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Nonempirical hybrid functionals for band gaps of inorganic metal-halide perovskites
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Nonempirical hybrid functionals are investigated for band-gap predictions of inorganic metal-halide per-
ovskites belonging to the class CsBX3, with B = Ge, Sn, Pb and X = Cl, Br, I. We consider both global
and range-separated hybrid functionals and determine the parameters through two different schemes. The first
scheme is based on the static screening response of the material and thus yields dielectric-dependent hybrid
functionals. The second scheme defines the hybrid functionals through the enforcement of Koopmans’ condition
for localized defect states. We also carry out quasiparticle self-consistent GW calculations with vertex corrections
to establish state-of-the-art references. For the investigated class of materials, dielectric-dependent functionals
and those fulfilling Koopmans’ condition yield band gaps of comparable accuracy (∼0.2 eV), but the former
only require calculations for the primitive unit cell and are less subject to the specifics of the material.
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I. INTRODUCTION

Solar cells based on metal-halide perovskites have recently
drawn great scientific attention [1–5]. In fact, within one
decade their power conversion efficiencies increased tremen-
dously [1,3] and reached 22.1% in 2017 [5] with potential
for improving even further. This makes them stand out as a
promising alternative to today’s best thin-film photovoltaic
devices [2,4]. The further improvement of perovskite solar
cells relies greatly on the ability of exploring the immense
space of possible compositions and structures. For this task,
one naturally resorts to automated computational methods
[6–8]. This requires a critical trade off between aspired ac-
curacy and bearable effort. The most accurate technique for
band-gap evaluation consists of quasiparticle self-consistent
GW calculations including vertex corrections [9–12]. How-
ever, this technique demands a high computational effort and
is practically limited to materials with small unit cells. In
particular, a recent study on perovskite compounds accounting
for spin-orbit and thermal effects showed that this level of
theory is needed to achieve a good comparison with exper-
imental band gaps [13]. Therefore it is highly desirable to
develop alternative computational schemes yielding the same
accuracy as self-consistent GW methods but requiring a lower
computational cost.

Electronic-structure calculations based on hybrid function-
als [14–17] have the potential to fill this gap. Such functionals
show an improved description of the electronic structure
[18] compared to standard density functionals in semilocal
approximations [19–21]. However, hybrid functionals remain
unsatisfactory because they contain undetermined parame-
ters, such as the amount of incorporated Fock exchange. To
overcome this deficiency, two different nonempirical deter-
mination schemes are being investigated at present, namely,
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dielectric-dependent hybrid (DDH) functionals [22–32] and
hybrid functionals enforcing Koopmans’ condition [33–40].
Both approaches exhibit great potential due to their promising
combination of accuracy and computational cost. However, a
comparative study of these techniques has so far only been
reported for alkali-halide compounds [36].

In this work, we set out to evaluate the performance of
various nonempirical hybrid functionals for inorganic metal-
halide perovskites. We consider the cubic phase of CsBX3

perovskites, where B represents Ge, Sn, or Pb and X stands
for Cl, Br, or I. These compounds serve as a representative set
of metal-halide perovskites and additionally show sufficiently
small unit cells to make high-level reference calculations af-
fordable. The parameters in the hybrid functionals constructed
here are determined both through the static dielectric response
and through the enforcement of Koopmans’ condition. Our
work carefully goes through the construction process high-
lighting all critical issues encountered, thereby allowing clear
insight into the viability of the two approaches. To achieve
reference band gaps, we additionally perform state-of-the-art
GW calculations within a consistent computational setup. The
present analysis allows us to determine the accuracy of the
investigated schemes in a comparative fashion and to discuss
their suitability for application to the screening of large sets of
perovskite materials.

This work is organized as follows. We first introduce the
considered theoretical schemes in Sec. II. We then provide
computational details in Sec. III and highlight the role of
exchange interactions with semicore electrons. In Sec. IV,
we show band gaps obtained with the constructed hybrid
functionals. We draw conclusions in Sec. V.

