chemical potential μv (μc). Here-
after, we use ĤM in Eq. (3) for the Hamiltonian on the
imaginary track.

The exact equation of motion for the Green’s function in
Eq. (2) reads (in a 2 × 2 matrix form)
[

i
d

dz
− hk (z)

]
Gk (z, z′) = δ(z, z′) +

∫
dz̄ 	k (z, z̄)Gk (z̄, z′),

(4)
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where 	k is the sum of the Hartree-Fock (HF) and correlation
self-energies, and hk (z) is given by

hk (z) =
(

εvk 0

0 εck − U0

)
− θ|(z)

(
μv 0

0 μc

)

≡ hk − θ|(z)m (5)

with θ|(z) = 0 if z is on the forward or backward branches and
θ|(z) = 1 if z is on the imaginary track. In the Hartree-Fock
(HF) approximation, we have 	

αβ

k (z, z′) = δ(z, z′)V αβ

k (z),
where the HF potential reads

V αα
k (z) = − i

N
∑

q

U0Gᾱᾱ
q (z, z+), (6)

V αᾱ
k (z) = i

N
∑

q

Uk−qGαᾱ
q (z, z+), (7)

with ᾱ = c, v for α = v, c, and z+ is the contour time in-
finitesimally later than z. As we have discarded the intraband
interaction, the diagonal elements of V are only due to the
Hartree diagram, whereas the off-diagonal ones are only due
to the exchange (Fock) diagram. This simplification is relaxed
in Sec. IV.

A. Matsubara Green’s function

Choosing z = −iτ and z′ = −iτ ′ on the imaginary
track, we get the Matsubara Green’s function GM

k (τ, τ ′) ≡
Gk (−iτ,−iτ ′). Since the HF self-energy is local in time, the
structure of GM is the same as in the noninteracting case, the
only difference being that the one-body noninteracting matrix

hk − m ≡ hM
k , (8)

see Eq. (5), is replaced by the one-body HF matrix hM
k + Vk ,

with Vk ≡ Vk (−iτ ) the HF potential on the imaginary track
[51]. Therefore,

GM
k (τ, τ ′) = −i

[
θ (τ, τ ′) f̄

(
hM

k + Vk
) − θ (τ ′, τ )

× f
(
hM

k + Vk
)]

e−(τ−τ ′ )(hM
k +Vk ), (9)

where f (ω) = 1/(eβω + 1) is the Fermi function and f̄ (ω) =
1 − f (ω). As Vk depends on GM

k , see Eqs. (6) and (7), the
problem has to be solved self-consistently. We point out
that for the Matsubara Green’s function to be correctly an-
tiperiodic in τ and τ ′ with period β, the population nαk =
−iGαα,M

k (τ, τ+) of band α = v, c cannot be an input of the
self-consistency cycle.

Let eλ
k and ϕλ

k = (
ϕλ

vk

ϕλ
ck

), λ = ±, be the two eigenvalues and

eigenvectors of hM
k + Vk . Without any loss of generality, we

choose ϕλ
αk real. Then, from Eq. (9),

Gαβ,M
k (τ, τ+) = i

∑
λ

f
(
eλ

k

)
ϕλ

αkϕ
λ
βk, (10)

and therefore the matrix elements of the HF potential in
Eqs. (6) and (7) can be rewritten as

V αα
k = 1

N
∑

q

U0

∑
λ

f
(
eλ

q

)∣∣ϕλ
ᾱq

∣∣2
, (11)

V αᾱ
k = − 1

N
∑

q

Uk−q

∑
λ

f
(
eλ

q

)
ϕλ

αqϕ
λ
ᾱq. (12)

In terms of the quantities

ε̃vk ≡ εvk + V vv
k − μv, (13)

ε̃ck ≡ εck − U0 + V cc
k − μc, (14)

�k ≡ V cv
k = V vc

k , (15)

it is straightforward to find the eigenvalues

eλ
k = ε̃vk + ε̃ck + λR

2
, (16)

with R =
√

(ε̃vk − ε̃ck )2 + 4�2
k , and the eigenvectors

ϕλ
k =

⎛
⎝ λ

√
1
2

(
1 + λ ε̃vk−ε̃ck

R

)
sgn(�k )

√
1
2

(
1 − λ ε̃vk−ε̃ck

R

)
⎞
⎠, (17)

which when inserted in Eqs. (11) and (12) provide a closed
system of equations for the HF potential. Henceforth we refer
to �k as the order parameter since a nonvanishing �k implies
that 〈ĉ†

qv̂q〉 
= 0 at least for some q, and hence a spontaneous
symmetry breaking.

B. Real-time Green’s function

Once the Matsubara Green’s function is known, we can
calculate the Green’s function with both arguments on the real
axis. In the HF approximation, the lesser Green’s function,
which solves Eq. (4), reads [51]

Gαβ,<

k (t, t ′) = i
∑

λ

f (eλ
k )ϕλ

αk (t )ϕλ∗
βk (t ′), (18)

where the time-dependent vectors satisfy

i
d

dt
ϕλ

k (t ) = [hk + Vk (t )] ϕλ
k (t ), (19)

with boundary conditions ϕλ
k (0) = ϕλ

k [we recall that hk (z) =
hk for z on the forward/backward branch; see again Eq. (5)].
The time-dependent HF potential appearing in Eq. (19) can be
calculated from Eqs. (6) and (7) by taking into account that for
z = t on the forward/backward branch we have G(z, z+) =
G<(t, t ).

