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Angle-resolved photoemission spectroscopy (ARPES) is probably the most important experimental technique
for the investigation of the electronic structure of solids. With respect to the interpretation of measured complex
photoemission spectra, extensive theoretical efforts are often involved, as one needs a calculation of the band
structure, a mapping of the band structure to the observed complex photoemission spectrum, and the inclusion of
many-body effects. Typical methods that include the mentioned necessary steps for the interpretation are usually
theoretically costly (such as time-dependent density functional theory). In contrast to purely numerical methods,
analytical physical theories grant an easier approach in the implementation and, in general, allow for a more
direct insight into the involved physical processes. Here, we show that combining a Keldysh Green’s function
formulation of the photoelectric current, together with a tight-binding parametrization of band structures, gives
a powerful tool set for the simulation of ARPES spectra. Our approach is fast, capable of including many-body
effects, and easy to be implemented and, therefore, from the viewpoint of an experimentalist, a valuable tool for
the interpretation of photoemission spectra.
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I. INTRODUCTION

Nowadays, angle-resolved photoemission spectroscopy
(ARPES) is by far the most important experimental technique
to map the electronic structure of crystalline materials. The
method played a key role in the determination of band struc-
tures and Fermi surfaces [1,2], in molecular orbital mapping
[3], in the discovery and study of high-temperature supercon-
ductors [4,5] or topological insulators [6]. In order to be able
to extract physical parameters from an ARPES spectrum, or to
track changes in these by external parameter variations, a the-
oretical model of the system under investigation is needed. To-
day, sophisticated but highly numerical, theoretical methods
based on time-dependent density functional theory (TDDFT)
[7], density functional theory (DFT) [8], the Korringa-Kohn-
Rostoker method (KKR) [9,10], or a nonequilibrium Keldysh
formalism [11–14] are used for the interpretation of experi-
mental photoemission data. But for a general understanding
of a photoemission spectrum, it is often more useful to have
an analytical model, capable of incorporating as many features
as possible, but also being simple enough to be fast applicable
and comprehensible. The focus of this paper is to provide a
method for experimentalists which allows fast simulations for
the interpretation and analysis of ARPES spectra without the
need to be an expert on electronic structure theory.

For a complete theoretical modeling of an ARPES ex-
periment (see Fig. 1), the band structure as well as the
photoemission process itself, i.e., the creation of photohole-
photoelectron pairs, has to be included in the calculations.
Aside from the classic works on photoemission theory
[15–21], based on standard perturbation theory, the most ver-
satile approach capable of incorporating these requirements is
the Keldysh formalism or real-time Green’s function approach

[22–24]. A straightforward formulation of one-photon photoe-
mission within the Keldysh formalism has already been given
by Caroli et al. [25]. Here, we extend their method by applying
reasonable models for the treatment of the final and initial
states and combine it with the combined interpolation scheme
of Smith et al. [26,27], which allows to calculate the band
structure of transition d-band metals. Our work combines
known concepts and methods from photoemission theory and
electronic structure theory in form of tight-binding models
and compresses these to simplified but powerful formulas for
the simulation of ARPES spectra. Although such an approach
has been used extensively in the past [12,28,29], we focus on
providing ready-to-use formulas for experimentalists.

These formulas, which by neglecting damping of the
photoelectrons inside the solid, reduce to a fully analytical
three-step model formula. Taking damping into account, bulk
photoemission can be calculated with a single integral one-
step model formula. In the context of our theory we discuss
different spectral broadening mechanisms, a point which did
not draw much attention in the past, review the lowest-order
Feynman diagrams, and summarize the corresponding dia-
gram rules to construct our ARPES formulas.

The paper is organized as follows: In Sec. II, we review the
theory of Caroli et al. [25] and derive a generic formula for the
photoelectric current. In Sec. III, we derive a set of Feynman
rules, which can be used to construct photoemission formulas
straight from a pictorial representation of the photoemission
process [30–35], i.e., the corresponding Feynman diagram. In
Secs. IV and V, we discuss specific models for the treatment
of initial and final states and finally derive analytical results
for the photoelectric current in Sec. VI, where the only
undetermined quantities are the energy eigenvalues and the
self-energies of final and initial states. A short discussion
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FIG. 1. Principle of angle-resolved photoemission spectroscopy.

follows on how our theoretical findings are related to the
well-known one- and three-step-model descriptions of pho-
toemission [18]. We present a first and simple simulation
example in Sec. VII and discuss different spectral broadening
mechanisms, followed by Sec. VIII, which deals with the
inclusion of band structure information within the combined
interpolation scheme. In Sec. IX, we present a comparison of
theoretical simulations and experimental data for Ag(111) and
Au(111) and give a short simulation guidance in Sec. X. Fi-
nally, the limitations of our modeling procedure are discussed
in Sec. XI followed by a short summary and conclusion of our
study in Sec. XII.

