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Microscopic toy model for magnetoelectric effect in polar Fe2Mo3O8
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The kamiokite Fe2Mo3O8 is regarded as a promising material exhibiting a giant magnetoelectric (ME) effect
at the relatively high temperature T . Here, we explore this phenomenon on the basis of first-principles electronic
structure calculations. For this purpose, we construct a realistic model describing the behavior of magnetic Fe
3d electrons and further map it onto the isotropic spin model. Our analysis suggests two possible scenarios for
Fe2Mo3O8. The first one is based on the homogeneous charge distribution of the Fe2+ ions among tetrahedral
(t) and octahedral (o) sites, which tends to lower the crystallographic P63mc symmetry through the formation of
an orbitally ordered state. Nevertheless, the effect of the orbital ordering on interatomic exchange interactions
does not seem to be strong, so that the magnetic properties can be described reasonably well by averaged
interactions obeying the P63mc symmetry. The second scenario, which is supported by obtained parameters
of on-site Coulomb repulsion and respects the P63mc symmetry, implies the charge disproportionation involving
the somewhat exotic 1+ ionization state of the t-Fe sites (and 3+ state of the o-Fe sites). Somewhat surprisingly,
these scenarios are practically indistinguishable from the viewpoint of exchange interactions, which are nearly
identical in these two cases. However, the spin-dependent properties of the electric polarization are expected
to be different due to the strong difference in the polarity of the Fe2+-Fe2+ and Fe1+-Fe3+ bonds. Our analysis
uncovers the basic aspects of the ME effect in Fe2Mo3O8. Nevertheless, the quantitative description should
involve other ingredients, apparently related to the lattice and orbitals degrees of freedom.
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I. INTRODUCTION

Materials with the general formula Me1Me2Mo3O8, where
Me1 and Me2 are alkali, alkali earth, transition, or post-
transition metal ions distributed amongst tetrahedral and oc-
tahedral positions, are extremely interesting not only for
the fundamental science, but also for different applications.
Various intriguing phenomena such as realization of the spin-
liquid phase [1], giant optical diode effect [2], valence-bond
condensation [3], and magnetoelectricity [4,5] were found in
this group of materials. Such a variety is ultimately related to
three aspects of the crystal structure of Me1Me2Mo3O8. First,
it is polar, which is important for the magnetoelectric effect.
Second, the Me1 and Me2 sites can easily accommodate all
kinds of ions, starting from the simple alkali ones and ending
by transition or even post-transition metal elements. As a
result, by changing Me1 and Me2, one may vary the valency
of Mo ions. Furthermore, the Mo ions form isolated trimers
(the third important aspect), which makes these materials
an interesting testbed also for the study of the cluster-Mott
physics [6,7].

Fe2Mo3O8 (the kamiokite [8]) is one such material, whose
properties have been under intensive investigation in recent
years. The Fe ions in Fe2Mo3O8 occupy both tetrahedral
(t-Fe) and octahedral (o-Fe) positions. Furthermore, the FeO4
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tetrahedra are distorted and this distortion points in the same
(z) direction [9]. Thus, the material is polar and this property
is manifested in the nonreciprocal high-temperature optical
diode effect, which was observed in Zn-doped Fe2Mo3O8,
where the intensity of light transmitted in one of the directions
was one-hundred times smaller than in the opposite one [2].

Another interesting aspect of Fe2Mo3O8 is the magneto-
electric properties—the interplay of the electric polarization
and magnetism. Due to the trimerization, the Mo4+ ions
appear to be nonmagnetic. However, the Fe ions have local
magnetic moments, which order antiferromagnetically below
TN ∼ 60 K [10]. The antiferromagnetic (AFM) transition is
accompanied by the giant (∼0.3 μC/cm2) jump of the electric
polarization [4]. Furthermore, the AFM order appears to be
fragile and can be easily switched to the ferrimagnetic (FRM)
one by the external magnetic field and/or the Zn doping
[4,5,11]. This AFM-FRM transition is again accompanied
by the jump of electric polarization being of the order of
−0.1 μC/cm2 [4,5]. These examples clearly show that the
electric polarization in Fe2Mo3O8 depends on the magnetic
order and can be manipulated by changing the magnetic order.
Another interesting manifestation of the magnetoelectric cou-
pling in Fe2Mo3O8 is the observation of electromagnons [12].

Although the electronic structure of Fe2Mo3O8 and re-
lated (Fe,Zn)2Mo3O8 compound was thoroughly investigated
both experimentally and theoretically [2,13,14], details of the
exchange coupling responsible for the AFM-FRM transition
remain mostly unexplored. Furthermore, there is no clear
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FIG. 1. Fragments of the crystal structure of Fe2Mo3O8 with the notations of main exchange interactions: (a) alternation of honeycomb
layers formed by FeO4 tetrahedra, FeO6 octahedra, and trimerized kagome layers of MoO6 octahedra in the unit cell of Fe2Mo3O8; (b) nearest-
neighbor interactions in the honeycomb layers; (c) interlayer interactions between tetrahedral and octahedral Fe sites located in the first (J1

⊥)
and second (J2

⊥) coordination spheres; (d), (e) interlayer interactions between tetrahedral and octahedral Fe sites, respectively. Fe, Mo, and O
atoms are denoted by large, medium, and small spheres, respectively.

consensus on the microscopic origin of the giant magne-
toelectric effect observed in Fe2Mo3O8. Originally, it was
attributed to the magnetostriction, which manifests itself in
different atomic displacements in different magnetic states
[4]. Nevertheless, an alternative point of view based on
the Dzyaloshinkii-Moriya mechanism was proposed recently
in Ref. [15].