Let us show that the solution of Eq. (19) is

ϕλ
k (t ) = e−i(eλ

k +μ−σz
δμ

2 )tϕλ
k , (20)

where σz is the 2 × 2 Pauli matrix,

μ ≡ μc + μv

2
(21)

is the center-of-mass chemical potential, and

δμ ≡ μc − μv (22)

is the relative one. Inserting Eq. (20) in G<
k to evaluate the

HF potential, we find Vk (t ) = eiσz
δμ

2 t Vk e−iσz
δμ

2 t . Taking into
account that hk is diagonal, we get

[hk + Vk (t )] ϕλ
k (t ) = e−i(eλ

k +μ−σz
δμ

2 )t [hk + Vk]ϕλ
k . (23)
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Next we observe that hk = hM
k + m, see Eq. (8), and that the

2 × 2 matrix m can be written as m = μ1 − δμ

2 σz. Hence

[hk + Vk]ϕλ
k =

[
hM

k + Vk + μ1 − δμ

2
σz

]
ϕλ

k

=
[

eλ
k + μ1 − δμ

2
σz

]
ϕλ

k , (24)

where in the last row we used that ϕλ
k are eigenvectors of hM

k +
Vk . Thus, we can rewrite Eq. (23) as

[hk + Vk (t )] ϕλ
k (t ) =

[
eλ

k + μ1 − δμ

2
σz

]
ϕλ

k (t ), (25)

which coincides with the time derivative i d
dt ϕ

λ
k (t ). We empha-

size that all quantities needed to evaluate the lesser Green’s
function have been previously calculated to determine the
Matsubara Green’s function. The greater Green’s function can
be derived similarly; the final result looks like Eq. (18) after
replacing i f (eλ

k ) → −i f̄ (eλ
k ).

Due to the presence of σz in Eq. (20), only the diagonal ele-
ments of G<

k depend on the time-difference. The off-diagonal
ones oscillate monochromatically at the frequency δμ/2. In
particular, the order parameter �k (t ) = V cv

k (t ) = [V cv
k (t )]∗

oscillates monochromatically at the frequency δμ, i.e.,

�k (t ) = �ke−iδμt , (26)

in agreement with Ref. [32]. The time dependence of the
order parameter in the NEQ-EI phase resembles the behav-
ior of the superconducting order parameter in a Josephson
junction. Josephson oscillations between two superconducting
electrodes separated by a thin insulator arise by applying
a dc voltage to the equilibrium junction, thus effectively
introducing a difference in the electrochemical potentials.
This mechanism has recently been investigated by replacing
the superconductors with EI electrodes [53–56]. The NEQ-EI
oscillations in Eq. (26) are of a slightly different nature. They
can be understood in terms of an exotic Josephson junction
where Cooper pairs are formed by electrons in different
electrodes. In our system, the electrodes are the valence and
conduction band and the Cooper pairs are the bound excitons.
As we shall see in Sec. VI B, the oscillating behavior of �k has
interesting implications in time-resolved photocurrent spectra.

III. PHASE DIAGRAM

To illustrate the possible solutions of the self-consistent
calculation, we consider the band structure

εαk = (−)α{2T [1 − cos(k)] + εg/2}, (27)

where (−)v ≡ −1 and (−)c ≡ 1, T > 0, and a short-range
Coulomb interaction Uq = U independent of q. The wave
vectors k, q, . . . vary in the first Brillouin zone (−π, π ). Then
the HF potential V αβ

k is independent of k, see Eqs. (11) and
(12), and hence �k = � is independent of k too. We consider
the system at zero temperature and express all energies in units
of the bare gap εg. We fix the bandwidths W = 4T = 2, the
center-of-mass chemical potential μ = 0, and we vary U � 0
and δμ � 0. For δμ = 0 we recover the ground-state Green’s
function. Figure 1 shows the color plot of the self-consistent

δμ

U

0

0.3

0.6

1.2

0.9

1.5
ΔExcitonic Insulator (EI)

Band Insulator (BI)
Normal Metal (NM)

BI

BI
NM

BCSBEC

EI = solution of BSE

0.2

0.4

0
1 2 U

nc

FIG. 1. Color plot of � for different δμ and interaction strength
U . The values of � have been selected on the basis of the principle
of minimum energy. Red crosses at the BI-EI phase boundary corre-
spond to the zero-momentum excitonic poles of the Bethe-Salpeter
equation (BSE) with kernel δ	/δG (for U = 0 this energy is the bare
gap). The BEC-BCS crossover (green triangles) is determined by the
condition ξ = rs where ξ is the width of the vanishing-momentum
excitonic wave function in real space, and rs is the average distance
between electrons in the conduction band. The EI-NM crossover
(blue diamonds) is determined by the condition � < 10−2. The
inset shows the values of the conduction density nc = Nc/N vs the
interaction U along the BEC-BCS crossover (green triangles). All
energies are in units of the bare band gap εg.

�. In the white regions we have the trivial (and unique)
solution � = 0. These are the BI regions characterized by
Nc = 0 or Nv = 0, and hence by a gap εg between occupied
and unoccupied single-particle states. In the colored region we
have two solutions: the trivial one (� = 0) and the nontrivial
one (� 
= 0). For both solutions, we have estimated the total
energy according to [51]

E = − i

2

∑
k

∫
dω

2π
Tr[(ω + hk )G<

k (ω)] (28)

and found that the energy of the nontrivial solution is always
the lowest. In Sec. III A we calculate the spectral function and
show that the unoccupied and occupied single-particle states
are separated by an energy gap �. Hence the system is still
an insulator. However, since Nc and Nv are both nonvanishing,
this insulating phase can only be due to the Coulomb attrac-
tion between a conduction electron and a valence hole. We
then say that the system is in the EI phase. The EI phase
exists in the ground state (δμ = 0) for large enough U as
well as in excited states (δμ 
= 0) even for rather small U ’s.
The region below the blue diamonds is characterized by a
nontrivial solution with small � (in this region � � 10−2);
here the system behaves essentially like a normal metal (NM).
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δμ = 0.93 δμ = 1.05
nc = 0.15 nc = 0.20

A<
k (ω)

k

ω

k k

CBM

VBM

δμ = 0.82
nc = 0.07

(                ) (                ) (                )

FIG. 2. Occupied part of the spectral function for different values of δμ and U = 1. Dashed lines indicate the conduction-band minimum
(CBM) and valence-band maximum (VBM). All energies are in units of the bare gap εg.

A. Spectral function

From the NEGF solution of Sec. II B we can extract the
occupied part of the spectral function according to

A<
k (ω) = −iTr[G<

k (ω)], (29)

where Gαα,<
k (ω) is the Fourier transform of Gαα,<

k (t, t ′) with
respect to the time difference. In Fig. 2 we show results
for U = 1 and three different δμ = 0.82, 0.93, 1.05 corre-
sponding to a density of electrons in the conduction band
nc ≡ Nc/N = −i

∑
k Gcc,<

k (t, t )/N = 0.07, 0.15, 0.20. No-
tice that for U = 1 the nontrivial solution � 
= 0 exists only
for values of δμ > 0.76; see again Fig. 1. Interestingly, for
our parameters the energy of the zero-momentum exciton is
εx � 0.76. The fact that εx coincides with the value of δμ at
the BI-EI boundary is not a coincidence [37]. In Appendix
A we show that the BI-EI boundary (red crosses in Fig. 1)
is determined by the excitonic poles of the Bethe-Salpeter
equation (BSE) with the kernel given by δ	/δG.