II. BASIC FORMALISM AND REVIEW OF
ONE-PHOTON PHOTOEMISSION

Here, we briefly review the derivation of a general ex-
pression for the photoelectric current, up to second order in
the interaction with an external light field. We start with the
general Hamiltonian

H = H0 + HI , (1)

where HI denotes the light-matter interaction Hamiltonian

HI =
∫

d3r ψ̂†(r, t )

(
ieh̄

m
A(r, t )∇+ e2

2m
A2(r, t )

)
ψ̂ (r, t ).

(2)

The fermion field operators for electrons and holes can be
expanded into eigenfunctions of the Hamiltonian H0:

ψ̂ (r, t ) =
∑

n

ân,kφn,k (r)e−iεn,kt ,

(3)
ψ̂†(r, t ) =

∑
n

â†
n,kφ

∗
n,k (r)eiεn,kt ,

while H0φn,k = En,kφn,k . Further, we assume that the eigen-
functions can be factorized in the form

φn,k (r) = 1√
V

un,k‖ (ρ)eik‖·ρϕn(z) (4)

with a lattice-periodic function un,k‖ (ρ), while ρ = (x, y) and
z are the parallel and perpendicular lattice coordinates, re-
spectively. Within the Keldysh formalism, the photoelectric
current, in the plane parallel to the surface normal, can be
calculated from the lesser Green’s function G<:

j(r, t ) = eh̄

m
(∇r′ − ∇r )G<(rt, r′t )|r′=r=∞ (5)

[25]. The Keldysh Green’s function satisfies the Dyson equa-
tion on the Keldysh contour [23]

G(x1, x2) = G0(x1, x2)

+
∫

dx3

∫
dx4 G0(x1, x3)�(x3, x4)G(x4, x2),

(6)

with dxi = dridτi, while � denotes the associated self-
energy. The quantity G0 is the corresponding Green’s function
to H0, i.e., when all fields are turned off. If we turn on an
external light field of the form

A(t, r) = εA0(z)ÃL(t ) cos(�t/h̄), (7)

where ε is a polarization vector, � the photon energy, and
ÃL(t ) an envelope function, the associated self-energy is in-
stantaneous and given by �δ = δ(x1 − x2)A(t1, r1)∇. Here,
we neglect the in-plane spatial extent of the light source, i.e.,
apply the dipole approximation but keep a formal z depen-
dency, which will account later on for a finite penetration
depth of the light source. For a continuous-wave light source
(CW), we define ÃL(t ) = 1.

The diamagnetic part, proportional to A2, gives no contri-
bution to the photoelectric current [25] in second order. Iter-
ating Eq. (6) once, turning the contour integrals into integrals
on the real axis and taking the “<” component [36], we get

G<(x1, x2)

= G<

0 (x1, x2)

+
∫

dx3

∫
dx4 Gr

0(x1, x3)�δ (x3, x4)G<(x4, x2)

+
∫

dx3

∫
dx4 G<

0 (x1, x3)�δ (x3, x4)Ga(x4, x2)

+
∫

dx3

∫
dx4

∫
dx5

∫
dx6 Gr

0(x1, x3)�δ (x3, x4)

×G<(x4, x5)�δ (x5, x6)Ga(x6, x2). (8)

The superscripts r and a denote the retarded and advanced
Green’s function. The relevant part of Eq. (8) for photoemis-
sion comes from the fourfold integral, which is of second
order in A · ∇, and therefore proportional to the intensity of
the external field. Using the Bloch transformations

G(rt, r′t ′) = 1

2πV

∑
n,k‖

∫
dω Gn,k‖,ω(z, z′)

× un,k‖ (ρ)u∗
n,k‖ (ρ′)eik‖·(ρ−ρ′ )e−i/h̄ ω(t−t ′ ) (9)

and

jk‖,ω,ω′ (z, z′) =
∑

n

∫
dt

∫
d2ρ

∫
dt ′

∫
d2ρ ′ j(rt, r′t )

× u∗
n,k‖ (ρ)un,k‖ (ρ′)e−ik‖·(ρ−ρ′ )ei/h̄(ωt−ω′t ), (10)
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FIG. 2. Feynman diagrams for one-photon photoemission:
(a) CW excitation, (b) laser pulse excitation.

and taking the z component of Eq. (5) we get the photoelectric
current (perpendicular to the surface) for a CW source as a
function of parallel momentum k‖ and binding energy ω (note
that ω is defined as an energy and has units of eV):

j(k‖, ω) = eh̄

m

(
∂

∂z′ − ∂

∂z

) ∑
n,n′

|Mnn′ |2

×
∫

dz1

∫
dz2 A0(z1)A0(z2)

×Gr
n,k‖,ω(z, z1)G<

n′,k‖,ω−�(z1, z2)Ga
n,k‖,ω(z2, z′).