II. THEORETICAL SCHEMES

In this work, we apply nonempirical construction schemes
to different classes of hybrid functionals. In particular, we
consider global as well as range-separated hybrid density
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FIG. 1. Workflow for the construction of dielectric-dependent
hybrid (DDH) functionals. The procedure for updating the free
parameters depends on the considered hybrid-functional form and
is described in the text.

functionals and determine their free parameters. For the for-
mer, we use the functional PBE0(α), which depends only on
the incorporated fraction of Fock exchange α [15]. For the
latter, we consider range-separated hybrid functionals based
on the Coulomb-attenuating method (CAM) of Yanai et al.
[17]. This functional incorporates different fractions of Fock
exchange in the short (αs) and in the long range (α�), mediated
via the inverse screening length μ.

A. Dielectric-dependent hybrid functionals

The concept of DDH functionals consists in determining
the free parameters of a hybrid functional via the dielectric
response of the considered material. The connection between
these quantities was first observed for the fraction of Fock
exchange α and the inverse macroscopic dielectric constant
1/ε∞ [18,25]. Various authors contributed to the further de-
velopment of this basic idea, in particular through the use of
self-consistent update schemes [23,27,28] and the extension
to range-separated hybrid functionals [30,32]. In particular,
in Ref. [32], all the parameters of the DDH functional are
extracted from the static dielectric response function.

In this study, we determine DDH functionals following the
procedure outlined in Ref. [32]. The workflow of this proce-
dure is visualized in Fig. 1. It consists of an iterated update of
an initial guess for the hybrid functional parameters. Within
each iteration step, the generalized Kohn-Sham equations [41]
are solved and the dielectric function ε of the considered
material is calculated. Subsequently, improved values of the
hybrid functional parameters are determined using the cal-
culated dielectric properties. This process is performed until
a self-consistent description of the free parameters and ε is
reached.

We remark that the update step in Fig. 1 depends on the
adopted family of hybrid functionals. For the global functional
PBE0(α), the mixing parameter α is updated in the standard
fashion via the inverse high-frequency dielectric constant:
α = 1/ε∞. For the case of the range-separated functional
CAM(αs, α�, μ), αs is set to 1, α� = 1/ε∞, and μ is deter-
mined through a fitting procedure [32]. This is equivalent to

FIG. 2. Scheme for the construction of a hybrid functional sat-
isfying Koopmans’ condition through a defect D. Occupied and
unoccupied single-particle energy levels are given as a function of the
free parameter of the adopted hybrid functional form. The point of
intersection corresponds to the fulfillment of Koopmans’ condition.
The band edges of the host material are also shown as a function
of the hybrid functional parameter. The dashed vertical line repre-
sents the resulting band-gap estimate.

the enforcement of a model dielectric function, which can be
expressed in reciprocal space as

ε−1(G) = 1 − (
1 − ε−1

∞
)
e−G2/4μ2

. (1)

For the nonempirical hybrid functionals determined in this
way, we here use the notation DD-PBE0 and DD-CAM.

B. Hybrid functionals satisfying Koopmans’ condition

The second construction scheme for nonempirical hybrid
functionals considered in this work is based on the en-
forcement of Koopmans’ condition. This physical constraint
states that for the exact density functional a single-particle
level does not change upon its occupation [42]. Deviations
from the Koopmans’ condition within approximate density
functional schemes have been associated with the many-body
self-interaction error [43,44].

For the construction of a hybrid functional that satisfies
Koopmans’ condition, we use the procedure shown in Fig. 2
[36,39]. We study single-particle energy levels induced by
point defects within a supercell of the considered material.
We perform hybrid functional calculations in two charge
configurations, in which the localized state is either occupied
or unoccupied. The single-particle levels observed in the two
configurations evolve depending on the free parameter and
their point of intersection indicates the fulfillment of Koop-
mans’ condition. The use of two extreme cases of occupation
minimizes the numerical errors associated with the determina-
tion of the intersection. The hybrid functional defined by the
corresponding parameter is then used to obtain an estimate of
the band gap of the host material. In analogy to the case of
DDH functionals, we use the notation K-PBE0 and K-CAM
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TABLE I. Construction schemes investigated in this work. We
consider global hybrid functionals with a single undetermined pa-
rameter (PBE0) and range-separated hybrid functionals involving
three parameters (CAM). The parameters are determined either
through the static dielectric response or through the enforcement of
Koopmans’ condition.

Global Range-separated

Dielectric dependent DD-PBE0 DD-CAM
Koopmans’ condition K-PBE0 K-CAM

for the nonempirical hybrid functionals determined via this
scheme. Table I summarizes the various schemes investigated
in this work.