For δμ = 0.82 (low densities nc) an excitonic structure
with the same shape as the valence band appears at roughly
εg − δμ below the conduction-band minimum (CBM), in
agreement with the analytic result in Ref. [57]. The spectral
function on the left panel also agrees with the results of
Ref. [58], where a system with one single exciton, i.e., nc =
1/N , was considered. By increasing further δμ (and hence
the density in the conduction band), the excitonic structure
changes its convexity; see the middle and right panels in
Fig. 2. This phenomenon is distinct from the one reported
in Ref. [58], where the change of convexity is obtained by
averaging spectral functions each with one single exciton of
different center-of-mass momentum. In our case, the convex-
to-concave shape transition develops with increasing the den-
sity of excitons; see also Sec. III B.

The unoccupied part of the spectral function can be cal-
culated similarly: A>

k (ω) = −iTr[G>
k (ω)]. Since μ = 0, the

system is particle-hole-symmetric and therefore

A>
k (ω) = A<

k (−ω). (30)

As anticipated, there is a gap of order � between the unoccu-
pied and occupied bands.

B. BEC-BCS crossover

The EI phase is similar to the BCS superconducting phase
when the width ξ of the excitons is larger than the average
electron distance (or Wigner-Seitz radius) rs. In the oppo-
site regime, i.e., ξ � rs, the excitons behave like pointlike
bosons in a Bose-Einstein condensate (BEC). To determine
the BEC-BCS crossover [7,37,49,59], we have calculated the
width ξ of the zero-momentum excitonic wave function and
we compare it with the average distance rs of electrons in
the conduction band. The excitonic wave function in real
space is given by (modulo a normalization constant) Y (x) =∑

k eikxYk , with Yk the excitonic solution of Eq. (A4), whereas
(for one-dimensional systems) rs � N /Nc = 1/nc. The green
triangles in the phase diagram correspond to the values of
U and δμ for which ξ = rs, where ξ has been estimated
from Y (ξ )/Y (0) = 0.1. The inset of Fig. 1 shows nc versus
U when we move along the BEC-BCS crossover line (green
triangles). The curve represents the values of nc above which,
for that given U , the NEQ-EI changes from a BEC to a BCS
condensate; as expected, nc increases with increasing U .

An alternative way to find the values of δμ at the BEC-BCS
crossover consists in determining the onset of the broaden-
ing of the excitonic population in momentum space—in the
BEC regime, the excitonic population is peaked around zero
momentum. Let us write the many-body state of the system
in the NEQ-EI phase. Since the minus branch e−

k is entirely
below the plus branch e+

k we have

|�x〉 =
∏

p

(ϕ−
vpv̂

†
p + ϕ−

cpĉ†
p)|0〉, (31)

where |0〉 is the state with no electrons. We define the creation
operator for an exciton of momentum q according to

b̂†
q =

∑
k

Y (q)
k ĉ†

k+qv̂k, (32)

where the excitonic amplitude Y (q)
k can be calculated by

solving the analog of Eq. (A4) for finite-momentum excitons.
It is a matter of simple algebra to show that

〈�x|ĉ†
k′+q′ v̂k′ v̂

†
k ĉk+q|�x〉 = δqq′δkk′ (ϕ−

ckϕ
−
ck+q )2. (33)
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FIG. 3. Color plot of the excitonic population in momentum
space for different densities nc = Nc/N = 1/rs for U = 1.

Therefore, the excitonic density in the NEQ-EI phase is
given by

nex
q ≡ 〈�x|b̂†

qb̂q|�x〉 =
∑

k

(
Y (q)

k ϕ−
ckϕ

−
ck+q

)2
. (34)

In Fig. 3 we show nex
q for the interaction strength U = 1 and

different densities in the conduction band. The broadening
begins when nc = Nc/N = 1/rs � 0.15. This density is ob-
tained when δμ � 0.93, in agreement with the abscissa of the
green triangle in Fig. 1 for the same value of U .

Remarkably, the convex-to-concave shape transition in the
excitonic structure of the spectral function roughly occurs
at the BEC-BCS crossover. In Fig. 2 the Coulomb strength
is U = 1 and the transition occurs for δμ � 0.93, in agree-
ment with the previously estimated value. We have verified
(not shown) that this property remains true for all values
of U < Uc � 2.3 (for larger U ’s the ground state is an EI).
We infer that time-resolved ARPES spectra may provide a
tool to detect the BEC-BCS crossover in NEQ-EI’s; see also
Sec. VI A.

IV. LiF BULK INSULATOR

We now apply the NEGF theory for excited states, see
Sec. II, to a LiF bulk insulator. In the ground state this
material has an experimental gap εg � 14.5 eV and the optical
spectrum exhibits a 1s bright exciton with a binding energy of
about 1.9 eV [60]. The 1s exciton is threefold degenerate due
to the cubic symmetry of the system. The degenerate multiplet
can therefore be labeled by the three orthogonal directions of
the excitonic dipole moment.

The goal of the present section is to demonstrate that the
results obtained in the two-band model are also found in a
real material when multiple bands and valleys, intraband and
interband repulsion, band anisotropies and degeneracies, as
well as spin-exchange effects are all taken into account. We
first compute the phase diagram of LiF and then construct the
spectral function in the NEQ-EI phase.

A. Phase diagram

In a first-principles calculation, the band energies and
Bloch states depend on the single-particle formalism (DFT,
mean-field theory, etc.) and on the approximation made within
the formalism. The Bloch states provide a basis to write the
exact many-body Hamiltonian Ĥ and to define the number
operator N̂c of conduction electrons. In general, N̂c does not
commute with Ĥ whatever the formalism and approximation
are. Thus, the Hamiltonian of LiF (or any other insulator)
is not invariant under the gauge transformation of Sec. II,
i.e., ĉ → eiθ ĉ. Nevertheless, a properly chosen single-particle
basis will still prove to be a convenient way to understand
the properties of the NEQ-EI phase since the Coulomb-driven
recombination-time of particle-hole excitations is longer than
any other timescales in the considered low-energy sector
(i.e., in the Hilbert space of weakly excited states). This is
equivalent to saying that the commutator [Ĥ, N̂c] is negligible
and hence that the gauge symmetry is almost exact.