(11)

Here, we imply the limit z′ = z = ∞ and have taken the dc
part of the photoelectric current, i.e., ω = ω′ [25]. Actually,
the current would also contain a second term in Eq. (11), in
which ω − � is replaced by ω + � for the lesser Green’s
function. However, this term is identical to zero, which fol-
lows from the general properties of the final and initial states
[25]. The indices n and n′ are labeling different bands in the
band structure. The dipole matrix elements are given by

Mnn′ = eh̄

m

∫
d2ρ

S1 BZ
u∗

n,k‖ (ρ)ε · ∇un′,k‖ (ρ) (12)

(S1 BZ = area of the first Brillouin zone). Similar, for a pulsed
laser source we get

j(k‖, ω) = eh̄

m

(
∂

∂z′ − ∂

∂z

) ∑
n,n′

|Mnn′ |2
∫

dz1

∫
dz2

×
∫

dω′ A0(z1)A0(z2)A2
L[(ω − ω′ − �)/h̄]

×Gr
n,k‖,ω(z, z1)G<

n′,k‖,ω′ (z1, z2)Ga
n,k‖,ω(z2, z′),

(13)

where AL(ω) is the Fourier transform of ÃL(t ).

III. FEYNMAN RULES FOR ARPES

What is left is now to specify the Green’s functions Gr/a

and G< which will be described in the following sections.
But, for the time being, we try to get an intuitive picture
of the photoemission process described by Eq. (11) or (13).
Therefore, we try to connect the mathematical expressions
with a Feynman diagram representation of photoemission as
shown in Fig. 2. In the photoemission process, the vector

FIG. 3. Energy-level alignment for one-photon photoemission.
The final state is represented by a matched free-electron state,
damped inside the crystal but free in vacuum.

potential creates a photoelectron with energy ω by lifting
electrons from an initial state into a final state propagating
toward z → ∞ (see Fig. 3). So, we identify the final state
with Gr/a

ω . But, this process leaves a hole behind in the crystal
which has to be separated in energy from the final state by the
amount �, i.e., the photon energy. Then, this hole has to be
represented by the lesser function G<

ω−�.
From this correspondence we can try to deduce some

Feynman diagram rules, allowing us to directly translate
the pictorial representation of Fig. 2 into a mathematical
expression. The Feynman diagram rules for ARPES can be
summarized as follows:

(1) To every fermion line, assign an energy and two spatial
coordinates (perpendicular component), e.g., z and z′.

(2) k‖ is conserved for all fermion lines.
(3) A horizontal fermion line represents a photohole

(excitation with ω < μ) G< [see Fig. 4(g)].
(4) A sloping line represents a final photoelectron state

(ω > μ) Gr,a [see Figs. 4(e) and 4(f).
(5) Apply the following vertex rules:

(i) monochromatic photon source: apply the rules
[Figs. 4(a) and 4(b)];

(ii) pulsed photon source: apply the rules [Figs. 4(c)
and 4(d)].
(6) Integrate over all internal variables

∏
i j

∫
dωi

∫
dz j

(all variables excluding the final-state ones).
(7) Apply the current operator eh̄/m(∂z′ − ∂z ) and take the

limits z → z′ and ω → ω′ for the final-state variables at the
apex [Fig. 4(h)].

Although these rules have only been derived from the
lowest-order photoemission process (one-photon photoemis-
sion), also higher-order processes and photoemission formu-
las can be described and constructed from these rules.

IV. FINAL STATE

To get a more explicit expression for the photoelectric
current, we have to apply a definite model for the final and
initial states. For the final state we adopt the standard model
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FIG. 4. Feynman rules for photoemission.

of an electron trapped in a semi-infinite step surface potential
well, representing the crystal. Outside the potential well,
the electron is assumed to be free. In general, this type of
final state is known as a time-reversed low-energy electron
diffraction (LEED) state, when the asymptotically free wave
function is matched to the real crystal potential [15,17,18].
As long as we are not interested in photoemission from states
whose wave functions are considerably extended outside the
crystal, e.g., image potential states, the main contribution of
the photocurrent comes from the integral region inside the
crystal, so that we only need the final-state Green’s function

Gr
k‖,ω(z, z′) = −2mi

h̄2

ei(kvz−ksz′ )

kv + ks
, z > 0, z′ < 0 (14)

Ga
k‖,ω(z, z′) = 2mi

h̄2

e−i(kvz−ksz′ )

kv + ks
, z > 0, z′ < 0 (15)

which one gets after matching the potential well solutions out-
side and inside the crystal [25]. The perpendicular momentum
inside the crystal can be split into real and imaginary parts,
i.e., ks = ksr + iksi so that

kv =
(

2m

h̄2 [ω − εk‖ − Evac]

)1/2

, (16)

ksr = Re

(
2m

h̄2 [ω − εk‖ − �r (ω)]

)1/2

, (17)

ksi = Im

(
2m

h̄2 [ω − εk‖ − �r (ω)]

)1/2

, (18)

with Evac = μ + �, where � denotes the work function and
εk‖ = h̄2k2

‖ /2m. The energy-dependent retarded self-energy
�r (ω) accounts for possible losses inside the solid. In addi-
tion, the final state has to fulfill the condition

Gr/a
k‖,ω(z, z′) ∝ θ (ω − εk‖ − Evac), (19)

reflecting the requirement of a positive transversal energy of
the final-state photoelectron. This property generates the exit
cone in the final ARPES spectrum.

