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Piezoresistance in ballistic graphene
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We investigate the longitudinal and transverse piezoresistance effect in suspended graphene in the ballistic
regime. Utilizing parametrized tight-binding Hamiltonian along with Landauer quantum transport formalism,
we devise a methodology to evaluate the piezoresistance effect in graphene. We evaluate the longitudinal
and transverse gauge factor of graphene along armchair and zigzag directions in the linear elastic limit
(0%–10%). The gauge factors along armchair and zigzag directions are identical. Our model predicts a significant
enhancement (≈1000%) in the value of transverse gauge factor compared to longitudinal gauge factor along with
sign inversion. The calculated value of longitudinal gauge factor is ≈0.3, whereas the transverse gauge factor is
≈ − 3.3. We rationalize our prediction based on the deformation of Dirac cone and change in separation between
transverse modes due to longitudinal and transverse strain. The results obtained herein can serve as a template
for high-strain piezoresistance effect of graphene in nanoelectromechanical systems.
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I. INTRODUCTION

Graphene became one of the most extensively researched
materials soon after its discovery in 2004. It is the first
single-atom-thick two-dimensional (2D) material isolated in
the laboratory. Owing to its unique properties, it is often
termed as a “wonder material” [1] or a “miracle material” [2].
Graphene is one of the strongest known materials [3] and thus
undergoes elastic deformation for more than 20% strain [4,5].
Due to these exceptional mechanical properties, graphene is
an excellent material for strain engineering.

Early attempts of graphene-strain-engineering began in
2008 with the prediction of the presence of a pseudomagnetic
field due to a nonuniform strain distribution, leading to a zero
field quantum Hall effect [6–8]. Subsequent ab initio studies
of the band structure showed Dirac cone shift, anisotropic
fermi velocity, and band gap opening beyond 20% uniaxial
strain [9–12]. Later, these predictions were experimentally
verified using Raman spectroscopy [13] and anisotropic re-
sistance measurements with strain [5]. Moreover, graphene
shows superconductivity at a certain doping concentration
along with the application of a biaxial strain [14]. Also, band
gap is formed in graphene by self assembly of H atoms along
with the application of a compressive strain [15]. All these
distinct features helped in the evolution of graphene as a
suitable material for flexible electronics [16–18].

Another important application of strain engineering is the
piezoresistance effect. Piezoresistance is mainly used in strain
sensing [19]. Piezoresistance effect in graphene membrane
has been investigated previously in diffusive regime and
near ballistic regime of transport. The value of gauge factor
reported for suspended graphene lies between 1.25 and 6.73
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[19–21]. Piezoresistance in graphene strongly depends on the
type of graphene [20,22], the substrate underneath [23–25],
and the scattering mechanism involved [19].

Despite the rapid miniaturization of the size of electrome-
chanical systems and the dimension of graphene in these
systems typically reducing below its mean free path, piezore-
sistance effect in ballistic graphene is still unexplored. Since,
the eletron transport mechanism in a ballistic conductor is
entirely different from that of a diffusive conductor, piezore-
sistance in ballistic graphene may eventually show new out-
comes, leading to novel straintronics applications.

Graphene sheet exhibits 2D characteristics for width be-
yond 100 nm [26] and has a very high value of mean free path
in the submicron range [27–29]. Thus, graphene behaves as a
2D ballistic conductor for width more than 100 nm and less
than its mean free path.

In this paper, we explore the piezoresistance effect in
ballistic graphene along armchair and zigzag directions. We
develop a generic theoretical model for gauge factor (GF) of
graphene in ballistic regime. This model computes GF from
mode density using band counting method [30] and Landauer
formalism.

In the subsequent sections, we describe the mathematical
model, calculate the transport properties and GF of graphene,
and explain the underlying physics of the predicted value of
longitudinal gauge factor (LGF) and transverse gauge factor
(TGF) along armchair and zigzag directions. The derivation of
mathematical expressions are elaborated in the Appendices.

II. THEORETICAL MODEL

A. Simulation setup

The setups S1 and S2 consist of a graphene sheet having
contacts C1 and C2 across the zigzag direction (y axis) and
armchair direction (x axis) as shown in Figs. 1(a) and 1(b),
respectively. A uniaxial strain (εy) in the linear elastic regime
(0%–10%) [31] is applied along zigzag direction in S1 and
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FIG. 1. Schematic diagram of simulation setups S1 and S2 to
determine the LGF and TGF of graphene. A uniaxial strain εy is
applied along the zigzag direction (y axis) in both setups. (a) Setup
S1 consists of a voltage source (V) connected across the zigzag
direction, using contacts C1 and C2. Similarly, (b) setup S2 consists of
a voltage source (V) connected across the armchair direction, using
contacts C1 and C2. (c) A generic quantum transport model for S1 and
S2 is shown with contacts C1 and C2 connected across the graphene
sheet having transmission T(E).