C. Quasiparticle self-consistent GW with vertex
corrections as reference method

To evaluate the performance of nonempirical hybrid func-
tionals, we carry out comparisons with state-of-the-art meth-
ods for band-gap evaluation. Quasiparticle self-consistent GW
(QSGW̃ ) including vertex corrections in the screening (W̃ )
can serve as such a high-level reference [9–12]. A detailed
QSGW̃ study of inorganic metal-halide perovskites has re-
cently been carried out by Wiktor et al. [13]. Here, we
calculate QSGW̃ band gaps in a similar fashion but with the
pseudopotentials considered in this work and with nonlocal
commutators for the optical matrix element in the long-
wavelength limit as in Ref. [45]. Our QSGW̃ band gaps are
given in Table II. In comparison to the results in Ref. [13],
the present band gaps agree within ∼0.2 eV on average and
thereby confirm the conclusions drawn previously.

The comparison with experiment requires the considera-
tion of thermal effects and spin-orbit coupling [13]. For the
Pb and Sn based perovskites, this can be achieved by relying
on the corrections given in Ref. [13]. The calculated band
gaps corrected in this way are compared with experimental
band gaps in Table II. We generally consider experimental

TABLE II. Band gaps (in eV) as calculated through QSGW̃ .
Following Ref. [13], we include corrections for finite temperature
effects (�T ) and for spin-orbit coupling (�SOC) before comparing
with experimental band gaps.

QSGW̃ QSGW̃ +�T +�SOC Expt.

CsPbI3 2.27 1.79 1.67 [49], 1.73 [50]
CsPbBr3 3.01 2.24 2.25 [51], 2.36 [52]
CsPbCl3 3.41 2.70 2.85 [51]
CsSnI3 1.10 1.46 1.31a [53], 1.3a [54]
CsSnBr3 1.32 1.75 1.75 [53]
CsSnCl3 1.79 2.17 2.8b [53]
CsGeI3 1.67 - 1.6b [55], 1.63c [56]
CsGeBr3 2.13 - 2.38d [57]
CsGeCl3 2.67 - 3.43d [57]

aOrthorhombic phase.
bMonoclinic phase.
cTrigonal phase.
dRhombohedral phase.

data for the same cubic phase when available, but report
values referring to other phases otherwise. We observe that the
QSGW̃ band gaps generally agree well with experiment after
the consideration of thermal effects and spin-orbit coupling
[13]. The case of CsSnCl3 shows a deviation of about 0.6 eV,
but this could at least partially result from the consideration
of a cubic phase in the calculation and of a monoclinic
one in the experiment. In the following, we do not refer to
experimental data any more and use our QSGW̃ results to
benchmark the band gaps obtained through the nonempirical
hybrid-functional schemes.

The QSGW̃ calculations in this work are performed with
computational parameters consistent with Ref. [13]. In partic-
ular, we used a 4 × 4 × 4 k-point sampling and a plane-wave
cutoff of 100 Ry. We include 800 bands and achieve results
in the infinite basis-set limit through linear extrapolation with
respect to the inverse number of bands [46]. For the materials
investigated here, we find that such an extrapolation generally
leads to a band-gap opening of ∼0.1 eV. In particular, we only
update the lowest 80 bands self-consistently and keep those
obtained with the semilocal Perdew-Burke-Ernzerhof (PBE)
functional for the higher-lying states [21]. We verify that the
update of more bands does not lead to a discernible change
in the band gap. The frequency dependence of the dielectric
function is evaluated through the contour deformation tech-
nique [47]. We take into account eight real and four imaginary
frequencies, and use a plane-wave cutoff of 16 Ry for the
dielectric function. The vertex corrections are included as in
Ref. [12]. We verify that the adopted parameters ensure the
convergence of the quasiparticle energy levels within 0.05 eV.
The QSGW̃ calculations are performed with the code ABINIT

[48].

III. COMPUTATIONAL METHODS

A. Computational details

The calculations presented in this work are carried out
using experimental lattice constants of the cubic phase for
the nine perovskites as given in Refs. [13,58]. We use two
sets of normconserving pseudopotentials [59,60] to examine
the role of exchange interactions with core states [61] (see
Sec. III B). The first set (denoted PP1) incorporates only the
outermost shells among the valence states, whereas the second
set (denoted PP2) additionally includes semicore shells. The
pseudopotential of Cs includes the semicore states in both
sets. The reference GW calculations have been performed
with the set PP2. We used cutoffs of 70 and 100 Ry for the sets
PP1 and PP2, respectively. The valence electrons for all the
elements in the pseudopotential sets are specified in Table III.