In this paper, we study the magnetic properties and mag-
netoelectric effect in Fe2Mo3O8 using first-principles elec-
tronic structure calculations. After a brief discussion of the
electronic structure of Fe2Mo3O8 in Sec. II A, in Sec. II B
we will discuss the construction of the simple but realistic
model describing the behavior of magnetic Fe 3d electrons. It
can be regarded as the microscopic toy model for Fe2Mo3O8,
which included explicitly neither O 2p nor Mo 4d states. The
main advantage of this model is its transparency, which can
be regarded as the possible alternative to the local density
approximation (LDA)+U methods [16], which are formulated
in the complete basis set of states but suffer from uncertainty
with the choice of parameters specifying the subspace of
correlated electrons [17], and in this sense are less trans-
parent. Then, the effective 3d model is further mapped onto
the isotropic spin model (Secs. II C, II D, and II E), which
is analyzed in terms of the molecular-field approximation
(MFA, Sec. III).

Our analysis suggests two possible scenarios for
Fe2Mo3O8. The first one is based on the homogeneous
charge distribution among tetrahedral (t) and octahedral
(o) Fe sites (d6

t d6
o , denoting the formal number of Fe 3d

electrons at these two types of sites), which tends to lower
the crystallographic P63mc symmetry through the formation
of an orbitally ordered state. Nevertheless, the effect of the
orbital ordering on the interatomic exchange interactions
does not seem to be crucial and the magnetic properties can
still be approximately described by averaged interactions
obeying the P63mc symmetry. The second scenario implies
the charge disproportionation, d7

t d5
o , involving a somewhat

exotic Fe1+ ionization state. Nevertheless, it is supported
by the obtained parameters of on-site Coulomb interactions,

which are more “repulsive” at the o-Fe sites, reflecting
details of the electronic structure. Furthermore, it respects the
crystallographic P63mc symmetry. Somewhat surprisingly,
these two scenarios are practically indistinguishable from the
magnetic point of view as they produce very similar sets of
parameters of interatomic exchange interactions. However,
the spin-dependent properties of the electric polarization are
rather different due to the strong difference in the polarity
of the Fe2+-Fe2+ and Fe1+-Fe3+ bonds, realized in the case
of d6

t d6
o and d7

t d5
o , respectively. The MFA uncovers the

basic aspects of the ME effect in Fe2Mo3O8, related to the
emergence of net magnetization at finite temperature T ,
which can be controlled by the magnetic field, thus inducing
the antiferromagnetic-to-ferrimagnetic phase transition.

Finally, a brief summary of our work will be given in
Sec. IV. According to our analysis, the magnitude of the
magnetoelectric effect in Fe2Mo3O8 can be understood by
considering the isotropic electronic contributions to the elec-
tric polarization for the fixed crystal structure, though the
quantitative description of the temperature dependence of
both magnetization and polarization should probably include
the lattice effects [4].

II. METHOD

A. Electronic structure in LDA

The crystal structure of Fe2Mo3O8 (the space group
P63mc, No. 186) consists of the honeycomblike layers formed
by the corner-sharing FeO4 tetrahedra and FeO6 octahedra,
which are separated by trimerized kagomelike layers of the
MoO6 octahedra, as explained in Fig. 1.

We use the linear muffin-tin orbital (LMTO) method
[18,19] and the experimental structure parameters reported in
Ref. [9]. The practical aspects of calculations (including the
choice of atomic sphere, etc.) can be found in Ref. [20]. The
corresponding band structure in LDA is shown in Fig. 2.

Some test calculations have also been performed us-
ing the full-potential WIEN2K method [21], which reveals a
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FIG. 2. Left panel: Total and partial densities of states in the local
density approximation. Right panel: Corresponding band structure
calculated in the full LMTO basis (solid curved) and in the Wannier
basis for the Fe 3d bands. The Fermi level is at zero energy (shown
by dot-dashed line). Notations of the high-symmetry points of the
Brillouin zone are taken from Ref. [23].

good agreement with the LMTO results, as discussed in the
Supplemental Material [22].

Owing to the trimerization of Mo kagomelike layers [4],
the Mo 4d states form well-separated groups of t2g bands,
each of which corresponds to the particular type of molecu-
lar orbitals. This can be understood as follows. The formal
configuration of octahedrally coordinated Mo4+ ions is t2

2g. If
intersite hybridization is larger than the crystal field, as in the
Mo3 trimer, two t2g orbitals (t1 and t2 in Fig. 3) at each Mo
site can be chosen so to form the maximal overlap with either
t1 or t2 orbitals of the neighboring Mo site, where each orbital
participates in the hybridization in only one Mo-Mo bond, as
schematically illustrated in Fig. 3(b).

MoMo

O

bonding

antibonding

nonbonding

(a)

(b)

(c)

t1 t2 t3 t1 t2 t3

t1 t2 t3

FIG. 3. (a) The Mo3O13 cluster with the notations of Mo-O-Mo
paths mediating the hybridization between t2g orbitals in each of the
Mo-Mo bonds. (b) Schematic view of the hybridization in the Mo3

trimer: each Mo site donates one t2g orbital for the hybridization in
each of the Mo-Mo bonds, resulting in the formation of bonding and
antibonding molecular states. These orbitals are denoted as t1 and t2

and are shown by the color of the bond in which they operate. The
third t2g orbital is nonbonding and denoted as t3. (c) Schematic view
of the bonding-nonbonding-antibonding splitting in the Mo3 trimer
resulting in the nonmagnetic state, where six 4d electrons of Mo3

reside at the bonding molecular orbitals. The molecular levels are
shown by the same color as forming them the atomic orbitals.