S2. The magnitude of strain is gradually increased from
0% to 10% and simultaneously, the current density (J) is
obtained for an applied voltage (V ) in the linear regime
(|V | � 0.01 eV). The LGF is obtained from setup S1, whereas
the TGF is obtained from setup S2 for zigzag direction. The
LGF and TGF for armchair direction are also evaluated in a
similar manner.

The quantum transport model for S1 and S2 is shown in
Fig. 1(c). The Fermi energy of the graphene channel (E f ) is
at 0 eV. The Fermi function at C1 is f1 with fermi energy at
μ1 = −qV/2. Similarly, the Fermi function at C2 is f2 with
Fermi energy at μ2 = qV/2. For ease of calculation, armchair
direction is taken along the x axis and zigzag direction is taken
along the y axis.

We sketch in Fig. 2, a generic computational model that
evaluates GF of a 2D material in the ballistic regime. We
employ this model to compute LGF and TGF of graphene
along zigzag and armchair directions. Our model involves
obtaining the Brillouin zone, calculating the band structure
of strained graphene using parametrized tight-binding Hamil-
tonian, evaluation of the mode density function of graphene
using the band counting method [30] and finally evaluation
of GF using Landauer formalism. The detailed description of
these steps are as follows:

1. Brillouin zone and E-k relation of strained graphene

Basis vectors �ai
1 and �ai

2 describe the crystal-lattice of
uniaxially strained graphene along armchair and zigzag

FIG. 2. Flow chart for gauge factor (GF) calculation of a 2D
material in the ballistic regime. “i” is the percentage strain, “ j” is the
number of segments or sub-bands used in the band counting method,
“Ri

j” is the resistance with “ j” segments and imax is the maximum
linear elastic limit of the 2D material.

directions. Superscript “i” denotes the magnitude of strain εx

along x axis and εy along y axis in percentage. Figure 3(a)

shows schematic diagram of �ai
1 and �ai

2 in uniaxially strained

graphene crystal. The basis vectors �ai
1 and �ai

2 are given by

�ai
1 = aix̂ + biŷ, (1)

�ai
2 = aix̂ − biŷ, (2)
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FIG. 3. (a) Real crystal lattice of strained graphene with �ai
1, �ai

2 as
basis vectors, A-B as basis, and t i

1, t i
2, and t i

3 as nearest-neighbor tight-
binding parameters. (b) Reciprocal crystal lattice and first Brillouin
zone of strained graphene with reciprocal basis vectors �Ai

1 and �Ai
2.

The intersection of the edges of Brillouin zone are labeled as K1,
K2, …, K6 in clockwise manner and their corresponding Dirac points
are denoted by DP1, DP2, …, DP6, respectively.

where ai = 1.5a0(1 + εx ) and bi = (
√

3/2)a0(1 + νεx ) for
armchair strained graphene. Similarly ai = 1.5a0(1 + νεy)
and bi = (

√
3/2)a0(1 + εy) for zigzag strained graphene.

Figure 3(b) shows the corresponding Brillouin zone of
strained graphene. The reciprocal basis vectors corresponding
to Eqs. (1) and (2) are given by

�Ai
1 = π

ai
k̂x + π

bi
k̂y, (3)

�Ai
2 = π

ai
k̂x − π

bi
k̂y. (4)

Graphene behaves elastically up to 20% strain [3–5]. Here,
we apply strain in the range of 0%–10% that corresponds to
the linear elastic regime in graphene [31]. The magnitude of
Poisson’s ratio (ν = εt

εl
) for uniaxial strain in graphene has

been reported in the range of 0.10–0.186 [4,9,11]. We use
ν = −0.14 and a0 = 1.42 Å in all our calculations [29]. The
corresponding reciprocal lattice points are given by

�Gi = M �Ai
1 + N �Ai

2. (5)

The reciprocal lattice points nearest to the origin are
shown with red dots in Fig. 3(b). A generic first Brillouin
zone for uniaxially strained graphene along armchair direc-
tion or zigzag direction is shown in Fig. 3(b) as a green
hexagon.