Another difference between the model system of Sec. II
and LiF is the interparticle interaction. In the former case, the
interaction is short-ranged and the self-energy can be treated
in the HF approximation. Instead, in LiF we have to deal with
the long-ranged nature of the Coulomb interaction. Due to the
importance of screening effects, we evaluate the self-energy in
the Hartree plus screened exchange (HSEX) approximation,
	 = 	HSEX, which consists in replacing the bare interaction
of the Fock term with a statically screened RPA interaction W .
The RPA W is calculated using first-shot ground-state HSEX
quasiparticle energies (RPA@HSEX) and it is kept fixed in
all self-consistent calculations, i.e., we ignore the dependence
of W on the electronic populations (or equivalently on δμ).
This is justified in the BEC regime up to the BEC-BCS
crossover since the excitonic contribution to the screening
is much smaller than that of free carriers and the exciton
density is small. Details regarding the calculation of W , the
self-consistent procedure, and the numerical implementation
can be found in Appendix B.

One key feature of the NEQ-EI phase is the relation
between the exciton energy and the border of the BI-EI
transition. In the HSEX approximation, the exciton energy
is, by construction, given by the poles of the Bethe-Salpeter
equation (BSE) with (i) HSEX single-particle energies and
wave functions for the bare electron-hole propagator, and (ii)
δ	HSEX/δG for the kernel (BSE@HSEX). Notice that the
functional derivative δW/δG appearing in the kernel vanishes
since W is fixed. The BSE@HSEX is different from state-
of-the-art BSE implementations where LDA single-particle
energies and wave functions are used for both the bare
electron-hole propagator and the calculation of the RPA W
(BSE@LDA). Quasiparticle corrections are included in the
bare electron-hole propagator only. To assess the quality of
the proposed RPA@HSEX screening, we have preliminarily
solved the BSE@HSEX and compared the resulting absorp-
tion spectrum with the experimental one from Ref. [60] and
with the one resulting from a standard implementation of
the BSE@LDA [61]; see Fig. 4. The agreement between
BSE@HSEX and the experiment is of comparable quality to
a BSE@LDA calculation. In fact, we found that the HSEX
wave functions, being more localized than LDA ones, reduce
the intensity of the bare electron-hole interaction, but this
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FIG. 4. The absorption spectra (in arbitrary units) of LiF result-
ing from BSE@HSEX (solid black) and BSE@LDA [61] (solid
green) is compared to experimental data [60] (dotted black). The
vertical dashed lines are drawn at the exciton energy εx = 12.48 eV
(red) and quasiparticle gap εg = 14.5 eV (blue).

reduction is compensated by the use of HSEX energies in the
RPA W . In particular, the 1s excitonic peak is located at about
εx = 12.48 eV with respect to the valence-band maximum
(VBM), hence its binding energy is correctly ∼2 eV.

Self-consistent HSEX calculations with δμ > 0 have been
carried out using an initial Green’s function with off-diagonal
elements in the (ground-state) HSEX basis, yielding a small
macroscopic polarization along one of the principal axes. All
momenta in the first Brillouin zone have been considered
independent, i.e., no spatial symmetry has been imposed. The
HSEX basis provides a good reference basis to construct
an approximate order parameter. In fact, at self-consistency
and for δμ = 0 both the Green’s function Gαβ,<

k (t, t ′) and
the single-particle HSEX Hamiltonian hαβ,HSEX

k [G<(t, t )] (a
functional of the equal-time G< through 	HSEX) are diagonal
in this basis. We define the approximate order parameter as
the following zero-momentum (k = 0 = �) average:

�0 =
∣∣∣∣∣
∑
c,v

hcv,HSEX
k=0

∣∣∣∣∣, (35)

where the sum extends over all valence (v) and conduction
(c) bands. Equation (35) reduces to Eq. (15) in the two-band
model if the HSEX Hamiltonian is replaced by the HF one. In
Fig. 5 we show the order parameter �0 versus δμ. Below the
exciton energy εx the HSEX Hamiltonian remains diagonal
and the order parameter �0 = 0. A symmetry breaking clearly
occurs in the NEQ-EI phase (δμ > εx), and it is characterized
by a sharp increase of �0 near δμ = εx.

To further characterize the NEQ-EI phase in LiF, we have
also calculated the macroscopic polarization P versus δμ; see
again Fig. 5. As expected, P becomes nonzero right at δμ = εx

since the single-exciton state has a nonvanishing dipole matrix
element with the ground state. We observe that any NEQ-EI
state with |P| 
= 0 is at least sixfold degenerate (±|P| along
three orthogonal axis) due to the cubic symmetry of LiF.
Thus, the cubic symmetry and the gauge symmetry break

FIG. 5. Order parameter (blue) and macroscopic polarization
(purple) vs δμ for a bulk LiF. The zero of energy is the VBM. The
vertical lines are drawn at the exciton energy εx = 12.48 eV (red)
and quasiparticle gap εg = 14.5 eV (blue).

for the same values of δμ. It is also worth mentioning that
if the system were described by a statistical mixture of the
six degenerate states, all with equal weights, then the cubic
symmetry would be recovered (since the average of P would
be zero), but �0 would remain finite, it being independent of
the polarization direction. The same situation would occur if
the system were described by a state with only (nondegen-
erate) dark excitons. Neither the dark-excitonic state nor the
statistical mixture can be realized with a laser pulse, which
naturally breaks the symmetry through the polarization of
the electric field. On the contrary, the single polarized self-
consistent solution with bright 1s excitons can, in principle,
be generated by a suitable laser pulse; see Sec. V.