In reality, such hybridization can occur via the Mo-O-
Mo paths of the edge-sharing MoO6 octahedra, as shown
in Fig. 3(a), or directly, as shown in Fig. 3(b). Therefore,
in each of the Mo-Mo bonds, the atomic t1 and t2 orbitals
will form bonding and antibonding molecular states, which
are schematically shown in Fig. 3(c). Then, the third t2g

orbital (t3 in Fig. 3) will be nonbonding. In solids, these
molecular levels will form bands, which can still be classified
as bonding (at around −1.8 eV in Fig. 2), nonbonding (at
around 1 eV), and antibonding (at around 2.1 eV). Since
the bonding-nonbonding-antibonding splitting is much larger
than the Hund’s coupling J (typically, about 0.4 eV for Mo),
the system will remain nonmagnetic with six t2g electrons of
the Mo3 trimer residing at the bonding orbitals.

The magnetic Fe 3d bands, which are located near the
Fermi level, in the energy interval of about [−1.0, 0.8] eV,
are sandwiched between bonding and nonbonding Mo bands.
The Fe 3d and Mo 4d bands are separated from each other by
a finite-energy gap, which makes the construction of the effec-
tive model for the Fe 3d bands straightforward. Furthermore,
there are two groups of the Fe 3d bands: the t-Fe one, which
is formed mainly by the tetrahedral sites and located closer to
the Fermi level, and the o-Fe bands, formed by the octahedral
sites, which are split and located away from the Fermi level.

B. Effective model for the Fe 3d bands

The effective Hubbard-type model for the magnetic Fe 3d
bands,

Ĥ =
∑

i j

∑
σσ ′

∑
ab

t i j
abδσσ ′ ĉ†

iaσ ĉ jbσ ′

+ 1

2

∑
i

∑
σσ ′

∑
abcd

U i
abcd ĉ†

iaσ ĉ†
icσ ′ ĉibσ ĉidσ ′ , (1)

is formulated in the basis of the Wannier functions [24], where
ĉ†

iaσ (ĉiaσ ) is the operator of creation (annihilation) of an elec-
tron at the orbital a = xy, yz, 3z2 − r2, zx, or x2 − y2 of the
Fe site i with the spin σ =↑ or ↓ [25]. The Wannier functions
are constructed using the projector-operator technique and the
orthonormal LMTO’s as the trial functions [26].

The one-electron part of the model Hamiltonian, t̂ = [t ab
i j ],

is given by the matrix elements of the Kohn-Sham LDA
Hamiltonian in the Wannier basis. Since the latter is complete
in the subspace of the Fe 3d bands, the obtained t̂ perfectly
reproduces the original LDA bands in this region (Fig. 2) [26].
Then, the matrix elements of t̂ with i �= j stand for the transfer
integrals, while the ones with i = j describe the crystal-field
effects.

The scheme of the crystal-field splitting (the eigenvalues of
[t ab

i j ] for i = j) is shown in Fig. 4. As expected, the 3d levels
are split into the triply degenerate t2g ≡ a1g ⊕ e′

g and doubly
degenerate eg states. In the tetrahedral environment, the eg

states are located lower in energy, while in the octahedral
one, the order of the t2g and eg levels is reversed. The t2g-eg

splitting (10Dq) is about −499 and 1133 meV at the t-Fe and
o-Fe sites, respectively, which is in reasonable agreement with
the results of the WIEN2K calculations (−625 and 1160 meV,
respectively). The splitting is substantially larger at the o-Fe
sites, which is consistent with the form of LDA density of
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FIG. 4. Atomic level splitting at the tetrahedral (left) and octahe-
dral (right) Fe sites.

states in Fig. 2, where the t-Fe 3d states are located near the
Fermi level and sandwiched by the o-Fe 3d states from below
and above. In the hexagonal P63mc symmetry, the t2g levels
are further split into nondegenerate a1g and doubly degenerate
e′

g states by about 1 and 59 meV at the t-Fe and o-Fe sites,
respectively (where the e′

g states are located lower in energy).
The WIEN2K method provides a somewhat different scheme of
the t2g level splitting: −126 and −53 meV at the t-Fe and o-Fe
sites, respectively, where the lower energy level is of the a1g

symmetry. The difference is related to the asphericity of the
Kohn-Sham potential in the WIEN2K method. Nevertheless,
some portion of this asphericity (and, therefore, the crystal-
field splitting) should be subtracted in order to avoid the
double-counting problem in the process of solution of the
Hubbard model (1), which also includes the nonspherical
effects, of the same origin, driven by the screened on-site
Coulomb interaction U i

abcd [26]. Fortunately, the t2g level
splitting is not particularly large and does not affect our finite
results: in numerical calculations, we used two schemes of
the level splitting, obtained in LMTO and WIEN2K, and both
of them yielded a similar conclusion regarding the form of the
orbital ordering and interatomic exchange interactions.

Thus, from the viewpoint of symmetry and atomic level
splitting, one can expect the following scenarios. First of
all, the majority-spin states of t-Fe and o-Fe will be fully
occupied. Then, two minority-spin electrons can reside at
the low-lying eg orbitals of t-Fe, resulting in the charge-
disproportionated solution d7

t d5
o , which respects the P63mc

symmetry of Fe2Mo3O8. It may look at odds with the scheme
of crystal-field splitting (Fig. 4), where the t2g orbitals of o-Fe
are located lower in energy and therefore are expected to be
occupied first. However, we will see in a moment that the
d7

t d5
o solution is also supported by the form of the screened

on-site Coulomb interactions, which are more repulsive at the
o-Fe sites. In the case of a homogeneous solution d6

t d6
o (the

second scenario), each of the minority-spin electrons at the
t-Fe and o-Fe sites will reside at the degenerate eg and t2g

orbitals, respectively, so that the system will tend to lift the
degeneracy through the Jahn-Teller distortion and/or orbital
ordering.