The nearest-neighbor parametrized tight-binding expres-
sion for band structure of strained graphene is given by

Ei(k) = ±∣∣t i
1e−i�k· �ai

1 + t i
2 + t i

3e−i�k· �ai
2
∣∣. (6)

We obtain the hopping parameters t i
1, t i

2, and t i
3 for strained

graphene from Ribeiro et al. (see Appendix A) [11]. They
extracted the tight-binding parameters by fitting the band
structure obtained from ab initio calculations with Eq. (6).
The analytical tight-binding model described by Eq. (6) for
strained graphene was studied by Pereira et al. [31]. This
model does not consider the overlap factors of the orbitals.
Thus, Eq. (6) is insufficient to fit the entire band structure
in first Brillouin zone. It can generate band structure accu-
rately for energy less than 0.2 eV, i.e., within Dirac cone ap-
proximation. Furthermore, Eq. (6) accurately describes Dirac

cone shift and anisotropy in Fermi velocity due to strain
[5,12,13,31]. Thus, Eq. (6) is an accurate representation of the
the band structure of strained graphene for energy less than
0.2 eV. In this work, we use Landauer formalism [Eq. (10)]
which is also valid in this energy range. Therefore, the mode
density is very precisely determined by Eq. (6). Using band
structures at different strain in the first Brillouin zone, we
compute mode density at different strain.

2. Mode density calculation

The most essential step in GF calculation is determination
of the mode density. The two prominent methods used to
obtain mode density function in ballistic conductors are as
follows:

(1) Band counting method.
(2) Non-equilibrium green’s function method (NEGF).
Among these two methods, band counting method is a

relatively simpler technique for mode density calculation,
provided dispersion relation is known. Transverse modes
(TMs) are quantum confined energy states in the transverse
direction to the electron transport. Each point in the energy
dispersion of a TM acts as a channel for electron transport at
that energy and is known as a mode. By counting the number
of TMs crossing a particular energy, modes at that particular
energy is obtained. The total modes as a function of energy
is known as the mode density function or mode density. The
method discussed above is known as band counting method.
It was successfully used to compute the thermoelectric
properties of germanium by Jeong et al. [30].

For a 2D material like graphene whose conduction band
and valence band meet at a single point, mode density cal-
culation near the Dirac point is a challenging task. Thus,
we compute the mode density function of graphene using
a numerical technique that implements the band counting
method in 2D materials. Once the mode density is calculated
for graphene, GF can be easily obtained.

Figure 2 illustrates the flowchart for implementation of
band counting method in 2D materials. The numerical method
is described as follows:

The first Brillouin zone of graphene is divided into “ j”
segments of equal width along the transverse direction. Each
segment encloses a portion of the Brillouin zone between
two successive dotted lines as shown in Figs. 4(a) and 4(b).
The width of the segments at the edges are half of that of
the intermediate segments. Each segment contains several
TMs. The TM passing through the center of each segment is
denoted as k⊥. For the sake of convenience, we refer to k⊥
as sub-band in this manuscript. k⊥ is shown with a blue line
and varies from 1 to 9 in Figs. 4(a) and 4(b). The width of an
intermediate segment is �kx in S1 and �ky in S2. We assume
that all TMs within a segment have same mode density since
they are very close to each other in k-space. To effectively
calculate the mode density at energies close to the Dirac cone,
a large number of segments “ j” are required. The number of
segments “ j” is varied from 102 to 104 and simultaneously
the resistance is obtained for a 1-μm-wide graphene sheet.
The plot of resistance versus the number of segments for
S1 is shown in Fig. 4(c) and S2 is shown in Fig. 4(d). We
observe that the value of resistance does not vary beyond

124005-3



ABHINABA SINHA et al. PHYSICAL REVIEW MATERIALS 3, 124005 (2019)

FIG. 4. Sub-bands in the first Brillouin zone of graphene in
(a) setup S1 and (b) setup S2 for mode density calculation. Nine
segments are shown here for representational purpose only. The
variation of resistance with number of segments in (c) setup S1, and
in (d) setup S2 for 0%, 5%, and 10% strain. The value of resistance
becomes constant beyond 1000 segments in S1 and S2.

1000 segments. The transport properties of graphene, namely,
transmission, current density, and resistance obtained for more
than 1000 segments are the actual values of the transport
properties of ballistic graphene. Mode density of the sub-band
(k⊥) assuming the presence of “p” energy minima and “q”
energy maxima is given by

Mi
k⊥ (E ) =

p∑
p=1

�
(
E ∓ Ei

p

) −
q∑

q=1

�
(
E ∓ Ei

q

)
. (7)

The negative sign in Eq. (7) is for conduction band, whereas
the positive sign is for valence band. The detail derivation of
Eq. (7) is given in Appendix B.