B. Spectral function

We now compute the occupied part of the spectral function
A<

k (ω) = −i Tr[G<
k (ω)] in the NEQ-EI phase. Let us define

|nk〉 and εnk as the single-particle states and energies that
diagonalize the ground-state HSEX Hamiltonian (δμ = 0).
Similarly, we define |ñk〉 and εñk as the single-particle states
and energies that diagonalize the excited-state HSEX Hamil-
tonian (δμ > 0). The explicit expressions for Gnn,<

k (ω) read

Gcc,<
k (ω) = 2π i

∑
ṽ

δ(ω − εṽk − δμ/2)|〈ck|ṽk〉|2, (36)

Gvv,<
k (ω) = 2π i

∑
ṽ

δ(ω − εṽk + δμ/2)|〈vk|ṽk〉|2. (37)

As long as δμ � εx, 〈ck|ṽk〉 = 0 and only the valence bands
contribute to A<

k (ω). For δμ � εx (low-density limit) we
have εṽk ≈ εvk, 〈ṽk|vk〉 ≈ 1, and |〈ck|ṽk〉|2 ∝ |Ycv,k|2 with
Ycv,k the 1s excitonic wave function; compare Eq. (31) with
Eq. (A3). Therefore, the conduction states contribute to A<

k (ω)
by replicating the valence-band structure at an energy δμ

higher and with a weight proportional to |Ycv,k|2 [57].
In Fig. 6 we display the spectral function for three different

values of nc (conduction electrons per unit cell) and thus for
three different values of δμ. The ground-state (δμ = 0) values
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FIG. 6. Occupied part of the spectral function of a bulk LiF for different values of δμ. Energy (vertical axis) is measured with respect to the
middle of the equilibrium gap and momentum (horizontal axis) runs along the closed path W -L-�-L′-K-X -�-X ′-W of the first Brillouin zone.
The values of the chemical potential and of the resulting density of conduction electrons per unit cell are reported in the figure. At positive
energy, the signal has been scaled up by a factor of 20. The red dashed lines represent the equilibrium band structure.

are displayed with dashed red lines and show that the band
structure is threefold degenerate at � (consistently with the
degeneracy of the 1s exciton). In the low-density limit (left
panel), the degeneracy is almost preserved and, as expected,
the contribution of the conduction states is just a replica of
the valence band. As the density increases (middle and right
panels), the degeneracy at the � point manifestly breaks. The
intensity along the equivalent direction in the Brillouin zone
is different; see, for instance, the paths � → L and � → L′,
where L and L′ are connected by the symmetry operations
of the crystal at equilibrium. Even more pronounced than
the asymmetric intensity is the asymmetry in the energy dis-
persion. Interestingly, the most dramatic change involves the
lowest-energy valence band with the other two valence bands
mainly playing the role of spectators. This scenario is very
similar to that of the two-band model. In both cases, the shape
of the excitonic structure resembles locally (close to the �

point) the shape of the valence bands, and upon increasing the
population in the conduction band, the maximum at � turns
into a minimum causing the excitonic structure to undergo the
convex-to-concave shape transition; see Figs. 2 and 6 (middle
and right panel).

The results presented in this section support the use of the
two-band model for understanding other general features of
the NEQ-EI phase.

V. PUMP-DRIVEN BI-EI TRANSITION

In this section, we demonstrate that the self-consistent
NEQ-EI phase is accessible by shining suitable laser pulses
on the BI ground state. All results in this section refer to the
two-band model in the HF approximation.

We consider again the Hamiltonian of Eq. (1) at zero
temperature and set δμ = 0 (ground-state) and U < Uc (BI
phase with � = 0). The system is driven out of equilib-

rium by a time-dependent electric field E (t ) coupled to the
valence-conduction dipole moments Dk . The driving Hamil-
tonian reads

Ĥdrive(t ) = E (t )
∑

k

Dk (ĉ†
k v̂k + v̂

†
k ĉk ). (38)

This light-matter coupling has been used to study changes
in the optical properties due to a strong monochromatic
electric field (dynamical Stark effects) [62,63] and more re-
cently weak monochromatic fields such as those generated
in quantum optical cavities [64]. Here we are interested in
the electronic properties of the system when the electric field
is a pump-pulse centered around frequency ωP with finite
duration TP:

E (t ) = θ (1 − |1 − 2t/TP|)EP sin2

(
πt

TP

)
sin(ωPt ). (39)

Henceforth we consider the interaction strength U = 1, dis-
persion of Eq. (27) with bandwidth W = 4T = 2, center-of-
mass chemical potential μ = 0, and, for simplicity, dipole
moments Dk = D independent of k (energies are in units of
the bare gap εg). The real-time HF simulations have been
performed with the CHEERS code [65], and times are expressed
in units of 1/εg. Since the driving Hamiltonian depends on
EP and D only through their product, we define the Rabi
frequency �P ≡ EPD.

The main result of the simulations is that for ωP larger than
the exciton energy εx, see Eq. (A4), and smaller than εg, the
modulus of the order parameter attains a constant and finite
value after the pump, in agreement with Ref. [44]. In Fig. 7(a),
we show the steady values of the density in the conduction
band nc and of the modulus of the order parameter |�|
versus the pump frequency ωP (we recall that for the chosen
parameters εx = 0.76) for a pump pulse of duration TP = 100
and Rabi frequency �P = 0.05; see Fig. 7(d). Independently
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Re[Δ]

ΩP = 0.05

ΩP = 0.05
ωP = 0.87
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FIG. 7. (a) Density in the conduction band nc and modulus of
the order parameter |�| after the pump vs the pump frequency ωP.
Time-dependent density in the conduction band (b), real part of the
order parameter (c), and pump-pulse profile (d). The red dots in panel
(b) are drawn at the values of nc = 0.07, 0.15, 0.20. Energies are in
units of εg and times in units of 1/εg.

of the values of TP and �P, the trend of Fig. 7(a) is general:
there exists an optimal frequency ωopt ∈ (εx, εg) (of course
depending on TP and �P) at which the steady values of nc

and |�| are simultaneously maximized. We point out that in
the noninteracting case, U = 0, the steady value of |�| is zero
for all ωP, TP, and �P due to perfect dephasing.