V. INITIAL STATE

The initial state enters the photoelectric current (11) via
the lesser Green’s function which is connected to the retarded
Green’s function and the spectral function A(k‖, kz, ω) by

G<

k,ω = −2i Im Gr
k,ω f (ω − μ)

= iA(k, ω) f (ω − μ), (20)

where f is the Fermi distribution and μ the Fermi energy (k =
(k‖, kz )). In the noninteracting case, the spectral function is
given by

A(k, ω) = 2πδ(ω − εk + μ). (21)

As soon as interactions, such as electron-electron, electron-
phonon, or electron-impurity scattering, are taken into ac-
count, the sharp energy eigenvalues εk are turned into a
spectral distribution

An(k, ω) = −2 Im�r
k,ω(

ω − εn,k + μ − Re�r
k,ω

)2 + (
Im�r

k,ω

)2 , (22)

where we introduced in addition a band index n. In the fol-
lowing, we propose three simple approximations which will
allow us to derive analytical expressions for the photoelectric
current (11), including photoemission from bulk states, local-
ized states and 2d states.

A. Bulk states

For the case of valence band photoemission from metal
bulk bands we approximate the z-dependent part of the wave
function with [37]

ϕkz (z) ∼ sin(kzz + δ), (23)

where δ is usually an energy- and momentum-dependent func-
tion. Starting from the k-dependent lesser Green’s function
(20) and expanding in terms of the wave functions (23), we
can derive the function

G<

n,k,ω(z1, z2) = 2π i
∫

dkz sin(kzz1 + δ) sin(kzz2 + δ)

× An(k, ω) f (ω − μ). (24)
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B. Localized bulk states

The lesser function for the localized case is calculated by
assuming a completely localized initial-state wave function
with binding energy εn, and summing over an infinite layer
of lattice planes at a distance a j − a j−1:

G<

n,k,ω(z1, z2)

= 2π i
∑

j

δ(z1 − a j )δ(z2 − a j )δ(ω − εn) f (ω − μ)

= 2π i δ(z1 − z2)δ(ω − εn) f (ω − μ)

= i δ(z1 − z2)Aloc
n (ω) f (ω − μ). (25)

Note that the Green’s function (25) is independent of k.

C. 2d states

To describe surface states, interface states, or true 2d states
of materials like graphene we make the rough approximation
of a completely localized state at depth z0:

G<

n,k,ω(z1, z2)

= 2π i δ(z1 − z0)δ(z2 − z0) δ(ω − εn,k‖ ) f (ω − μ)

= i δ(z1 − z0)δ(z2 − z0) A2d
n (k‖, ω) f (ω − μ). (26)

VI. ANALYTICAL EXPRESSIONS FOR
THE PHOTOCURRENT

Now that we specified definite models for the final and
initial states, we can solve the integrals in Eq. (11). We
neglect the spatial dependency of the vector potential in the
sample plane but take a finite penetration depth of the light
field into account by assuming an exponential decay A(z) =
A0ez/2lp , where lp denotes the penetration depth of the vector
potential. If we then plug Eqs. (14) and (15) into Eq. (11),
symmetrize by using the fact that Eq. (11) is symmetric under
the interchange of z1 and z2, and change to kinetic energy
E = Ekin = ω − Evac, we get

jpes(k‖, E ) = −
∑

n

(
2iem

h̄

)
|Mn|2A2

0 θ (E − εk‖ )

×
∫ 0

−∞
dz1

∫ 0

−∞
dz2 G<

n,k‖,E−�(z1, z2)

× kv cos[ksr (z1 − z2)]

(kv + ksr )2 + k2
si

e(ksi+1/2lp)(z1+z2 ). (27)

We start with the photocurrent for bulk photoemission.
Insertion of the Green’s function (24) into (27) results into

jpes(k‖, E ) =
∑

n

(
2em

h̄

)
|Mn|2A2

0 f (E − � + �)

× θ (E − εk‖ )
∫

dkz
kv

(kv + ksr )2 + k2
si

× K (k‖, kz, E ) An(k‖, kz, E − �), (28)

where kL = ksi + 1/2lp. We have introduced the photoemis-
sion kernel function (and neglected δ)