For the construction of DDH functionals, it is sufficient
to address the primitive unit cells. Converged results for the
band gap are achieved using a 4 × 4 × 4 k-point sampling.
For the proper evaluation of the high-frequency dielectric
constants denser grids of 8 × 8 × 8 for the Pb compounds and
of 10 × 10 × 10 for the Sn and Ge compounds are used. The
Gygi-Baldereschi technique is used for treating the Coulomb
singularity of the exchange potential [62,63]. The dielectric
function is calculated through a linear response approach. The
irreducible polarization is evaluated with the formula of Adler
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TABLE III. Atomic shells treated among the valence electrons in
the two different sets of pseudopotentials considered in this work.

PP1 PP2

Cs 5s25p66s1 5s25p66s1

Ge 3d104s24p2 3s23p63d104s24p2

Sn 4d105s25p2 4s24p64d105s25p2

Pb 5d106s26p2 5s25p65d106s26p2

Cl 3s23p5 2s22p63s23p5

Br 4s24p5 3s23p63d104s24p5

I 5s25p5 4s24p64d105s25p5

and Wiser [64,65], for which 500 bands and an energy cutoff
of 16 Ry are found to give converged results. For a more
realistic description, we calculate the reducible polarizability
including the bootstrap exchange-correlation kernel [66] for
treating vertex corrections [32]. The calculations for the DDH
functionals are carried out with ABINIT [48].

The construction of hybrid functionals satisfying Koop-
mans’ condition is based on calculations for defects in su-
percells [36]. For modeling the point defects, we use 2 ×
2 × 2 supercells (40 atoms) together with 2 × 2 × 2 k-point
samplings. Spin polarization is explicitly included whenever
unpaired electrons occur. Upon the creation of the defect,
the electronic structure is calculated fully self-consistently
without allowing for structural relaxation. Therefore the long-
range screening is described entirely by the high-frequency
dielectric constant ε∞. The spurious interactions with image
charges arising from the periodic boundary conditions are
overcome through state-of-the-art finite-size corrections to
the single-particle energy levels [67]. These corrections are
systematically performed with dielectric constants that are
consistent with the hybrid functionals used in the electronic-
structure calculations. The calculations for the hybrid func-
tionals satisfying Koopmans’ condition are performed with
QUANTUM ESPRESSO [68]. We use the same pseudopotentials
[60] as in the calculations performed with ABINIT to ensure a
meaningful comparison between the results of the two codes.

B. Role of semicore electrons

Preliminary to the construction of the nonempirical hybrid
functionals, we devote special attention to the effect of includ-
ing semicore shells among the valence electrons. To ensure
consistency with the GW reference, the same PP2 pseudopo-
tentials should be used in the hybrid functional calculations.
This can be achieved with the DDH construction scheme,
which relies on calculations in the primitive unit cell. How-
ever, the PP2 set of pseudopotentials becomes prohibitively
demanding when dealing with defects in supercells. For the
construction of hybrid functionals satisfying Koopmans’ con-
dition, we therefore make use of the lighter pseudopotentials
in the set PP1.

In order to estimate the error that we introduce through
neglecting the semicore electrons in PP1, we perform band-
gap calculations using the two sets of pseudopotentials. In
particular, we systematically vary the free parameters αs and
μ within the hybrid functional CAM(αs, α� = 1/ε∞, μ). The
form of the functional PBE0(α) is recovered by setting α = αs

FIG. 3. Band-gap difference (in eV) for CsPbI3 between calcu-
lations with pseudopotential sets PP1 and PP2, which differ by the
treatment of semicore electrons. The band gaps are obtained with
a CAM-type hybrid functional in which the long-range fraction of
Fock exchange is set to α� = 1/ε∞. The figure shows the band-gap
difference as a function of the short-range fraction of Fock exchange
αs and the inverse screening length μ. Isovalues are shown by solid
lines.