In Figs. 7(b) and 7(c) we show nc(t ) and Re[�(t )] during
the action of the pump pulse with ωP = ωopt � 0.87. We ob-
serve the occurrence of persistent monochromatic oscillations
in Re[�(t )] after TP = 100. We therefore conclude that

�(t > TP ) = e−iωE t |�|, (40)

where ωE is a pump-dependent frequency. The time-
dependent behavior of the order parameter is the same as that
of the self-consistent solution; see Eq. (26). We have extracted
the frequency ωE from the real-time solution Re[�(t )], set
δμ = ωE in the self-consistent calculation of Sec. II A, and
found that the self-consistent values of nc and � are identical
to the steady-state values of nc and |�|. This remains true for
several different pump intensities (not shown). We therefore
conclude that the pump-driven state is precisely the NEQ-EI
state analyzed in detail in Sec. II.

A second piece of evidence in favor of our conclusion is
presented in Fig. 8, where we show the values of ωE (empty
circle) resulting from pumping at the optimal frequency (black
triangle) for TP = 100 and different Rabi frequencies �P.
In the limit of vanishing �P (hence vanishing intensities
of the electric field), the density pumped in the conduction
band approaches zero and both ωE and ωopt approach the
energy εx = 0.76 of the zero-momentum exciton (dashed

ΩP

x

ωE

ωopt

FIG. 8. Frequency ωE (empty circle) resulting from pumping at
the optimal frequency (black triangle) for different Rabi frequencies
�P. The value of the excitonic energy εx = 0.76 is highlighted with
a dashed green line. All energies are in units of εg.

green line). This is the same behavior of δμ versus nc. Indeed,
a vanishingly small value of nc in the self-consistent solution
implies a vanishingly small value of �, which we know to
occur for δμ = εx; see Appendix A.

VI. TIME-RESOLVED ARPES

The time-resolved ARPES signal is proportional to the
number of electrons Nk (ω) with energy ω and parallel mo-
mentum k ejected by a probing pulse e(t ). For arbitrary probe
pulses, we have [57,66]

Nk (ω) = 2
∑
αβ

∫
dt dt̄ Re

[
	

αβ,R
k,ω

(t, t̄ )Gβα,<

k (t̄, t )
]
, (41)

where the ionization self-energy reads

	
αβ,R
k,ω

(t, t̄ ) = −iθ (t − t̄ )
[
Dα

k,ω · e(t )
]
e−iω(t−t̄ )[Dβ

k,ω
· e(t̄ )

]
(42)

and Dα
k,ω is the dipole matrix element between a band state

αk and a continuum LEED state of energy ω and parallel
momentum k.

A. BEC-BCS crossover with femtosecond probe pulses

From Eq. (41) we see that Nk (ω) is a complicated two-
times convolution of G<(t, t ′). Let us introduce the relative
time τ ≡ t − t ′ and the center-of-mass time tCM ≡ (t + t ′)/2.
Since the lesser Green’s function yields the probability ampli-
tude for a hole to propagate freely from t ′ to t , the G<(t, t ′)
varies in τ no slower than the inverse of the energy of the
highest occupied state. For a system in equilibrium this energy
is the ionization potential; in our nonequilibrium system, this
energy can be estimated as the CBM, i.e., εc0. The timescale
of the variation of G< in the center-of-mass time tCM can
be inferred from the rate of change of the occupations, see
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A<
k (tdelay, ω)
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FIG. 9. Occupied part of the transient spectral function for different delays corresponding to a density in the conduction band nc =
0.07, 0.15, 0.20. Energies are in units of εg and times in units of 1/εg.

Fig. 7(b), and can be estimated as a fraction of the pump
duration TP. For band gaps in the eV range, our pump pulse
has a duration TP � 102 fs. Therefore, a probe pulse of dura-
tion Tp � TP/10 � 101 fs and central frequency ωp � 2π/Tp

is enough to resolve all removal energies provided that Tp �
2π/εc0. If such a probe impinges on the system at time tdelay,
then Nk (ω) ∝ A<

k (tdelay, ω − ωp), where the transient spectral
function is defined according to

A<(tdelay, ω) = −i
∫

dτ eiωτ Tr[G<(t, t ′)] (43)

and tdelay = tCM. Of course, for tdelay � TP the transient spec-
tral function becomes independent of tdelay.

To obtain A<(tdelay, ω) we observe that the time-dependent
HF equations give access to the “time diagonal” G<

k (t, t ) from
which we can calculate the retarded HF Green’s function,

GR
k (t, t ′) = −iθ (t, t ′)T {e−i

∫ t
t ′ dt̄[hk+DkE (t̄ )σx+Vk (t̄ )]}, (44)

where σx is the Pauli matrix; see Eq. (38). From GR
k (t, t ′) =

[GA
k (t ′, t )]∗ we can extract the “time off-diagonal” G<

k (t, t ′)
as [51]

G<
k (t, t ′) = −iGR

k (t, t ′)G<
k (t ′, t ′) + iG<

k (t, t )GA(t, t ′), (45)

and calculate the transient spectral function from Eq. (43).
We consider again the pump pulse in Fig. 7(d). The green

dots are drawn at times t = 50, 70, 100 for which nc =
0.07 , 0.15, 0.20, respectively; these values of the conduction
density are the same as in the three panels of Fig. 2. In Fig. 9
we show the color plot of A<(tdelay, ω) at tdelay = 50, 70, 100.
For tdelay � TP the pump is still active and the transient spec-
tral function is, in general, affected by nonadiabatic effects
[67]. In our case, these are very small and the agreement
between Figs. 2 and 9 is unexpectedly good. Incidentally, we
observe that this agreement supports the adiabatic approxima-
tion employed in Ref. [57] to calculate time-resolved ARPES
spectra. We also point out that the trace in Eq. (43) involves
only the diagonal elements of G<, which, in accordance with
Eq. (18), depend only on the time difference. Accordingly,
replicas of the band structure [68,69] do not occur. The ab-
sence of replicas also follows from a corollary of the Floquet
theorem according to which a monochromatic driving that

couples two orthogonal subspaces (valence and conduction
states in our case) do not introduce a time dependence in
the average of operators acting on one of the two subspaces
[70]. For tdelay � TP, the transient spectral function becomes
independent of tdelay (as it should be) and indistinguishable
from the right panel of Fig. 2 (not shown). This fact further
corroborates the equivalence between the pump-driven state
and the NEQ-EI state of Sec. II.