K (k‖, kz, E ) = k2
z

k4
L + (

k2
sr − k2

z

)2 + 2k2
L

(
k2

sr + k2
z

) , (29)

which weights the contribution of the spectral function to the
total photocurrent in momentum and energy. The calculation
of the photocurrent is now reduced to a single integral. The
only functions which are still undetermined are the eigenvalue
spectrum of the initial state, i.e., εn,k, and the self-energies for
the initial and final states. If we neglect final-state damping,
i.e., kL, in the kernel K we can simplify Eq. (28) further. Then,
K is only large for k2

sr ≈ k2
z , so we can replace K by

K ≈ δ
(
k2

sr − k2
z

) = 1

2|ksr| [δ(kz − ksr ) + δ(kz + ksr )]. (30)

Since only the first part of Eq. (30) can lead to photoemis-
sion in the forward direction, Eq. (28) turns into

jbulk
pes (k‖, E ) =

∑
n

(em

h̄

)
|Mn|2A2

0
kv

|ksr|
θ (E − εk‖ )

(kv + ksr )2 + k2
si

× f (E − � + �) Abulk
n (k‖, kz, E − �)|kz=ksr

(31)

with

ksr = Re

(
2m

h̄2 [E + V0 − εk‖ − �r (ω)]

)1/2

. (32)

Note that we have replaced Evac with V0, often termed the
inner potential, which we leave as an adjustable parameter and
absorbed the factor (2em/h̄) into the definition of the dipole
matrix element.

For a pulsed laser source one obtains

jbulk
pes (k‖, E ) =

∑
n

|Mn|2A2
0

kv

|ksr|
θ (E − εk‖ )

(kv + ksr )2 + k2
si

×
∫

dE ′A2
L(E − E ′ − �) f (E ′ + �)

× Abulk
n (k‖, kz, E ′)

∣∣∣
kz=ksr

. (33)

The interpretation of Eqs. (31) and (33) is straightforward.
Due to energy and momentum conservation the photoelectric
current is given by the intersection of a free-electron parabola
and the spectral function of the initial state [see Fig. 5(b)].
While k‖ is completely preserved, the cut in kz depends on the
photon energy �.

Similar formulas can be calculated for the remaining two
cases. For two-dimensional initial states, we get

j2d
pes(k‖, E ) =

∑
n

|Mn|2A2
0

kv θ (E − εk‖ )

(kv + ksr )2 + k2
si

× f (E − � + �) A2d
n (k‖, E − �) e−2kL |z0|.

(34)

In contrast to the bulk case [Eq. (31)], the dispersion of the
initial state does not depend on the wave vector of the final
state ksr and, therefore, is independent of the photon energy

123801-5



M. FEIDT, S. MATHIAS, AND M. AESCHLIMANN PHYSICAL REVIEW MATERIALS 3, 123801 (2019)

FIG. 5. (a) The fcc Brillouin zone with high-symmetry points.
(b) Schematic cut through the constant energy surface of the initial
state (orange). The plane (yellow) corresponds to the free-electron
final state, while the relative position of the plane to the initial state
depends on the photon energy.

�. For localized initial states we get the current

jloc
pes(k‖, E ) =

∑
n

|Mn|2A2
0

1

kL

kv θ (E − εk‖ )

(kv + ksr )2 + k2
si

× f (E − � + �) Aloc
n (E − �), (35)

where the initial state does not have any dispersion at all.
The final approximation we will make use of for all simu-

lations which will follow is to treat the dipole matrix elements
Mn as constants. Such an approximation allows the photocur-
rent contribution to vary for individual band transitions but
does not introduce additional structure in the ARPES band
dispersions.

A. Recovery of the three-step model

We now compare our bulk photoemission formula to the
angle-resolved formula of Feibelman and Eastman [18]. They
have shown how the photocurrent derived by Caroli et al.
[25] can be converted to a Fermi’s golden rule type for-
mula of photoemission and demonstrated the equivalence of
these formulations for an independent electron solid. Further,
they have shown that within a small ksi approximation, i.e.,
zksi � 1, where z is the distance, the final-state electron is
traveling through the crystal, the photocurrent turns into a
three-step-model formula. Their formula can be summarized
as

j(k, E ) ∝
∑

n

|Mn|2A2
0 |T |2 1

ksi
δ(ksr − kz )θ (E − εk‖ )

×δ(E − � − Ek,n). (36)

Here, Tn is an expansion coefficient resulting from a linear
expansion of the final state into products of an in-plane
periodic Bloch function and a plane wave for the out-of-plane
component matched at the surface of the solid, so as we did.
Ek,n is the initial-state energy. Up to a minor difference, we
end up with the same result [Eqs. (28) and (31)]

j(k, E ) ∝
∑

n

|Mn|2A2
0

kv

(kv + ksr )2 + k2
si

1

ksr
θ (E − εk‖ )

×δ(ksr − kz ) Abulk
n (k‖, kz, E − �). (37)

That means our kernel approximation [Eq. (30)] splits the
photocurrent into a product of terms describing photoemission
as a three-step process. Photoexcitation is described by the
term |Mn|2Abulk

n , which would equal the last energy delta
function of Eq. (36) for a noninteracting solid. In contrast
to Feibelman and Eastman we made the approximation of a
completely vanishing damping of the final state in the kernel
function and get a factor 1/ksr while they get a factor 1/ksi

describing propagation to the surface. Finally, in our case
the transmission coefficient |T |2 is given by kv/[(kv + ksr )2 +
k2

si].