and μ → 0. The band-gap differences originating from the
different pseudopotentials are visualized in Fig. 3 in the rep-
resentative case of CsPbI3. The two sets of pseudopotentials
yield almost identical band gaps in the limit corresponding
to the semilocal functional PBE (αs = 0 and μ = 0). This is
consistent with the fact that the two sets of pseudopotentials
are generated at the PBE level and indicates that semicore
states play a negligible role at this level of theory. When the
fraction of Fock exchange incorporated in the functional is
increased, we find that the PP1 set yields a reduction of the
band gap with respect to the PP2 set. For low values of αs,
the difference in the band gap amounts to only a few tenths
of an electronvolt, but it progressively increases with αs, and
reaches values larger than 1 eV for αs approaching 1. This
dependence indicates that the implicit treatment of semicore
states in PP1 leads to significant discrepancies with respect to
the more accurate PP2 set when the fraction of Fock exchange
incorporated in the functional becomes sizable. Similar effects
were observed by Stroppa et al. [61] for hybrid functional
calculations with pseudopotentials generated at the semilocal
level.

These observations have significant consequences for the
construction of nonempirical hybrid functionals. In particular,
this affects the DD-CAM functionals generated in this work,
which include a fraction of Fock exchange αs = 1 in the short
range [32]. Therefore it is only meaningful to consider DD-
CAM functionals in conjunction with PP2 pseudopotentials.
For global hybrid functionals DD-PBE0 and K-PBE0 that

123802-4



NONEMPIRICAL HYBRID FUNCTIONALS FOR BAND GAPS … PHYSICAL REVIEW MATERIALS 3, 123802 (2019)

FIG. 4. Convergence of (a) the dielectric constant ε∞ and (b) the
band gap within the self-consistent DD-PBE0 scheme for CsPbI3.
The values for the PBE starting point and the converged DD-PBE0
result are highlighted. The present results are obtained with PP1. PP2
pseudopotentials show an analogous behavior.

incorporate small fractions of Fock exchange, the implicit
treatment of core-electrons leads to smaller deviations and
thus the use of the PP1 set entails smaller errors. This should
be borne in mind when considering DD-PBE0 and K-PBE0
functionals with PP1 pseudopotentials in Secs. IV A and IV B.

IV. BAND GAPS

A. Dielectric-dependent hybrid functionals

We first focus on the construction of dielectric-dependent
hybrid functionals. The convergence of this scheme applied
to PBE0(α) functionals is shown in Fig. 4 for the case of
CsPbI3. Generally, convergence for the dielectric constant ε∞
[cf. Fig. 4(a)] and the band gap [cf. Fig. 4(b)] is reached within
three to four iterations. The self-consistent update procedure
is initialized through the use of the PBE functional, which
corresponds to PBE0(α = 0). We remark that the DD-PBE0
functional resulting from this procedure is independent of the
starting point [27].

The band gaps obtained with the DD-PBE0 functional for
the present set of perovskites are shown in Table IV and

TABLE IV. Band gaps (in eV) calculated through DD-PBE0 and
DD-CAM functionals. The determined hybrid functional parameter
(α) and (α�, μ) are given in parentheses. The considered set of
pseudopotentials is indicated. Band gaps evaluated through QSGW̃
are given as reference. The mean absolute difference (MAD) is given
with respect to these values.

DD-PBE0 DD-CAM QSGW̃

PP1 PP2 PP2 PP2

CsPbI3 1.68 (0.16) 1.83 (0.17) 1.99 (0.18, 0.51) 2.27
CsPbBr3 2.48 (0.23) 2.65 (0.23) 2.84 (0.24, 0.53) 3.01
CsPbCl3 3.24 (0.27) 3.32 (0.27) 3.40 (0.28, 0.56) 3.41
CsSnI3 0.60 (0.10) 0.65 (0.10) 0.78 (0.12, 0.48) 1.10
CsSnBr3 0.82 (0.13) 0.88 (0.13) 0.99 (0.15, 0.53) 1.32
CsSnCl3 1.63 (0.21) 1.64 (0.21) 1.75 (0.22, 0.58) 1.79
CsGeI3 1.09 (0.12) 1.17 (0.12) 1.40 (0.10, 0.55) 1.67
CsGeBr3 1.59 (0.17) 1.66 (0.17) 1.89 (0.15, 0.58) 2.13
CsGeCl3 2.44 (0.22) 2.48 (0.22) 2.51 (0.21, 0.60) 2.67
MAD 0.42 0.35 0.20