TABLE I. Parameters of screened Coulomb interaction (U ), ex-
change interaction (J), and nonsphericity (B) for the tetrahedral and
octahedral Fe sites in Fe2Mo3O8 (in eV).

t-Fe o-Fe

U 1.52 1.80
J 0.80 0.78
B 0.08 0.07

The parameters of screened on-site Coulomb interactions,
Û = [U i

abcd ], were calculated using a simplified version of
the constrained random-phase approximation (RPA) [27], as
explained in Ref. [26]. Each 5×5×5×5 matrix Û = [U i

abcd ]
can be fitted in terms of the Coulomb repulsion U = F 0, the
intra-atomic exchange interaction J = (F 2 + F 4)/14, and the
nonsphericity B = (9F 2 − 5F 4)/441, where F 0, F 2, and F 4

are the screened radial Slater’s integrals [28]. The results of
such fitting are shown in Table I.

One can see that the screened U is relatively small.
This is understandable considering the electronic structure
of Fe2Mo3O8: the Fe 3d bands are sandwiched by the Mo
4d ones (Fig. 2), which also have a large weight of the Fe
3d states and, therefore, very efficiently screen the Coulomb
interactions in the target Fe 3d bands [26]. Furthermore,
the Coulomb U is smaller at the tetrahedral sites. This is
also closely related to the electronic structure of Fe2Mo3O8,
where the t-Fe 3d bands are mainly located near the Fermi
level, inside the o-Fe ones: since the screening in RPA is
governed by the electronic excitations between occupied and
unoccupied states, the strongest effect is expected for those
states, which are located near the Fermi level. The change
of the Coulomb repulsion parameter between tetrahedral and
orthorhombic sites, �U = U o − Ut , is about 0.3 eV, which
does not seem to be large. Nevertheless, it corresponds to
the change of the Coulomb potential, δvC = �U (n − 1) ∼
1.5 eV for n = 6, which tends to drive the system into the
charge-disproportionation regime and formation of the elec-
tronic state d7

t d5
o instead of the charge homogeneous one d6

t d6
o .

C. Solution of the model

The model (1) was solved in the mean-field Hartree-Fock
(HF) approximation [26] for the AFM and FRM phases (see
Fig. 5) as well as other magnetic configurations, which were
used for the construction of the spin model [22].

The straightforward solution of the model (1) leads to the
d7

t d5
o configuration, which is supported by the crystal-field

splitting of the atomic 3d levels and the values of the Coulomb
repulsion U at the t-Fe and o-Fe sites. The corresponding
densities of states are shown in Fig. 6.

As expected, this solution is insulating: the band gap is
about 1 eV and formed between eg states of t-Fe and t2g states
of o-Fe.

Nevertheless, we do not rule out the possibility that the
obtained charge-disproportionated solution d7

t d5
o may also be

an artifact of calculations because our model (1) does not
include the double-counting term [16]. The double-counting
term typically serves to subtract the portion of Coulomb and
exchange-correlation interactions, which are already included
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AFM FRM

FIG. 5. Antiferromagnetic (AFM) and ferrimagnetic (FRM)
structure of Fe2Mo3O8. Fe and O atoms are denoted by large and
small spheres, respectively. The directions of local magnetic mo-
ments at the tetrahedral and octahedral sites are shown by small
(brown) and big (blue) arrows, respectively. The direction of net
magnetization in each layer is shown by the thick (red) arrow next
to this layer.

at the level of LDA/GGA (the generalized gradient approxi-
mation) [16]. In the homogeneous case with one type of cor-
related ions, this correction is reduced to the constant-energy
shift and, therefore, can be neglected since, by calculating
the Fermi level, we restore the status quo. However, if the
screened Coulomb repulsion is different at different atomic
sites, as in the case of the t-Fe and o-Fe, such correction can
be important.

Therefore, we have also considered the homogeneous so-
lution d6

t d6
o , which can be obtained in constraint calculations

fixing the number of 3d electrons at the t-Fe and o-Fe sites. In
fact, the original LDA calculations, where no sizable charge
disproportionation have been detected (Fig. 2), also speak
in favor of such homogeneous solution. The corresponding
densities of states for the AFM and FRM phases are shown in
Fig. 7.

In this case, the on-site Coulomb interactions lift the
orbital degeneracy of the t-Fe eg and o-Fe t2g levels
through the formation of the orbitally ordered state, which

FIG. 6. Partial densities of states as obtained in the mean-field
Hartree-Fock calculations for the antiferromagnetic (AFM) and fer-
rimagnetic (FRM) charge-disproportionated d7

t d5
o phases. The contri-

butions of the t-Fe and o-Fe atoms are shown by red and blue colors,
respectively. In the AFM case, the contributions of atoms located in
the antiferromagnetically coupled adjacent layers are shown by solid
and dashed lines. The Fermi level, defined as the midpoint of the
band gap, is at zero energy.

FIG. 7. Partial densities of states as obtained in the mean-field
Hartree-Fock calculations for the antiferromagnetic (AFM) and fer-
rimagnetic (FRM) charge homogeneous d6

t d6
o phases. The contribu-

tions of the t-Fe and o-Fe atoms are shown by red and blue colors,
respectively. In the AFM case, the contributions of atoms located in
the antiferromagnetically coupled adjacent layers are shown by solid
and dashed lines. The Fermi level, defined as the midpoint of the
band gap, is at zero energy.

breaks the P63mc symmetry, opens the bang gap of about
0.5 eV, and minimizes the energy of interatomic exchange
interactions [29].