B. The need for a one-step-model description

The photocurrent formulas we presented exhibit four
sources of spectral broadening. The first two are final-state
scattering, included via �r , and a finite penetration depth lp

of the used light source, both leading to a finite ksi. Further,
we have the initial-state spectral width and a possible spectral
width for a pulsed laser source. The effect of these on the
final photoemission signal will be discussed in more detail
in the next section. Without neglecting final-state damping
in the kernel function, the photocurrent can not be separated
into terms carrying information about the solid and the surface
solely. In this case, the delta function (30) is not valid anymore
and one has to use the one-step formula. In particular, taking
final-state broadening into account, one has to use Eq. (28)
to describe the effect of the final-state losses on the spectral
width of the measured photoemission signal which sets al-
ready the limit for the use of the three-step model.

VII. A FIRST EXAMPLE

As a first simulation example, and to show what the theory
presented so far is capable of, we calculate photoemission
spectra for the case of bulk photoemission. Let us assume we
have a material with a face-centered-cubic (fcc) structure [see
Fig. 5(a)]. With a simple tight-binding model we can calculate
the energy of a single conduction band by

εk = ε0 + V
∑

n

eikRn , (38)

i.e., by a superposition of simple plane-wave states. The sum
in (38) runs over all 12 nearest neighbors given by the coor-
dinate set a/2(±1,±1, 0), a/2(±1, 0,±1), a/2(0,±1,±1),
where a is a lattice constant. So, we obtain

εk = ε0+4V

[
cos

(
kxa

2

)
cos

(
kya

2

)
+ cos

(
kxa

2

)
cos

(
kza

2

)

+ cos

(
kya

2

)
cos

(
kza

2

)]
. (39)

Now, we use the quasiparticle spectral function (22) and
Eq. (39) to obtain

A(k, ω) = 2�

(ω − εk + μ)2 + �2
, (40)

assume � = −Im�r
k,ω to be constant, and the real part of the

self-energy to be zero. If we then plug the spectral function
(40) into the formula for bulk photoemission (31), we can
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FIG. 6. (a) Momentum map at E − Ef = −0.5 eV, � = 21 eV,
(b) binding energy vs parallel momentum map with � = 21 eV,
(c) binding energy vs photon energy for k|| = 0.

simulate photoemission spectra as a function of
(i) kx, ky with E = const [see Fig. 6(a)];
(ii) E , k|| [see Fig. 6(b)];
(iii) E ,� while k|| = const [see Fig. 6(c)].
We used a photon energy of 21 eV corresponding to a He

discharge lamp, a standard UV low-bandwidth light source
used for ARPES.

A. Spectral broadening mechanisms

Using the same model (39) but rotated to the [111] crystal
direction, as described in Sec. VIII, we calculate difference
momentum maps by subtracting the spectrum one gets when
only taking initial-state broadening into account [Fig. 7(a)]
using Eq. (31) from a spectrum with an additional broad-
ening mechanism. All spectra [Figs. 7(a)–7(d)] have been
normalized in the intensity range [0,1] before the subtraction.
For the initial state we use a constant purely imaginary self-
energy � = 150 meV. We start with the effect of final-state
broadening [Fig. 7(b)] and now use Eq. (28). We set the
spectral width of the final state to a constant value of 2 eV
which corresponds to a lower realistic limit for noble-metal
excited states in the energy region of ∼20 eV [38].

Second, we are using Eq. (33) with a laser envelope func-
tion AL(E − �) = sech[(E − �)/�ω]. We set the photon
energy � to 22 eV and the spectral width �ω to 150 meV
which are realistic values for a high harmonic generation light
source used for ARPES [39] [Fig. 7(c)].

FIG. 7. Momentum maps with spectral broadening including
only the initial-state self-energy (a), plus final-state broadening (b),
plus laser source (c), plus finite penetration depth (d), (e)–(g) differ-
ence plots where we subtracted (a) from (b), (c), (d), respectively

Finally, we combine Eq. (28) with a finite penetration depth
lp. Using optical data from [40] we can calculate the extinction
coefficient for, e.g., Ag at 22 eV, κ = Im

√
ε1 + iε2 = 0.752,

so that lp = h̄c0/�2κ = 6.247 nm [Fig. 7(d)].
The laser broadening [Fig. 7(c)] leads just to a small

uniform blurring of the measured band structure, as one would
expect because AL does not depend on momentum, and a
shift of the transition resonance toward higher energies. In
the difference plot [Fig. 7(f)], this leads to an increase of
intensity on the inner side of the cone and a decrease on the
outer side of the cone as the the measured band dispersion
depends on the photon energy. The effect of a finite final-state
lifetime is much more prominent [Figs. 7(b) and 7(e)]. This
effect leads to an additional structure in the momentum distri-
bution because the resonance condition for a band transition
is now altered by the photoemission kernel [Eq. (29)] and a
momentum dependent ksi. In case of a finite penetration depth
[Fig. 7(g)], which enters the kernel function as a constant, we
find the overall linewidth again just smeared out.