FIG. 5. Inverse dielectric function ε−1
G (q → 0, ω = 0) of CsPbI3

as calculated using linear response theory (circles) and fitted ac-
cording to the model function (solid line). The fitted values for the
functional parameters α� and μ and for the root-mean-square error
(RMSE) are given.

compared to the QSGW̃ reference values. The corresponding
mixing parameters α are given in parentheses. On average,
we find a band-gap underestimation of ∼0.4 and ∼0.3 eV for
PP1 and PP2, respectively. Such an accuracy is comparable to
DD-PBE0 results reported in the literature for extended sets
of semiconductors and insulators [27,32]. This provides confi-
dence that dielectric-dependent hybrid functionals can achieve
the same level of accuracy for a larger set of perovskite
materials. The determined mixing parameters are almost iden-
tical for both sets of pseudopotentials. This indicates that
the explicit treatment of semicore electrons only marginally
affects the iterative construction scheme, even though the
ensuing band gaps differ by ∼0.1 eV.

Next, we apply the dielectric-dependent approach also to
range-separated hybrid functionals. We consider the CAM-
type functional, which includes a fraction of Fock exchange
αs in the short range and α� in the long range, mediated by
an inverse screening length μ. The model function given in
Eq. (1) enables an accurate description of the inverse dielectric
function obtained from linear response theory, as can be seen
in Fig. 5 for the case of CsPbI3.

The hybrid functional parameters of the constructed DD-
CAM functionals together with the obtained band-gap esti-
mates are given in Table IV. The observed long-range fraction
of Fock exchange α� is in close agreement with the global
fraction α found for the DD-PBE0 functionals. This indicates
that the long-range exchange interaction is screened with
almost identical high-frequency dielectric constants ε∞ in the
two approaches. Consequently, differences in the observed
electronic structure originate from the different short-range
description. The calculated band gaps indicate a mean abso-
lute difference (MAD) of 0.20 eV with respect to the QSGW̃
reference, which corresponds to an improved description rel-
ative to DD-PBE0. Hence, in the dielectric-dependent con-
struction scheme, the range-separated CAM functional yields
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FIG. 6. Band edges and defect energies displayed versus the
mixing parameter α for the iodine vacancy VI (green circle) and
various local potential probes (red squares) in CsPbI3. X∗ refers to
the potential probe with the smallest degree of hybridization with the
band edges. The indicated band gaps are obtained with the functional
PBE0(α).

more accurate band gaps than the global PBE0 functional, in
accord with the results in Ref. [32].

B. Hybrid functionals satisfying Koopmans’ condition

We first apply Koopmans’ condition to determine the free
parameter α within the PBE0(α) functional. We consider
various native defects, such as vacancies, interstitials, and
antisites, but decide to focus only on halide vacancies since
their single-particle energy levels are found to lie close to
mid-gap. Indeed, the present construction scheme works most
effectively when the hybridization of the defect states with the
delocalized band states is minimized [39]. We remark that in
our scheme the defect levels are obtained without structural
relaxation [36,39], thereby explaining their different location
in the band gap with respect to previous studies of defects in
such perovskite materials [69–71]. The defect calculations in
this section are carried out with the pseudopotential set PP1
due to the computational cost entailed by the consideration of
supercells.

To support the choice of the halide-vacancy defect, we
use the concept of adjustable hydrogenic-like potential probes
[39]. We use potentials resulting from a Gaussian distribution
of positive charge with width parameters σ ranging from
0.625 to 1.25 bohr. This allows us to continuously vary the
defect level of the localized state across the entire band gap of
the host material, as shown in Fig. 6. We observe that the mix-
ing parameter satisfying Koopmans’ condition is 0.29 ± 0.01
irrespective of the considered defect. The uncertainty in the
mixing parameter results from limitations of the construction
scheme [36,39], but yields in this case negligible band-gap
deviations of ±0.02 eV. We identify the optimal potential
probe X∗ by minimizing the degree of hybridization with

TABLE V. Band gaps (in eV) calculated through K-PBE0 func-
tionals. The corresponding mixing parameters are given in parenthe-
ses. The considered set of pseudopotentials is indicated. Band gaps
evaluated through QSGW̃ are given as reference. The mean absolute
difference (MAD) is given with respect to these values.