In order to visualize this orbital ordering, we plot the
density formed by one minority-spin electron around each Fe
site, which was obtained by integrating the states in the energy
window [−1, 0] eV in Fig. 7. The results are shown in Fig. 8
for the AFM and FRM phases.

As expected, the change of the spin order from AFM to
FRM leads to the change of the orbital order and the spatial
reorientation of the occupied minority-spin orbitals so to
further stabilize the given spin order [29]. Loosely speaking,
the AFM coupling between nearest-neighbor sites along the c
axis, realized in the FRM phase, coexists with the “ferro”-
orbital order, where the occupied minority-spin orbitals in
the bond are oriented in a similar way. On the contrary, the
ferromagnetic coupling along c in the AFM phase coexists
with the “antiferro”-orbital order, where the occupied orbitals
form some angle with respect to each other. In other words,
in the FRM case, the system tends to fill the same orbitals
for o-Fe and t-Fe along c in order to minimize the energy of
superexchange interactions between these and other orbitals,
which have considerable overlap.

FIG. 8. Orbital ordering obtained in constrained Hartree-Fock
calculations for the configuration d6

t d6
o in the case of the antifer-

romagnetic (AFM) and ferrimagnetic (FRM) spin order. A single
occupied orbital of minority spin is shown.
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Finally, we note that the FRM d6
t d6

o solution corresponds to
the compensated ferrimagnetic case, where the t-Fe and o-Fe
sublattices are inequivalent, but the net spin magnetic moment
is equal to zero.

D. Interatomic exchange interactions

The interatomic exchange interactions can be evaluated by
mapping the total-energy change caused by the reorientation
of spins onto the Heisenberg model [30],

HS = −1

2

∑
i j

Ji jei · e j, (2)

where ei is the direction of spin at site i. In order to evaluate
Ji j , we used two different techniques. The first one is based
on finite rotations of spins, where Ji j is related to the total
energies of several collinear magnetic configurations obtained
by aligning each of the four Fe spins in the unit cell either
up or down. The method is standard and widely used in the
electronic structure community for the analysis of magnetic
properties.

The second method is based on the infinitesimal rotations
of spins near the equilibrium, where Ji j are obtained in the
second-order perturbation theory with respect to the rotations
of the self-consistent HF potentials at the sites i and j [26,30],

Ji j = 1

2π
Im

∫ εF

−∞
dε TrL{�V̂iĜ

↑
i j (ε)�V̂jĜ

↓
ji(ε)}. (3)

Here, Ĝ↑,↓(ε) is the one-electron Green’s function for the
majority and minority spin states, �V̂i = V̂ ↑

i − V̂ ↓
i is the spin

part of the HF potential at the site i, εF is the Fermi energy,
and TrL denotes the trace over the orbital indices. Generally,
the parameters Ji j calculated using the second technique de-
pend on the magnetic state, thus reflecting the change of the
electronic structure and the orbital ordering. The comparison
of such parameters, calculated in different magnetic states,
presents a test for the validity of the Heisenberg model, which
can be defined locally for the infinitesimal spin rotations, but
not necessary globally, to describe the energies of all possible
spin configurations, where each spin can have an arbitrary
direction irrespective of the direction of its neighboring spins.

The results of the Green’s function calculations are sum-
marized in Fig. 9 and the main exchange interactions are
explained in Fig. 1.

Somewhat surprisingly, the exchange interactions exhibit
quite similar behavior for the solutions d7

t d5
o and d6

t d6
o . Fur-

thermore, we note the following: (i) The orbital ordering
accompanying the d6

t d6
o solution for the AFM and FRM

states lowers the P63mc symmetry. Such symmetry lowering
is manifested in somewhat different values of the exchange
parameters, which are realized in the crystallographically
equivalent bonds, as is clearly seen for J‖, Jt

⊥, and J2
⊥ in

the lower panel of Fig. 9. Nevertheless, this difference is not
particularly large (for instance, in comparison with the differ-
ence between J‖, J1

⊥, and other interactions). Therefore, in the
first approximation, one can average the exchange parameters
over the crystallographically equivalent bonds and neglect the
difference between them. Such problem does not occur for the
solution d7

t d5
o , which respects the P63mc symmetry. (ii) Apart

from the symmetry lowering, which can be different for the

FIG. 9. Distance dependence of exchange interactions around
the tetrahedral and octahedral Fe sites as obtained in the Green’s
function method for the antiferromagnetic d5

t d7
o and d6

t d6
o solutions.

The main exchange interactions are labeled and explained in Fig. 1.

AFM and FRM states reflecting the difference in the orbital
ordering, the averaged parameters reveal very similar behavior
for the AFM and FRM states [22]. (iii) A very similar set of
exchange parameters can be obtained by mapping the energies
of the collinear magnetic configurations and flipping each spin
instead of rotating it by an infinitesimal angle (Table II).

These arguments suggest that the spin model (2) is well
defined and can be used for the analysis of magnetic properties
of Fe2Mo3O8 in the wide temperature range.