Figures 4(a) and 4(b) show the Brillouin zone with nine
segments for transport along zigzag direction and armchair
direction respectively. The collective mode density (per unit
cross-sectional length) of all TMs in the region �kx or �ky,
containing the sub-band “k⊥” is given by

T i
k⊥ (E ) = Pi

k⊥ ∗ Mi
k⊥ (E ), (8)

where Pi
k⊥ is the prefactor and Mi

k⊥ is the mode density of the
sub-band “k⊥.” For the edge sub-bands (with k⊥ = 1 and j)
in Figs. 4(a) and 4(b), the prefactors are Pi

1 and Pi
j , and for the

intermediate segments (with k⊥ = 2 to j − 1), the prefactor
is Pi

k⊥ , where Pi
1 = Pi

j = Pi
k⊥/2 and Pi

k⊥= �k/(2π ) (see
Appendix B). The total mode density or transmission per unit
cross-sectional length of ballistic graphene is given by

T i(E ) = Pi
1Mi

1(E ) +
j−1∑

k⊥=2

Pi
k⊥Mi

k⊥ (E ) + Pi
jM

i
j (E ). (9)

For detail derivation of Eq. (9), see Appendix B.

3. Evaluation of gauge factor (GF) in ballistic regime

Landauer equation for current density [Ji(V )] [32] is
given by

Ji(V )= 2q

h

∫ ∞

−∞
T i(E )[ f1(E −μ1)− f2(E −μ2)]dE . (10)

Equation (10) is valid in linear regime, i.e., a few kT ’s
near the Fermi energy, where kT is thermal energy at room
temperature. The voltage varies from −0.01 V to 0.01 V,
whereas the energy limit in Eq. (10) varies from −0.2 eV to
0.2 eV. ri is the gradient of voltage and current density. It is
defined as

ri = dV

dJi
. (11)

The expression for resistance (Ri) is given by

Ri = ri

Lcs(1 + νε)
, (12)

where, Lcs is the cross sectional length of graphene at 0%
strain, ν is the Poisson’s ratio, and ε is εx or εy, depending
on the direction of strain. Finally, the expression for GF is
given by

GF = Ri − R0

R0ε
= 1

ε

[
ri

r0(1 + νε)
− 1

]
, (13)

where R0 is the value of resistance at 0% strain and Ri is the
resistance at i% strain.

4. Evaluation of gauge factor (GF) in diffusive regime

The length of a diffusive conductor is much larger than its
mean free path. In diffusive regime of transport, Boltzman
transport theory is commonly used. Using linearized Boltz-
man transport theory, Peres et al. [33] have phenomenologi-
cally obtained an expression for conductivity of graphene con-
sidering screened Coulombic impurities as the prime source of
scattering.

The conductivity predicted using Coulombic impurities in
graphene is linearly dependent on the electron density. This
result is in accordance with the experimentally observed con-
ductivity [28,34]. The expression for conductivity obtained by
Peres et al. is given by

σ = 2e2π (h̄v f )2n

hu2
o

, (14)

where uo is the scattering potential, v f is the fermi velocity
and n is the electron density.

The expressions for LGF and TGF obtained from Eq. (14)
are given by

LGF = 1+ | ν | −2
�v f /v f

ε
, (15)

TGF = −(1+ | ν |) − 2
�v f /v f

ε
. (16)

For detail derivation of Eqs. (15) and (16), see Appendix D.

III. RESULTS AND DISCUSSIONS

In this section, we discuss the strain-dependent transport
properties along zigzag direction in the ballistic regime. We
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FIG. 5. Strain (εy)-dependent transport properties in setup S1 of graphene. (a) Plot of transmission versus energy for 0%, 5% and 10%
strain. Transmission decreases with an increase in strain. (b) Plot of current density versus voltage at 0%, 5%, and 10% strain. The magnitude
of current density decreases with strain. (c) Plot of resistance versus strain of a 1-μm-wide graphene sheet. The resistance increases linearly
with strain. (d) Plot of longitudinal gauge factor versus strain. The average LGF is ≈0.3.

further evaluate the longitudinal and transverse gauge factor
along the zigzag direction and then compare it with that of the
armchair direction. We compare the GFs in ballistic regime
with that of the diffusive regime and other previously reported
works. The piezoresistance effect in ballistic graphene is due
to the distortion of Dirac cones and change in separation of
TMs with applied strain, whereas in diffusive regime, it is due
to the change in Fermi velocity [33]. The transport properties
of S1 and S2 are shown in Figs. 5 and 6, respectively.