K-PBE0 QSGW̃

PP1 PP2 PP2

CsPbI3 2.06 (0.28) 2.28 2.27
CsPbBr3 2.99 (0.35) 3.24 3.01
CsPbCl3 3.87 (0.41) 4.00 3.41
CsSnI3 1.02 (0.23) 1.12 1.10
CsSnBr3 1.34 (0.26) 1.42 1.32
CsSnCl3 2.31 (0.35) 2.29 1.79
CsGeI3 1.46 (0.21) 1.55 1.67
CsGeBr3 2.03 (0.26) 2.12 2.13
CsGeCl3 2.91 (0.32) 2.93 2.67
MAD 0.21 0.20

the band edges, as described in Ref. [39]. The corresponding
band-gap estimate is very close to that obtained with the halide
vacancy (cf. Fig. 6). On the basis of this agreement, we focus
in the following only on the halide vacancy to construct hybrid
functionals satisfying Koopmans’ condition.

In Table V, the band gaps resulting from the constructed
K-PBE0 functionals are reported and compared with QSGW̃
references. We find a MAD of 0.21 eV between the K-PBE0
band gaps and the GW references. We remark that the chlorine
compounds show larger errors but this effect cannot trivially
be related to the electronegativity or to the size of the involved
ions. While the origin of these deviations is unclear at the
moment, the MAD on the full set of considered compounds is
consistent with values in the literature [36]. This consistency
supports that this level of accuracy can be expected when
considering a larger set of perovskite materials.

It is also of interest to compare the present results with
those obtained with DD-PBE0 functionals (cf. Table IV),
which share the same functional form of PBE0(α). The mix-
ing parameters of the DD-PBE0 functionals are systematically
lower than those of K-PBE0, and so are the corresponding
estimates for the band gap. With respect to the GW ref-
erences, the performance of K-PBE0 (MAD = 0.21 eV) is
significantly better than that of DD-PBE0 (MAD = 0.42 eV).
Hence, for the global functional PBE0(α), the fraction of Fock
exchange solely determined through ε∞ generally leads to
underestimated band gaps, while the enforcement of Koop-
mans’ condition yields better results on average. These differ-
ences suggest that the physical properties considered in the
two construction schemes are not equivalent and that they
could potentially be exploited in a complementary fashion.
However, the generality of this observation remains to be
demonstrated for a larger variety of materials.

Part of the differences between the band gaps obtained
with K-PBE0 and QSGW̃ might result from the use of dif-
ferent pseudopotential sets in the two calculations. To eval-
uate this effect, we determine the band gaps with the PP2
set using the same mixing parameters as obtained from the
PP1 defect calculations. We hereby rely on the fact that the
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FIG. 7. Isocontour plots for K-CAM band gaps of CsPbI3 as a
function of the short-range fraction of Fock exchange αs and the
inverse screening length μ. The parameter α� is fixed to 1/ε∞.
The displayed band gaps are obtained with (a) PP1 and (b) PP2
pseudopotentials. The red lines indicate the fulfillment of Koopmans
condition, and the regions shaded in red deviations below 0.1 eV. The
point in parameter space corresponding to the K-PBE0 functional is
highlighted with a yellow square.

mixing parameters remain almost unchanged upon varying
the pseudopotential set, as seen in Table IV for DD-PBE0.
Table V shows that this generally yields an increase of the
resulting band gaps as a consequence of the trend in Fig. 3.
However, the overall accuracy (MAD = 0.20 eV) remains
similar to that achieved with PP1 (MAD = 0.21 eV) and thus
the considerations made above remain unaffected.

Next, it is our interest to study the accuracy of CAM
hybrid functionals when enforcing Koopmans’ condition. As
discussed in Sec. III B, such calculations require the explicit
treatment of semicore electrons, i.e., the use of the demanding
PP2 pseudopotentials. To circumvent this problem, we deter-
mine the free parameters of the CAM functional by perform-
ing defect supercell calculations with PP1 pseudopotentials.
We then obtain band-gap estimates from bulk calculations of
the primitive unit cell using the constructed CAM functional
with either PP1 or PP2 pseudopotentials.