All Ji j are antiferromagnetic. The AFM coupling between
t-Fe and o-Fe in each layer is stabilized by J‖, which is the
strongest interaction in the system. The magnetic ordering
between the layers results from the competition of three
main interactions: the nearest-neighbor (NN) interaction J1

⊥
between t-Fe and o-Fe, together with J‖, tends to stabilize
the FRM phase, while the next-NN interactions Jt

⊥ and Jo
⊥

operating, respectively, in the sublattices t-Fe and o-Fe favor
(again, together with J‖) the AFM alignment. Furthermore,
the effect of J1

⊥ is strengthened by second-neighbor interac-
tions J2

⊥ between t-Fe and o-Fe: although J2
⊥ is considerably

smaller, the number of such bonds is large (see Fig. 1), making
the total contribution comparable with J1

⊥. Thus, the relevant
parameter responsible for the emergence of the FRM order is
J⊥ = J1

⊥ + 6J2
⊥. Considering the numbers of bonds, one can

find the following condition for the stability of the AFM phase
relative to the FRM one: |J⊥| < 3|Jt

⊥ + Jo
⊥|, which is satisfied

for both d7
t d5

o and d6
t d6

o . Nevertheless, the AFM structure is
not the ground state of the model: the competition of J‖,
J⊥, and Jo

⊥ (Jt
⊥) should lead to the noncollinear magnetic

order with the propagation vector close to q = (0, 0, π
2c ) (with

c being the hexagonal lattice parameter) [22]. It would be
interesting to check this point experimentally. Finally, the
exchange interaction Jt

⊥ is considerably weaker than Jo
⊥,

which has important consequences for the magnetic properties
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TABLE II. Parameters of exchange interactions (in meV) obtained by mapping the total energies for the charge-disproportionate (d7
t d5

o )
and homogeneous (d6

t d6
o ) solutions of the effective electron model onto the isotropic spin model. The corresponding averaged parameters

obtained by using the Green’s function perturbation theory technique for the infinitesimal spin rotations are given in parentheses.

J‖ J⊥ Jo
⊥ Jt

⊥

d7
t d5

o −5.63 (−5.44) −11.90 (−10.23) −3.77 (−3.41) −0.98 (−0.68)

d6
t d6

o −5.74 (−5.40) −10.26 (−9.13) −3.20 (−3.04) −0.90 (−0.63)

of Fe2Mo3O8: with the increase of the temperature (T ), the
magnetization in the t-Fe sublattice will tend to vanish faster
than in the o-Fe one (which is quite expected for the systems
with different magnetic sublattices [31]). Therefore, even for
the homogeneous solution d6

t d6
o , where the net magnetization

is zero at T = 0, both in the AFM and FRM case, one can
expect the appearance of finite net magnetization at finite T ,
which couples to the magnetic field and can be used for the
switching between the AFM and FRM phases.

E. Parameters of electric polarization

We assume that the magnetic part of the electric polariza-
tion parallel to the z axis can be described by the following
expression:

Pz = 1

2

∑
i j

Pi jei · e j, (4)

which is similar to Eq. (2) for the exchange interaction energy.
In principle, Eq. (4) can be derived rigorously by applying the
Berry-phase theory of electric polarization [32] to the model
(1) [33] and considering the limit of large U , as is typically
done in the theories of double-exchange and superexchange
interactions without spin-orbit coupling (SOC) [34,35]. Nev-
ertheless, since interatomic exchange interactions Ji j are well
reproduced by mapping the total energies obtained in the
self-consistent Hartree-Fock calculations for a limited number
of magnetic configurations, here we employ a similar strategy
for Pz and derive the parameters Pi j by mapping the values
of electric polarization obtained in the same calculations onto
Eq. (4) and assuming that similar to Ji j , the main details of Pz

can be described by four independent parameters: P‖, P⊥, Po
⊥,

and Pt
⊥. They are listed in Table III.

Unlike Ji j , the parameters Pi j differ substantially in the
case of d7

t d5
o and d6

t d6
o . In the former case, all parameters are

large and equally important, while in the latter case, Po
⊥ clearly

prevails. Somewhat unexpectedly, we have found large P‖
for charge-disproportionated configuration d7

t d5
o . Indeed, Pz

is proportional to �z (the difference of atomic z coordinates

TABLE III. Parameters of electric polarization (in μC/m2)
obtained by mapping the polarizations obtained for charge-
disproportionate (d7

t d5
o ) and homogeneous (d6

t d6
o ) solutions of the

effective electron model onto the isotropic spin model.

P‖ P⊥ Po
⊥ Pt

⊥

d7
t d5

o −384 −122 −302 194

d6
t d6

o 41 24 −194 66

in the bond), which is rather small for the NN in-plane bonds
(about 0.6 Å). On the other hand, the ionic charge difference
between t-Fe1+ and o-Fe3+ is large, which readily compen-
sates the smallness of �z. In the charge-neutral regime d6

t d6
o ,

P‖ is expectedly small.
In principle, the model can be further extended to include

antisymmetric and anisotropic effects driven by the relativis-
tic SOC. The corresponding expressions can be found in
Ref. [35]. However, since the magnetic transition takes place
between two collinear configurations, AFM and FRM, it is
reasonable to expect that the main contribution to the change
of Pz is isotropic and described by Eq. (4). The anisotropic
single-ion contribution to Pz [36], which is frequently as-
cribed to the SOC-induced change of the metal-ligand d-p
hybridization and expected to be especially important for
the tetrahedrally coordinated magnetic sites [37,38], is also
possible. The change of the polarization in this case is associ-
ated with the symmetry lowering caused by the reorientation
of magnetization in the tetrahedral frame [36]. Nevertheless,
the experimental situation realized in Fe2Mo3O8 seems to
be more general: the polarization changes upon the switch
between two magnetic structures, no matter what the direction
of the magnetization is. Therefore, we believe that the single-
ion term plays a secondary role, while the main contribution
comes from the isotropic part given by Eq. (4).