VIII. INCLUDING THE BAND STRUCTURE

The energy eigenvalues εk in (22) depend on many param-
eters such as the crystal structure, the orbital character of the
involved electrons, and of course on the interactions between
the electrons. To simplify matters and approximating the
band structure of a material, so-called combined-interpolation
schemes have been developed, pioneered by Fletcher, Hodges,
Ehrenreich, Lang, and Mueller [41–43]. The principle of band
structure interpolation schemes is the following: first one uses
a first-principles method to calculate the band structure of
a material. Then, a suitable parametrization is used in the
formulation of a tight-binding Hamiltonian, while using an
appropriate basis set of eigenfunctions. The parameters of the
model are then adjusted to match the band structure of the full
calculation.

We adapt the extended band structure interpolation scheme
of Smith [27] for transition d-band metals. Note that this
model is a pure bulk band model which assumes a perfect
three-dimensional (3D) crystal. Therefore, the model does
not involve surface states. The scheme combines the d-band
parametrization of Fletcher [41] and extends the sp-band
parametrization of Mueller [43], as well as the Hodges-
Ehrenreich-Lang scheme [42]. Details about the implemen-
tation can be found in the listed references. The used model
Hamiltonian is given by

H (kx, ky, kz ) =

⎛
⎜⎜⎝

Hcc Hcd 0 0
Hdc Hdd + ξM 0 ξN
0 0 Hcc Hcd

0 −ξN∗ Hdc Hdd + ξM∗

⎞
⎟⎟⎠.

(41)

Hcc, Hdd , and Hcd (Hdc) represent a 15 × 15 orthogonalized
plane-wave block for the sp bands, a 5 × 5 d-band block,
and a 15 × 5 block describing the hybridization between the
sp and d bands. In contrast to [27], we exclude the single k
vector (2π/a)(−2,−2, 0) which would lead to asymmetric
photoemission spectra. Spin-orbit coupling is included via
the matrices M and N and the spin-orbit coupling parameter
ξ . The energy eigenvalues are then obtained by solving the
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FIG. 8. Calculated spectral function of Ag along high-symmetry
directions, � = 0.4 eV, using with the combined interpolation
scheme with the parameter set of [44].

characteristic equation

|H (kx, ky, kz )i j − εi,k δi j | = 0, (42)

leading to 40 energy bands εn,k with n = 1, . . . , 40. If we
do not include electron interactions which go beyond the
first-principles calculation, we can again simply turn the
eigenvalues into a spectral function

An(k, E ) = 2�

(E − εn,k + μ)2 + �2
, (43)

by making again the simplest possible approximation for
�r

k,E , i.e., Re�r
k,E = 0, while the imaginary part of the self-

energy is just a constant, Im�r
k,E = −�, turning the sharp

bands into quasiparticles (see Fig. 8).

IX. SIMULATION OF ARPES SPECTRA AND
COMPARISON WITH EXPERIMENTAL DATA

To be able to apply the combined interpolation scheme
from Sec. VIII to the [111] direction, we have to rotate the
momentum vectors by⎛

⎜⎝
k′

x

k′
y

k′
z

⎞
⎟⎠ =

⎛
⎜⎝

cos α − sin α 0

sin α cos α 0

0 0 1

⎞
⎟⎠

×

⎛
⎜⎝

cos β 0 sin β

0 1 0

− sin β 0 cos β

⎞
⎟⎠

⎛
⎜⎝

kx

ky

kz

⎞
⎟⎠, (44)

where α = π/4 and β = arccos(1/
√

3), so that the z compo-
nent of the momentum vector points into the [111] direction
because the energy eigenvalue calculation is formulated in a
coordinate system with kz ‖ [001] (see Fig. 5). Using the new
momentum vectors

k′
x = kx cos α cos β − ky sin α + kz cos α sin β, (45)

k′
y = ky cos α + kz sin α sin β + kx sin α cos β, (46)

k′
z = kz cos β − kx sin β, (47)

we calculate ARPES spectra and momentum maps for a pho-
ton energy of 21.2 eV for Ag(111). In Fig. 9 we present cuts
along W − � − W and L − � − X together with momentum

FIG. 9. Ag(111) ARPES data for � = 21.2 eV. (a), (b) Exper-
imental data along two different k|| directions. (c), (d) Theoretical
spectra.

maps (Fig. 10) for a binding energy of −0.5 eV. In terms
of energetic positions and dispersion, the agreement between
theory and experiment is remarkable even though we made a
simple nearly free-electron state approximation for the final
state, i.e. neglected resonant band transitions completely and
left the dipole matrix elements constant. Figure 10(a) seems
to exhibit a similar momentum-dependent band modulation
as we have seen in Fig. 7(b), indicating a possible final-state
effect.