From Fig. 9 we also see that the convex-to-concave shape
transition of the excitonic structure (signaling the BEC-BCS
crossover) can be revealed by time-resolved ARPES spec-
tra. It is worth emphasizing that linear-response theory, i.e.,
nc ∝ �2

P, is totally inadequate to describe the pump-driven
evolution of the system toward the BCS regime. In Fig. 10
we show the time-dependent evolution of nc(t ) for ωP = 0.87,

0.05
0.04
0.03
0.02
0.01
0.005

ΩP

n
c
/Ω

2 P

t k

ω

ω

ω

ω

ω

A<
k (tdelay, ω)

FIG. 10. Time-dependent density in the conduction band for
pump pulses of duration TP = 100, central frequency ωP = 0.87,
and different Rabi frequencies �P. The right panels show the
steady-state spectral function calculated at tdelay = 110 for �P =
0.02, 0.04, 0.05. Energies are in units of εg and times in units of
1/eg.

124601-10



PUMP-DRIVEN NORMAL-TO-EXCITONIC INSULATOR … PHYSICAL REVIEW MATERIALS 3, 124601 (2019)

TP = 100, and different values of the Rabi frequency �P. For
�P = 0.02, 0.04, 0.05 we display the corresponding steady-
state (tdelay � TP) spectral functions. The concavity changes
for �P = 0.05, and for this Rabi frequency the steady density
of conduction electrons is clearly not proportional to �2

P.

B. Josephson oscillations with attosecond probe pulses

The ARPES signal changes dramatically for ultrashort
probe pulses since the probe has no time to wash out the
oscillatory contribution of the off-diagonal G<. To highlight
the main qualitative difference, we consider a δ-like pulse of
the form

e(t ) = e0 δ(t − tdelay). (46)

Then, the number of electrons in Eq. (41) becomes

Nk (ω) = −
∑
αβ

Im
[
�α

k,ω�
β

k,ω
Gβα,<

k (tdelay, tdelay)
]
, (47)

where we have defined the Rabi frequencies

�α
k,ω = Dα

k,ω · e0. (48)

At the steady state, Gαα,<
k (t, t ) is independent of t but

Gcv,<
k (t, t ) = −[Gvc,<

k (t, t )]∗ ∼ e−iδμt ; see Eq. (18). Conse-
quently, Nk (ω) consists of a dc part N (dc)

k (ω) and an ac part
of amplitude N (ac)

k (ω) and frequency δμ:

Nk (ω) = N (dc)
k (ω) + N (ac)

k (ω) sin[(δμ)tdelay + ϕ]. (49)

We therefore predict oscillations in Nk (ω) versus tdelay even
for tdelay � TP. These oscillations should be observed in time-
resolved ARPES provided that the duration of the probe pulse
is much smaller than the period 2π/δμ. For values of δμ in
the eV range (like in LiF), probe durations of the order of a
hundred attoseconds are sufficient.

The ac response in Eq. (49) can again be explained using
the analogy with the exotic Josephson junction; see Sec. II B.
The application of a pump pulse coupling electrons in dif-
ferent electrodes (bands in our case) is equivalent to the
application of a dc bias between the electrodes. If the dc
bias is kept on for a time TP, then a macroscopic number of
electrons is transferred from one electrode (valence band) to
the other (conduction band), thus generating a difference in
the electrochemical potentials of the electrodes. Once the dc
bias (pump in our case) is switched off, this difference does
not damp to zero since electrons cannot hop back to the
original electrode (band). This difference in electrochemical
potentials is equivalent to the difference δμ discussed in
Sec. II.

VII. SUMMARY AND OUTLOOK

We presented a derivation of the NEQ-EI phase using the
NEGF formalism on the Konstantinov-Perel’ contour. The
NEQ-EI phase can be physically induced by pump pulses with
properly chosen subgap frequency, and the nature (BEC or
BCS) of the excitonic condensate can be tuned by the pump
duration. The most remarkable difference between a ground-
state EI and a NEQ-EI is the time-dependent behavior of the
order parameter and the total polarization. In fact, they both
exhibit persistent, self-sustained monochromatic oscillations

even at vanishing pump. Interestingly, these oscillations have
the same nature of the ac oscillations in an exotic Josephson
junction, where Cooper pairs are formed by electrons at the
opposite side of the junction.

The NEQ-EI phase leaves clear fingerprints in time-
resolved ARPES spectra. For probe durations long enough
to resolve the band structure, the oscillatory contribution of
the order parameter is washed out and an excitonic “band”
appears inside the gap. Depending on the BEC or BCS
nature of the excitonic condensate, this band can be either
convex or concave. Time-resolved ARPES experiments could
in principle monitor the convex-to-concave shape transition
using, e.g., pump pulses of hundreds of femtoseconds and
overlapping probe pulses of a few femtoseconds shone at
different delays. Ultrafast probe pulses of, e.g., a few hundred
attoseconds do instead broaden the band structure and unveil
the time-dependent contribution. The resulting photocurrent
oscillates in time even after the end of the pump. The period
of the oscillations is the same as the period of the order
parameter, which is no smaller than the exciton energy εx.

The equivalence between the time-dependent approach and
the self-consistent NEGF scheme for excited states allows for
studying the NEQ-EI phase in realistic materials using differ-
ent strategies. The inclusion of electronic correlations at, e.g.,
the GW level is more feasible in the self-consistent scheme.
On the other hand, the effects of phonon-induced coherence
losses and exciton recombination on the self-sustained oscil-
lations of the total polarization could be investigated using
the real-time Kadanoff-Baym equations [51] in the GKBA
framework [71]. Of course accurate calculations are needed
for quantitative predictions on specific materials. However,
the highlighted qualitative features of the NEQ-EI phase are
general and provide a useful guide for the interpretation of
time-resolved ARPES spectra.
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APPENDIX A: BETHE-SALPETER EQUATION
AND THE BI-EI PHASE BOUNDARY

The equation for the BI-EI boundary marked with red
crosses in Fig. 1 can be obtained analytically. Infinitesimally
close to the boundary, �k is small. Then the minus band e−

k is
entirely below the plus band e+

k and only λ = − contributes
in the sum of Eq. (12). Expanding Eq. (17) to lowest order in
�k and taking into account that ε̃vk − ε̃ck < 0, we find

ϕ−
vk � −1, ϕ−

ck � − �k

ε̃vk − ε̃ck
. (A1)
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Using this expansion, the diagonal elements of the HF po-
tential can be approximated to first order in �k as V vv � 0
and V cc

k � U0; see Eq. (11). Consequently, from Eqs. (13) and
(14) we get ε̃vk � εvk − μv and ε̃ck � εck − μc, which implies
that ε̃vk − ε̃ck = εvk − εck + δμ. Using this result in Eq. (A1),
inserting the resulting expressions into Eq. (12), and recalling
that, by the definition in Eq. (15), V vc

k = �k , we get

�k = − 1

N
∑

q

Uk−q
�q

εvq − εcq + δμ
. (A2)

The lowest value of δμ for which this equation admits non-
trivial solutions defines the BI-EI boundary.