III. DISCUSSION

Much insight can be gained from the solution of the spin
model (2) in the molecular-field approximation. Namely, the
molecular field corresponding to the spin Hamiltonian (2) is
given by

hi = −
∑

j

Ji jm j (T ), (5)

where mj (T ) = Mj (T )/|Mj (0)| is the relative magnetization
at site j. Then, mi(T ) can be found from the temperature
average Mj = 2〈Ŝz

j〉 of the spin operator Ŝz
j in the molecular

field hi,

mi(T ) = hi

|hi|BSi

( |hi|
kBT

)
, (6)

where BSi is the Brillouin function for the spin Si [39].
Equations (5) and (6) are solved self-consistently and the
Néel temperature (TN) is defined as the minimal temperature
for which mi(T ) = 0. Then, the spin-dependent part of the
polarization in the AFM state, the total-energy difference
between the FRM and AFM phases, and the polarization jump
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FIG. 10. Results of molecular-field theory for the spin model:
temperature dependence of magnetization M at the t-Fe and o-
Fe sites, net magnetic moment in the honeycomb layer, �M =
(|Mo| − |Mt |)/2, recalculated per one Fe site, and the total-energy
difference �E between ferrimagnetic and antiferromagnetic phases
calculated using parameters for the d7

t d5
o and d6

t d6
o states.

�Pz caused by the AMF-to-FRM transition can be evaluated
as

Pz = (2P⊥ − 6P‖)|mt ||mo| − 6Pt
⊥m2

t − 6Po
⊥m2

o, (7)

�E = 4J⊥|mt ||mo| − 12Jt
⊥m2

t − 12Jo
⊥m2

o, (8)

and

�Pz = −4P⊥|mt ||mo| + 12Pt
⊥m2

t + 12Po
⊥m2

o, (9)

respectively. Unless specified otherwise, we use the parame-
ters listed in Tables II and III. The results are summarized in
Figs. 10 and 11.

The molecular-field estimate for TN is about 132 and 128 K
for d7

t d5
o and d6

t d6
o , respectively. Quite expectedly, similar sets

of parameters Ji j (see Table II) yield similar values of TN.
Thus, from this point of view, the solutions d7

t d5
o and d6

t d6
o

FIG. 11. Results of molecular-field theory for the spin model:
temperature dependence of the spin-dependent part of the electric
polarization (Pz) in the antiferromagnetic phase and the polarization
jump (�Pz) caused by the antiferromagnetic-to-ferrimagnetic transi-
tion calculated using parameters for the d7

t d5
o and d6

t d6
o states.

are “indistinguishable.” A more rigorous estimate for TN can
be obtained by considering Tyablikov’s RPA [40], generalized
to the case of multiple magnetic sublattices [41] and non-
collinear magnetic ground state [22], which is expected in
both d7

t d5
o and d6

t d6
o models for Fe2Mo3O8 (see Sec. II D). The

RPA yields TN = 55 and 54 K for d7
t d5

o and d6
t d6

o , respectively.
The latter estimates are close to the experimental TN = 60 K
[4,5], while the MFA values are typically overestimated. The
large difference between the MFA and RPA is related to the
existence of weakly dispersive regions of magnon energies,
which are nearly degenerate with the ground state [22]. We
have also used the full set of parameters, obtained in the
Green’s function calculations for d7

t d5
o (Fig. 9), which obeys

the crystallographic P63mc symmetry. This yields slightly
smaller value of TN = 105 and 32 K in MFA and RPA,
respectively. Thus, even though the MFA substantially over-
estimates TN, it is still interesting to explore the abilities
of this approximation for the description of magnetoelectric
properties of Fe2Mo3O8, at least on the semiquantitative level.

Since |Jt
⊥| � |Jo

⊥|, the magnetization in the t-Fe and o-Fe
sublattice exhibits different temperature dependence, where
|Mt | tends to decrease more rapidly than |Mo| with the increase
of T . Then, the temperature dependence of the net mag-
netization, �M = (|Mo| − |Mt |)/2, will be nonmonotonous,
with some “optimal value” corresponding to the maximum of
�M(T ), for which one can achieve the largest energy gain
caused by the interaction with the external magnetic field.
This effect is especially important for d6

t d6
o , where the spins

in the t-Fe and o-Fe sublattices exactly cancel each other at
T = 0, thus excluding a linear coupling with the magnetic
field. Nevertheless, at finite T , such cancellation does not
occur, giving rise to the net magnetization in each honeycomb
layer, the direction of which can be controlled by the magnetic
field so to cause the AFM-FRM transition.

The key question is whether the AFM-FRM transition can
be induced by experimentally accessible magnetic field Hc,
which depends on T and varies from about 2 T at T ∼ 0.97 TN

to 14 T at T ∼ 0.58 TN [4,5]. Although theoretical Hc, which
can be estimated as Hc = �E

μB|�M| , shows the same tendency,
it is overestimated in comparison with the experiment: for
instance, at T ∼ 0.97 TN, our Hc is about 20 T and further
increases with the decrease of T . One reason may be the
overestimation of �E in MFA. Moreover, this �E has a
maximum as a function T : since |mt | decreases more rapidly,
the last term in Eq. (8) starts to prevail at elevated T and
additionally stabilizes AFM order relative to the FRM one.
This worsens the agreement with the experimental data for Hc.
Another reason is that we do not consider the lattice effects,
assuming that the AFM and FRM phases are described by the
same crystal structure, while in reality the lattice relaxation in
the FRM phase will certainly decrease the value of �E .