We illustrate this procedure for the iodine vacancy VI in
CsPbI3 in Fig. 7. In the investigated CAM functionals, α�

is fixed to 1/ε∞, while αs and μ are varied systematically.
We only consider αs < 0.5 due to the decreasing reliability
of the PP1 pseudopotentials with increasing αs (cf. Fig. 3).
The parameters fulfilling Koopmans’ condition are identified
by the red curve within the two-dimensional (αs, μ) space.
In Ref. [36], it was found that such lines remain close to
band-gap isolines, thereby providing a robust determination of
the band gap irrespective of the location on the curve fulfilling
Koopmans’ condition (Koopmans’ curve). This behavior is
not seen for PP1 pseudopotentials [Fig. 7(a)], but is recovered
when the PP2 set is used [Fig. 7(b)]. In the latter case, the
band gap always remains close to ∼2.3 eV, in agreement with
the band gap achieved with the global functional K-PBE0.
These results suggest that the deviation of the Koopmans’
curve from a band-gap isoline for PP1 pseudopotentials is
a consequence of the discrepancies pointed out in Fig. 3.
Nevertheless, the hybrid-functional parameters determined
with PP1 pseudopotentials appear to have a more extended
range of validity than the band-gap values, in a similar way as
seen above for DD-PBE0 functionals (cf. Table IV). Overall,

to close this section on the use of Koopmans’ condition
for determining the parameters, we conclude that the K-
CAM functional does not bring any improvement over the
K-PBE0 functional. This is in agreement with the findings of
Ref. [36].

V. CONCLUSIONS

In this work, we applied two nonempirical schemes for
the construction of hybrid functionals to a set of inorganic
metal-halide perovskites. We set out to determine the accuracy
by which such nonempirical hybrid functionals are capable
of predicting band gaps. For this purpose, we also performed
state-of-the-art GW calculations, which we used as reference.
The free parameters of the hybrid functionals in the first
scheme were fixed through the dielectric response, while the
enforcement of Koopmans’ condition on defect states was the
criterion at the basis of the second scheme. Moreover, we in-
vestigated two classes of functionals: global functionals with
a single undetermined parameter and range-separated CAM-
type functionals involving three parameters. In all cases, the
parameters to be determined refer to the way Fock exchange
is incorporated in the functional.

The dielectric-dependent approach based on global func-
tionals yields a mean average deviation of 0.35 eV with re-
spect to the GW references. This deviation is in line with pre-
vious results in the literature on other materials [27,32]. The
consideration of range-separated functionals reduces the mean
average deviation to 0.20 eV, confirming thereby that the use
of this type of functional leads to a higher accuracy [30,32].
Global hybrid functionals fulfilling Koopmans’ condition also
yield band gaps in good agreement with our GW references,
as indicated by the mean average deviation of 0.20 eV. Con-
sideration of CAM-type functionals supports the robustness
of the predicted band gaps [36], and hence does not lead to
any further improvement in the accuracy. Overall, the two
applied schemes yield band gaps with an accuracy of ∼0.2 eV.
For this, the dielectric-dependent scheme requires the use of
range-separated functionals, but plain global functionals are
sufficient within the scheme based on Koopmans’ condition.
More generally, the differing features of the two schemes
hint at the fact that reproducing the dielectric response and
imposing Koopmans’ condition are nonequivalent constraints.
This might deserve further investigation to benefit from the
individual advantages of the two schemes in a combined
fashion.

On the practical side, the dielectric-dependent scheme only
involves bulk calculations for the primitive unit cell, whereas
the scheme based on Koopmans’ condition requires the con-
sideration of localized defect states and thus the treatment
of supercells of suitable size. The latter condition can imply
demanding computational resources and restrict the overall
flexibility of the scheme, as seen in the present work as
far as the class of pseudopotentials that could be treated.
Furthermore, the use of Koopmans’ condition necessitates the
identification of defect states lying in the middle of the band
gap. This is a material-dependent issue which complicates
the incorporation of Koopmans’ condition in automatized
procedures.
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In view of applying such nonemperical schemes to a larger
class of perovskite materials, we conclude that the dielectric-
dependent scheme with range-separated functionals is the
most suitable, both for the accuracy achieved and for the
computational cost involved. Hence, it stands out as a viable
scheme to achieve accurate band gaps in the high-throughput
screening of perovskite materials.
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