As a second example, we compare our simulations of
Au(111) with experimental data of Courths et al. [45] (see
Fig. 11). Except for the lowest-lying band, which is not vis-
ible in the experimental data, the photon energy dependence,
reflecting the kz dispersion, is predicted very well. With such
an analysis, not only the spectral width and dispersion can
be extracted from the experiment, but also model parameters
such as the spin-orbit coupling parameter or hybridization
strengths (entering the combined interpolation scheme).

FIG. 10. Experimental (a) and theoretical (b) momentum maps
of Ag(111), � = 21.2 eV. Sp-band cut at a binding energy E −
EF = −0.5 eV.
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FIG. 11. Photon energy dependence for photoemission from a
Au(111) crystal. Left: experimental data for normal photoemission
intensity peaks, extracted from [45]. Right: simulation based on the
combined-interpolation scheme. ARPES cuts from the � point, i.e.,
k|| = 0, are shown as a function of photon energy.

X. SIMULATION GUIDANCE

By now, the paper dealt with a detailed derivation of
photoemission formulas, but as we are aiming at giving
experimentalists an applicable tool to simulate and analyze
their experimental data, we now give a short summary and
recipe on how to use the presented theory, for the simple
example of bulk photoemission without complex self-energy
corrections:

(1) Start with formula (31),

jbulk
pes (k‖, E ) =

∑
n

|Mn|2A2
0

kv

|ksr|
θ (E − εk‖ )

(kv + ksr )2 + k2
si

× f (E − � + �) Abulk
n (k‖, kz, E − �)|kz=ksr

and assume the dipole matrix element Mn to be constant for
band n.

(2) In formulas (16), (17), and (18) assume the self-energy
to be purely imaginary, i.e.,

�r (ω) = i Im�r (ω) = −i�

with a final-state spectral width parameter �.
(3) Use the spectral function approximation (43) for the

initial state

An(k, E ) = 2�

(E − εn,k + μ)2 + �2
,

where � is the spectral width of the initial state.
(4) For band n, model the dispersion εn,k either with an

analytical function or use a suitable numerical method such as
a tight-binding-method, the combined-interpolation scheme
or density-functional theory.

XI. LIMITATIONS OF THE MODEL
AND FUTURE PROSPECTS

Although the use of nearly free-electron-like final states
has been proven to be very useful in the interpretation of
photoemission data, it is well known that this picture has its
limitations. The effect of resonant band-to-band transitions
can lead to the appearance of discontinuous intensity varia-
tions and irregularities in the band dispersions in a photoe-
mission spectrum [1]. There are also systems where the final
state influences or even dominates the observed dispersive
behavior [46]. The neglect of dipole matrix elements dis-
misses the polarization dependency of the used photon source
and symmetry effects of possible initial- and final-state tran-
sitions [47,48]. However, a possible disagreement between
our proposed method and experimental data can also give
valuable information for individual bands when final-state and
matrix element effects have to be taken into account. Despite
the existence of known shortcomings in the approximations
made so far, the method developed here is meant to serve
as a starting point for a quantitative interpretation of ARPES
spectra with a focus on applicability and speed. Further steps
to extend our method and to a better theory could include
energy- and momentum-dependent dipole matrix elements
which could be already calculated via the combined interpola-
tion scheme [27]. Polarization effects of the used light source
could be incorporated with the approximation of Shevchik
and Liebowitz [21] by using an atomiclike dipole matrix
element approximation, although this would further increase
the number of free parameters in the theory.

XII. CONCLUSION

We have presented a versatile basic theoretical formulation
of one-photon photoemission for the simulation of ARPES
data. The method combines band structure calculations based
on the combined interpolation scheme with a perturbation the-
ory formulation of the photoemission process on the Keldysh
contour. Our method includes the full momentum, energy,
and photon-energy dependency needed to describe an ARPES
experiment and predicts measured band dispersions, demon-
strated for the noble metals Ag(111) and Au(111), correctly.
Analytical formulas have been given, which could be directly
used for data fitting and parameter estimation. Our model
includes spectral broadening mechanisms related to initial and
final states, a finite penetration depth and a finite spectral
width of the used light source. The derived set of Feynman
rules for CW or laser excitation can be used to construct
the final photoemission formulas directly from a Feynman
diagram representation of the angle-resolved photoemission
process. This will be in particular useful for the derivation
of photoemission formulas for higher-order (nonlinear) spec-
troscopy methods.
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