We have calculated the value of resistivity equal to 1.3 k	

at 0% strain which is within the resistivity range (1.2–1.6 k	)
calculated previously for suspended graphene [27].

The transmission increases with energy at a particular
strain, as shown in Figs. 5(a) and 6(a). It can be inferred
from Fig. 5(a) that in setup S1 with an applied strain, the
transmission decreases due to a decrease in the mode density
as explained in the subsequent subsections. This reduction
in transmission with increase in strain leads to a reduction
in current density [Fig. 5(b)] and finally an increase in the
resistance [Fig. 5(c)]. The average LGF is 0.3 [Fig. 5(d)].
Whereas, in setup S2, the transmission increases significantly
with applied strain as shown in Fig. 6(a). As a result, the
current density increases substantially in Fig. 6(b) and finally
the resistance decreases in Fig. 6(c). The average TGF is −3.3
[Fig. 6(d)].

Here, we demonstrate a larger value of TGF (≈10 times)
compared to LGF. Moreover, the piezoresistance characteris-

tics of armchair configuration is same as that of the zigzag
configuration (see Fig. 7). Using Eqs. (15) and (16), we
obtain LGF and TGF equal to 1.3 and −1.14, respectively,
for diffusive regime. The LGF in diffusive regime depends
on Fermi velocity, whereas the TGF is independent of Fermi
velocity provided electron density remain constant. Previous
studies on GF of graphene in diffusive regime have measured
LGF around 1.9–2.92 [19,20], which is close to the value
predicted in this work. We see that the magnitude of LGF and
TGF are nearly same in diffusive regime with an inverse sign.
The LGF and TGF of ballistic graphene have large difference
in magnitude (≈1000%) with an inverse sign. The physics
behind the sizable variation of LGF and TGF are elaborately
explained later.

The linearly varying resistance in S1 [Fig. 5(c)] and S2

[Fig. 6(c)] with strain are very useful in strain sensing.
These results suggest that suspended graphene can be used as
high-strain sensors by suitable calibration. Setup S2 is more
sensitive to strain than setup S1 due to the higher value of GF.
High-strain sensors are very useful in flexible electronics [5].
They have been studied previously for zinc oxide nanowire
based flexible films [35] and graphene-rubber composite [36].

A. Effect of strain on Dirac cone

The linear regime energy in graphene corresponds to
energy close to the Dirac points. Therefore, we analyze the

FIG. 6. Strain (εy)-dependent transport properties in setup S2 of graphene. (a) Plot of transmission versus energy for 0%, 5%, and 10%
strain. The transmission increases with an increase in strain. (b) Plot of current density versus voltage at 0%, 5%, and 10% strain. The magnitude
of current density increases with strain. (c) Plot of transverse resistance versus strain of a 1-μm-wide graphene sheet. The resistance decreases
linearly with strain. (d) Plot of transverse gauge factor versus strain. The average TGF is ≈ − 3.3.

124005-5



ABHINABA SINHA et al. PHYSICAL REVIEW MATERIALS 3, 124005 (2019)

FIG. 7. (a) The longitudinal gauge factor (LGF) of graphene for
strain along the armchair direction. (b) The transverse gauge factor
(TGF) of graphene for strain along the armchair direction. The plot
of resistance versus strain of a 1-μm-wide graphene sheet is shown
as inset figures in (a) and (b). The gauge factors (GF) of armchair
graphene are the same as zigzag graphene.

effect of strain on a Dirac cone to understand the cause of
piezoresistance in graphene.

Graphene undergoes elastic deformation for more than
20% of strain [4,5]. Simultaneously, it is highly resistive to
band gap opening and undergoes band opening beyond 23%
of strain along the zigzag direction [9–11]. In contrast, band
gap does not open with applied strain along the armchair
direction. The Dirac points shift their position from K-points
due to the applied strain [10,11,31]. Moreover, strain induces
anisotropy in Fermi velocity along the longitudinal and trans-
verse direction as a result of deformation of the Dirac cones
[5,13,31]. In this work, we restrict our discussion to 10%
uniaxial strain only.