From the viewpoint of magnetism, the main difference
between the d7

t d5
o and d6

t d6
o scenarios is that in the former case,

�M remains finite even at small T , leaving the possibility of
the AFM-FRM transition in the magnetic field. This could
be checked experimentally and, according to our estimates,
it will require Hc ∼ 40 T.

The behavior of the spin-dependent part of the electric
polarization is sensitive to the charge state of the Fe ions.
Since the parameters of polarization are generally smaller
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for the homogeneous d6
t d6

o state (see Table III), Pz is also
smaller (by about a factor of 4 in comparison with d7

t d5
o ). The

obtained Pz(0) = 0.27 μC/cm2 in the d7
t d5

o model is com-
parable with the experimental value of about 0.34 μC/cm2

[4]. Nevertheless, the overall shape of Pz(T ) is quite different:
the experimental dependence Pz(T ) exhibits the jump at TN,
which may signal that the magnetic transition is accompanied
by the structural one [4], while the theoretical Pz decreases
steadily down to TN.

The theoretical Pz for d6
t d6

o has a clear maximum at T ∼
0.5 TN, similar to the behavior of �E (Fig. 10). This is
because Po

⊥ is the largest parameter in the case of d6
t d6

o (see
Table III), which clearly dominates with the increase of T
when other contributions to Eq. (7) decrease due to more rapid
decrease of |mt |. On the other hand, Pz in d7

t d5
o is a nearly

monotonous function of T : in this case, the effect of Po
⊥ is

partly compensated by Pt
⊥, so that the temperature dependence

of Pz is mainly controlled by strong P‖ in the first term in
Eq. (7). Thus, in principle, the temperature dependence of
Pz can be used to distinguish experimentally between the
configurations d7

t d5
o and d6

t d6
o .

Nevertheless, both scenarios yield a comparable polariza-
tion jump �Pz, caused by the AFM-FRM transition near TN

(see Fig. 11). First, �Pz does not depend on P‖. Then, the
effect of strong Po

⊥ in the case of d7
t d5

o is compensated by P⊥
and Pt

⊥, which are also strong, while in the case of d6
t d6

o , �Pz

is mainly controlled by Po
⊥. The value of �Pz at T ∼ 0.8 TN is

about −0.1 μC/cm2, which is comparable to the experimental
data [4,5]. Finally, we also note that Pz is positive while �Pz

is negative, which is also consistent with the experimental
situation.

IV. SUMMARY AND CONCLUSIONS

The magnetic exchange interactions and the origin of a
giant magnetoelectric effect in Fe2Mo3O8 have been studied
on the basis of a microscopic toy model derived for the
magnetic Fe 3d states from the first-principles electronic
structure calculations. In spite of its simplicity, the model
provides rather rich physics and accounts for the magnetic
properties of Fe2Mo3O8 on the semiquantitative level. Partic-
ularly, we propose two scenarios for the magnetic behavior
of Fe2Mo3O8. The first one is based on the homogeneous
distribution of the Fe2+ ions among the t and o sites, while the
second one involves the charge disproportionation 2Fe2+ →
Fe1+ + Fe3+ with somewhat exotic ionization state 1+ at
the t sites. Both scenarios lead to similar sets of interatomic
exchange interactions, which are consistent with available
experimental data and explain the origin of the AFM and
FRM phases. In the case of the d6

t d6
o configuration, we expect

the lowering of the crystallographic P63mc symmetry due
to the orbital ordering. It would be interesting to verify this
finding experimentally. As for the magnetism, the crucial test
to distinguish between the d6

t d6
o and d7

t d5
o configurations is the

net magnetization in the honeycomb layer at low T , which
is expected to vanish (and emerge only at elevated T ) in
the case of d6

t d6
o , but remains finite in the case of d7

t d5
o in

the molecular-field approximation, thus giving a possibility to
control this magnetization and induce the AFM-FRM transi-
tion by applying magnetic field.

Our calculations reproduce the order of magnitude of
the experimentally observed giant magnetoelectric effect in
Fe2Mo3O8, which we attribute to the electronic polarization
related to the change of the electronic structure depending
on the magnetic state, but for the fixed crystal structure
[42]. However, the quantitative description of the temperature
dependence of the polarization change will probably require
the lattice effects, as was suggested in Ref. [4].

Another interesting problem, which was not addressed in
the present work, is the effects of relativistic SOC and the
orbital magnetism, which are expected to play an important
role especially in the d6

t d6
o configuration with the orbital

degeneracy. Nevertheless, the problem is rather complex to
be systematically studied in the present publication. Briefly,
in the case of d7

t d5
o , our mean-field HF calculations for the

available experimental P63mc structure with SOC yield un-
quenched orbital moment of about 0.4 μB at the t-Fe sites,
which has the same direction as the spin one, according to
the third Hund’s rule. The orbital moment at the o-Fe sites
is negligibly small, as expected for the d5 configuration.
Thus, the orbital magnetization contributes to the net magnetic
polarization in the honeycomb layer, though this contribution
is not particularly strong in comparison with the spin one. In
the d6

t d6
o case, the SOC lifts the orbital degeneracy, lowering

the P63mc symmetry and resulting in the canted spin state. In
the ground state, the canting is such that the z (c) components
of magnetic moments are ordered as AFM, while the xy (ab)
components form the FRM structure. Besides spin, we also
expect the orbital magnetization of the order of 0.6 μB at
the t-Fe and o-Fe sites. Thus, if this scenario is correct, the
AFM-FRM transition can be tuned continuously by applying
the magnetic field in the xy plane and thus tuning the value of
the electric polarization.
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