Interestingly, Eq. (A2) coincides with the Bethe-Salpeter
equation (BSE) for the zero-momentum response function.
For time-local kernels, the BSE is indeed equivalent to the
eigenvalue equation of a many-body eigenstate with a sin-
gle exciton of vanishing momentum. Let |�0〉 = ∏

k v̂
†
k |0〉 be

the ground state of energy E0 in the BI phase, and let us write
the one-exciton state as

|�x〉 =
∑

k

Ykĉ†
k v̂k|�0〉 =

∑
k

Yk|�k〉, (A3)

where we introduced the eh states |�k〉 ≡ ĉ†
k v̂k|�0〉. Since

Ĥ preserves the number of electrons in each band, Ĥ |�x〉
is again a linear combination of the |�k〉’s. The possible
excited-state energies E = E0 + εx are found by solving the
eigenvalue problem Ĥ |�x〉 = (E0 + εx)|�x〉. Inserting the ex-
pansion in Eq. (A3) and taking the sandwich with 〈�k| yields

(εck − εvk − εx)Yk = 1

N
∑

q

Uk−qYq. (A4)

Renaming εx = δμ and setting Yq = �q/(εvq − εcq + δμ), we
see by inspection that Eq. (A4) is identical to Eq. (A2). Thus,
for a given U the BI-EI boundary is found at δμ = εx, in
agreement with Ref. [37]. For U = 0, the BI-EI boundary is
at δμ = εg, as it should be, whereas for U � Uc � 2.3 (in this
case the ground state is an EI) the solutions of Eq. (A2) occur
for δμ � 0. The δμ � 0 criterion is indeed used to establish
the occurrence of an equilibrium EI phase [5].

APPENDIX B: IMPLEMENTATION DETAILS
FOR LIF CALCULATIONS

We have determined the Kohn-Sham basis by perform-
ing an LDA self-consistent calculation with the QUANTUME-
SPRESSO package [72]. The ground state has been converged
using a 6 × 6 × 6, � centered grid with a cutoff of 80 Ry.
Then the wave functions have been computed with a non-self-
consistent calculation on a 16 × 16 × 16 grid. Our equilib-
rium bands well reproduce those of Ref. [73] with a KS gap
of 8.45 eV, which is quite far from the experimental value. To
improve the description, we have constructed the Hartree plus
screened exchange (HSEX) potential using the YAMBO code
[47]. The implementation writes the Hamiltonian to be solved

self-consistently in the basis set of the KS wave functions.
This makes it possible to include nonlocal (in space) self-
energies like HSEX. The SEX contribution to the self-energy
is obtained by replacing the bare interaction v in the Fock term
with the static RPA screened interaction W = v(1 + χRPAv),
where χRPA is the solution of the Dyson equation χRPA =
χ0 + χ0vχRPA and (in real-space coordinates)

χ0(r, r′) =
occ∑
μ

unocc∑
ν

∑
kk′

ϕνk′ (r)ϕ∗
μk(r)ϕ∗

νk′ (r′)ϕμk(r′)

εμk − ενk′
.

(B1)
The RPA response function χRPA = χRPA[ϕ, ε] is a functional
of the single-particle wave functions ϕ and energies ε. A
first approximated screened interaction W (0) has been eval-
uated using LDA wave functions and energies, i.e., χRPA =
χRPA[ϕLDA, εLDA]. The self-consistent HSEX spectrum is
found to be well approximated by the original KS spectrum
if the KS valence (conduction) energies are stretched by a
factor 1.65 (1.4). The stretched KS energies with a scissor of
6 eV (necessary to reach the experimental gap) have been used
to improve χRPA = χRPA[ϕLDA, εLDA

stretched+scissor] and hence the
screened interaction. We verified that a further iteration of the
screened interaction did not change substantially the stretch-
ing factors. The improved interaction, henceforth denoted by
W (1), widens the gap of the self-consistent HSEX spectrum
from 8.5 to 12.8 eV; we have therefore applied a scissor
of 1.7 eV to match the experimental value of the gap. The
equilibrium bands are displayed in Fig. 6 with dashed red
lines. We mention that our HSEX self-energy is close to the
Hartree plus Coulomb-hole(COH)-SEX self-energy used in
the literature in a number of work [74–79].

The interaction W (1) has also been used to solve the Bethe-
Salpeter equation with a bare HSEX electron-hole propagator
(BSE@HSEX). The agreement with the experimental optical
spectrum is of comparable quality as state-of-the-art BSE
implementations; see Fig. 4. To obtain the correct values of
the HSEX dipoles, also including the commutator with the
nonlocal SEX self-energy, the covariant approach recently
implemented in YAMBO [80] has been used.

To be consistent with the equilibrium calculation where the
screened interaction W is fixed to W (1), we have carried out
the self-consistent NEQ Matsubara procedure of Sec. II using
a fixed W = W (1) in the Fock term. For both equilibrium and
NEQ calculations, we have explicitly considered 50 bands.
The screened interaction and the screened contribution to the
exchange term has been calculated with 8 Ry (=59 reciprocal-
lattice vectors), whereas the Hartree term and the unscreened
contribution to the exchange term have been calculated with
64 Ry (965 reciprocal-lattice vectors). In the self-consistency
cycles, we have fixed the total charge per unit cell (charge
neutrality) instead of the center-of-mass chemical potential μ,
and convergence is established on the single-particle energies.
All parameters, i.e., energy cutoff, number of bands, number
of grid points, etc., have been monitored; the converged
energies have an error smaller than 0.1 eV.
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