The shift in Dirac points DP1 and DP2 with respect to K1

and K2 at 10% strain along armchair and zigzag directions are
illustrated in Figs. 8(a) and 8(b), respectively. Table I lists the
relative shift in reciprocal space between K1 and DP1, and K2

and DP2 with strain. For strain along the armchair direction,
Dirac points DP1 and DP4 move inside the Brillouin zone and
Dirac points DP2, DP3, DP5, and DP6 move away from the
Brillouin zone [Fig. 8(a)]. For strain along the zigzag direc-

FIG. 8. (a) Shift in Dirac points DP1 (α1) and DP2 (α2) due to
strain (εx = 10%) along armchair direction. DP1 moves inside the
Brillouin zone along the line joining K1 and K4 whereas DP2 moves
out of the Brilluoin zone along the line joining K2 and K3. (b) Shift
in Dirac points DP1 (β1) and DP2 (β2) due to strain (εy = 10%) along
zigzag direction. DP1 moves out of the Brillouin zone along the line
joining K1 and K4, whereas DP2 moves inside the Brilluoin zone
along the line joining K2 and K3. Inset figures in (a) and (b) shows
the magnified view of the shift in Dirac points DP1 and DP2.

TABLE I. Relative shift in position of Dirac points with respect
to K-points with strain (refer to Fig. 8).

Strain S1 S1 S2 S2

i% αi
1(Å−1) αi

2(Å−1) β i
1(Å−1) β i

2(Å−1)

1% 0.0022 −0.0022 −0.0069 0.0069
5% 0.0137 −0.0137 −0.0401 0.0401
10% 0.0337 −0.0337 −0.0995 0.0994

tion, DP1 and DP4 move away from Brillouin zone whereas
the Dirac points DP2 and DP3, and DP5 and DP6 move closer
to each other along the edge of Brillouin zone [see Fig. 8(b)].
We observe an identical response of DP1 and DP4 in first
Brillouin zone due to strain (see Fig. 8). Similarly, DP2, DP3,
DP5, and DP6 show identical response to strain. The shifting
of these two sets of Dirac points with respect to K-points are
exactly same but in opposite direction. Therefore, analysis of
Dirac cones at DP1 and DP2 are sufficient to understand the
strain response of other Dirac cones.

In addition to shifting of the Dirac points, strain deforms
Dirac cones as well [5,12,13,31]. Application of uniaxial
strain deform these Dirac cones into oval shaped cones as

FIG. 9. Top view of the Dirac cones. (I) DP1 at εx = εy = 0%.
(II) DP2 at εx = εy = 0%. (III) DP1 at εy = 10%. (IV) DP2 at εy =
10%. (V) DP1 at εx = 10%. (VI) DP2 at εx = 10%. The dimensions
of DP1 and DP2 are the same for the same magnitude of strain. The
major and minor axes of the Dirac cones are equal for the same
magnitude of strain along x and y directions.
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TABLE II. Axes length (Å−1) of Dirac cones with strain at E = 1
meV.

Strain DP1(S1) DP1(S1) DP2(S2) DP2(S2)
i% (Lx ) (Ly ) (Lx ) (Ly )

0% 0.000361 0.000362 0.000361 0.000362
5% 0.000413 0.000354 0.000354 0.000413
10% 0.000495 0.000347 0.000347 0.000495

illustrated in Fig. 9. From Table II, we see that each Dirac
cones have identical deformation for an applied strain. The
dimensions of these cones depend only on the magnitude of
applied strain. Thus, we conclude that the shape of the Dirac
cones do not depend on the tight-binding parameters for strain
in linear elastic regime.

In unstrained graphene, each Dirac cone contributes 1/3
to the first Brillouin zone. Effectively, two Dirac cones are
present inside the first Brillouin zone. The same is true in
the case of uniaxially strained graphene along armchair and
zigzag directions (see Fig. 8). In Fig. 8(a), Dirac cones at DP1

and DP4 are present inside the first Brillouin zone. Similarly,
in Fig. 8(b), a half portion of the Dirac cones at DP2, DP3,
DP5, and DP6 are present inside the first Brillouin zone, the
remaining portions lie outside. In other words, effectively only
two Dirac cones lie inside the first Brillouin zone of graphene,
for strain along armchair direction or zigzag direction.

B. Physics of gauge factor variation

Piezoresistance effect in a ballistic conductor is due to the
change in transmission with applied strain. The change in
transmission is primarily due to the change in band structure.
Owing to the zero band gap in graphene for large value of
strain, piezoresistance is due to the deformation of Dirac
cones for strain in our range of interest (see Fig. 9).

As discussed earlier, the effective number of Dirac cones in
the first Brillouin zone of uniaxially strained graphene is 2 and
the Dirac cones are identical in every respect. From Figs. 9
and 10, we conclude that in a Dirac cone the mode density
along kx direction and −kx direction are same irrespective of
the magnitude and direction of strain. As a result, the mode
density along armchair direction is numerically equal to the
collective mode density along kx and −kx directions in a
Dirac cone. A similar argument holds for mode density along
zigzag direction also. Therefore, we can calculate the mode
density of graphene along armchair or zigzag direction from a
single Dirac cone. From Table II, we see that the deformation
of Dirac cones are the same for the same magnitude of
strain along armchair and zigzag directions. Furthermore, the
separation between TMs are the same in setup S1 and S2

of zigzag and armchair directions because of same width of
graphene. Consequently, we obtain the same GF along zigzag
and armchair directions.

Figure 10 illustrates TMs at 1 meV constant energy surface
of the Dirac cone at 0% and 10% strain in S1 and S2. The
parallel dotted lines represent the path of TMs, whereas the
red cross marks represent the modes at that particular energy.
The number of modes in S1 reduces from “M” to “N” as the

FIG. 10. (a) Schematic diagram of the constant energy surface of
a Dirac cone and TMs at 1 meV energy. (I) Dirac cone surface with
“M” TMs (red cross) along zigzag direction at 0% strain (S1). (II)
Dirac cone surface with “N” TMs (red cross) along zigzag direction
at 10% strain (S1). (III) Dirac cone surface with “M” TMs (red
cross) along armchair direction at 0% strain (S2). (IV) Dirac cone
surface with “P” TMs (red cross) along armchair direction at 10%
strain (S2). (b) The change in normalized transmission as a result of
deformation of constant energy surface (1 meV) due to strain in S1

and S2.

strain is increased from 0% to 10% along zigzag directions
[see Fig. 10(I) and Fig. 10(II)]. The overall reduction in mode
density is due to the small decrease in length of the minor
axis of the constant energy surface and small increase in the
separation between the TMs due to slight decrease in width
as a result of transverse strain (separation between TM =
2π/Lcs). Thus, we see a small overall decrease in transmission
with strain in S1 as shown in Fig. 10(b). Whereas in setup S2,
due to an increase in major axis length of constant energy
surface and reduction in separation of TMs, a significant
increase in transmission is seen as shown in Fig. 10(b). The
change in transmission at any other energy in linear regime
is similar to the one discussed above as the major and minor
axis of the constant energy surface at different energies are
proportional at a definite value of strain. Thus, the total
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change in transmission in S1 and S2 follows the same trend
as shown in Fig. 10(b) for E = 1 meV. The ratio of change in
transmission at 1 meV energy in S1 and S2 is ≈10 times which
is same as the ratio of the LGF and TGF. This explains the
sizable variation in LGF and TGF value obtained in ballistic
regime.

IV. CONCLUSION

In this paper, we investigated the longitudinal and trans-
verse piezoresistance in suspended graphene in ballistic
regime. Utilizing parametrized tight-binding Hamiltonian
along with Landauer quantum transport formalism, we de-
vised a methodology to evaluate the piezoresistance effect
in graphene. We computed the longitudinal gauge factor and
transverse gauge factor of ballistic graphene along armchair
and zigzag directions in the linear elastic limit (0%–10%).
The value of gauge factors were same along armchair and
zigzag directions. Our model predicted a significant vari-
ation (≈1000% increase) in the magnitude of transverse
gauge factor compared to longitudinal gauge factor along
with sign inversion. The longitudinal gauge factor obtained
is ≈0.3 whereas the transverse gauge factor is ≈ − 3.3. We
rationalized our predictions based on deformation of Dirac
cone and change in the separation between transverse modes
due to longitudinal and transverse strain. The results ob-
tained in this paper could be useful for future straintronics
applications.
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APPENDIX A: STRAINED TIGHT-BINDING
PARAMETERS

The tight-binding parameters for strain along zigzag direc-
tion and armchair direction are given in Tables III and IV,
respectively. These parameters are obtained from Ref. [11].

TABLE III. Hopping parameters for zigzag strained graphene.

Strain (%) t1 = t3 (in eV) t2 (in eV)

0% 2.60 2.60
5% 2.36 2.68
10% 2.08 2.75

TABLE IV. Hopping parameters for armchair strained graphene.

Strain (%) t1 = t3 (in eV) t2 (in eV)

0% 2.60 2.60
5% 2.55 2.24
10% 2.50 1.88

APPENDIX B: EXPRESSION FOR TRANSMISSION
OF GRAPHENE

In Appendix B, we systematically derive the expression for
transmission of graphene sheet starting with the expression of
mode density of a graphene sub-band using the band counting
method.

The mode density of a parabolic sub-band with minima at
energy E1, is given by

M(E ) = �(E − E1). (B1)

The function “�(E )” denotes a unit step function. Similarly,
mode density of three different parabolic sub-bands, each
having energy minima at E1, E2, and E3 is given by

M(E ) =
3∑

p=1

�(E − Ep). (B2)

Similarly, the mode density of a sub-band with energy
minima at E1 and E2, and maxima at E3 (see Fig. 11) is given
by

M(E ) =
2∑

p=1

�(E − Ep) − �(E − E3). (B3)

Likewise, mode density of a sub-band with “p” minima and
“q” maxima is given by

M(E ) =
p∑

p=1

�(E − Ep) −
q∑

q=1

�(E − Eq). (B4)

In general, Eq. (B4) represents the mode density of a con-
duction band. The band structure of graphene is symmetric
about kx and ky axes as well as the energy axis. Thus, a
sub-band along armchair or zigzag direction has the same
number of modes along forward and backward directions.
The conduction and valence bands are symmetric about the
energy axis. Thus, the collective equation for mode density of
a graphene sub-band (say “k⊥”) consisting of the conduction

FIG. 11. A sub-band with minima at E1, E2 and maxima at E3,
and its corresponding mode density function.
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band and valence band is given by

Mi
k⊥ (E ) =

p∑
p=1

�
(
E ∓ Ei

p

) −
q∑

q=1

�
(
E ∓ Ei

q

)
, (B5)

where “i” is the magnitude of strain in percentage. The nega-
tive signs in Eq. (B5) are used for conduction band, whereas
the positive signs are used for valence band. We use Eq. (B5)
to calculate the mode density function of graphene.

The mode density of TMs inside the segment �k (see
Fig. 4) is given by

Mi′
k⊥ (E ) = Mi

k⊥ (E ) ∗ �k

δk
. (B6)

�k = �ky for transport along the armchair direction, and
�k = �kx for transport along the zigzag direction. δk is the
separation between adjacent TMs and has a value of 2π

Li
cs

.
Therefore, Eq. (B6) simplifies into

Mi′
k⊥ (E ) = Mi

k⊥ (E ) ∗ �k ∗ Li
cs

2π
. (B7)

Therefore, transmission per unit cross-sectional length due
to TMs present inside the segment �k containing the sub-band
(k⊥) is given by

T i
k⊥ (E ) = Mi

k⊥ (E ) ∗ �k

2π
. (B8)

From Eq. (B8), the prefactor(Pi
k⊥ ) is given by

Pi
k⊥ = �k

2π
. (B9)

Equivalently, T i
k⊥ (E ) can be written as

∴ T i
k⊥ (E ) = Pi

k⊥ ∗ Mi
k⊥ (E ). (B10)

Finally, the total transmission per unit cross-sectional length
of graphene sheet at i% strain when “ j” segments are used is
given by

T i(E ) =
j∑

k⊥=1

T i
k⊥ (E ). (B11)

APPENDIX C: EXPRESSION FOR GAUGE FACTOR
IN BALLISTIC REGIME

The expression for gauge factor is given by

GF = Ri − R0

R0ε
, (C1)

where Ri is resistance of graphene sheet at i% strain and R0 is
resistance of graphene sheet at 0% strain. The resistance Ri at
i% strain is given by

Ri = ri

Li
cs

= ri

Lcs ∗ (1 + νε)
, (C2)

where ri is the gradient of voltage and current density in the
linear regime at i% strain. From Eqs. (C1) and (C2), the final
expression of GF is obtained which is given by

GF = 1

ε

[
ri

r0(1 + νε)
− 1

]
. (C3)

APPENDIX D: EXPRESSION FOR GAUGE FACTOR
IN DIFFUSIVE REGIME

The expression for GF in diffusive regime is obtained from
Eq. (14) and R = ρ L

Lcs
. Due to the difference in the direction

of electron transport and applied strain in S1 and S2 configu-
rations, the expressions for LGF and TGF are different.

From Eq. (14), we obtain

�ρ

ρ
= −2�v f

v f
. (D1)

From R = ρ L
Lcs

, we obtain

�R

R
= �ρ

ρ
+ �L

L
− �Lcs

Lcs
. (D2)

The simplified expression for LGF using Eqs. (D2), (D1),
ε = �L

L , and �Lcs
Lcs

= νε is given by

LGF = 1+ | ν | −2
�v f /v f

ε
. (D3)

Similarly, the simplified expression for TGF using
Eqs. (D2), (D1), ε = �Lcs

Lcs
, and �L

L = νε is given by

TGF = −(1+ | ν |) − 2
�v f /v f

ε
(D4)
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