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Flat bands and higher-order topology in polymerized triptycene:
Tight-binding analysis on decorated star lattices
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In a class of carbon-based materials called polymerized triptycene, which consist of triptycene molecules and
phenyls, exotic electronic structures such as Dirac cones and flat bands arise from the kagome-type network.
In this paper, we theoretically investigate the tight-binding models for polymerized triptycene, focusing on
the origin of flat bands and the topological properties. The mechanism of the existence of the flat bands is
elucidated by using the “molecular-orbital” representation, which we have developed in the prior works. Further,
we propose that the present material is a promising candidate to realize the two-dimensional second-order
topological insulator, which is characterized by the boundary states localized at the corners of the sample. To be
concrete, we propose two methods to realize the second-order topological insulator and elucidate the topological
properties of the corresponding models by calculating the corner states as well as the bulk topological invariant,
namely, the Z3 Berry phase.
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I. INTRODUCTION

Carbon-based materials have been a fertile ground for
realization of exotic phenomena in condensed matter physics.
Graphene [1], a monolayer of carbon atoms forming a honey-
comb lattice, is a typical example, where exotic transport phe-
nomena and magnetic responses arise from the massless Dirac
dispersion [2,3]. The characteristic edge modes [4–6] and
topological properties [7–10] have also been of great interests.

In graphene, carbon atoms are networked through sp2

orbitals, leading to the nearest-neighbor (NN) tight-binding
description on a honeycomb lattice for the remaining π

orbital. Recently, it has been found that richer geometric
and electronic structures can be achieved when considering
hybrid networks of sp2 and sp3 carbon atoms [11–17]. In
the present paper, we focus on the class of materials called
polymerized triptycene. The basic constituents of these ma-
terials are triptycene molecules [18] [Fig. 1(a)], a member
of iptycene family [19], and phenyl groups interconnecting
the neighboring triptycene molecules [Fig. 1(b)]. Synthesis of
this family of materials has actively been pursued [20–26].
In the theoretical side, the first principles calculations have
revealed the characteristic band structure of this class of
materials [17], namely, π electrons on sp2 hydrocarbons form
kagome-type network, which supports the multiple flat bands
with surprisingly good flatness, as well as the massless Dirac
dispersion around K and K ′ points.

The goal of this paper is to present a deeper understanding
of the electronic structures and to pursue the possibility of
topological phases in a series of polymerized triptycene, by
means of the tight-binding analysis on decorated star lattices.

*mizoguchi@rhodia.ph.tsukuba.ac.jp

The main focus of the previous studies [11–14,16,17] is the
emergence of flat bands, which opens up a way to intrigu-
ing many-body effects such as the flat-band ferromagnetism
[27–29]. In this context, we elucidate the origin of flat bands
in the present model by using the “molecular-orbital” (MO)
representation, which is a generic framework to describe the
flat-band models [30–32].

In addition to the flat-band physics, we also propose that
the present material is a promising candidate for the novel
topological phase of matter proposed recently, namely, the
higher-order topological insulator (HOTI). The HOTI has the
characteristic boundary states, protected by the topological
nature of Bloch wave functions in the bulk, at the boundaries
with co-dimension larger than one [33–48]. Recently, it was
found that the kagome-lattice model is a promising platform
to realize the HOTI. The key ingredient is the “breathing”
of the lattice structure, i.e., the modulation of the size of
triangles (or the amplitude of hoppings on those triangles) in
such a way that the upward triangles are larger or smaller
than the downward ones [37,38,42,46]. Indeed, the HOTI
in the breathing kagome lattice is experimentally realized
in various metamaterials, such as photonic crystals [49,50],
phononic crystals [51,52] and a (111) surface of Cu with
molecular scatterers [53]. Motivated by these theoretical and
experimental studies, we propose that polymerized triptycene
is a suitable platform to realize the kagome-based HOTI in the
solid-state system. To demonstrate this, we analyze the corner
states in the finite sample of polymerized triptycene under
the open boundary condition, and relate them to a bulk topo-
logical invariant for HOTIs, namely, quantized Berry phase
[30,54–59].

The rest of this paper is organized as follows. In Sec. II,
we present the characteristic geometric structure of polymer-
ized triptycene and explain how the kagome-type network is
formed. In Sec. III, we present tight-binding models which
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FIG. 1. (a) The structure of a tripticene molecule. Red spheres
denote the sp3 carbon atoms. (b) Polyermized triptycene containing
one phenyl between neighboring triptycene molecules. Blue triangles
denote triptycene molecules. (c) Schematic figure for the polymer-
ized triptycene and its kagome network obtained by reducing chains
of C6 rings as a single site.

describe a series of polymerized triptycene, and elucidate their
characteristic band structures, such as flat bands and Dirac
cones. Understanding of band structures from the viewpoint
of the kagome bands is also explained. In Sec. IV, we discuss
the possible realization of the HOTI phase in this material. In
Sec. V, we discuss the perspectives of this class of materials
beyond the tight-binding analysis, such as the stability of
the HOTI phase against disorders and the effects of corre-
lations. In Sec. VI, we present a summary of this paper. In
Appendix, we explain how to determine the flat-band energies
and present the explicit form of the MO representation of the
tight-binding model.

II. KAGOME-TYPE NETWORK OF
POLYMERIZED TRIPTYCENE

A triptycene molecule is a family of iptycene molecule;
here the prefix “tri” means that it contains three C6 rings
[Fig. 1(a)]. Remarkable feature of this molecule is that there
exist two kinds of carbon atoms: One has sp3 electric configu-
ration which interconnects three C6 rings (red spheres or dots
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FIG. 2. The tight-binding model of Eq. (2). The primitive vectors
and the sublattices are indicated in the figure.

in Fig. 1), and the other has sp2 electric configuration which
composes C6 rings.

Since three C6 rings on each triptycene molecule form
120◦ structure, it is possible to construct a two-dimensional
network of triptycene molecule by placing them on a hon-
eycomb lattice and connecting the neighboring C6 rings by
other molecules, such as acenes [16] or phenyls [17]. We call
the materials thus obtained as polymerized triptycene. In the
present paper, we consider the materials containing phenyls.

The schematic figure for the polymerized triptycene is
shown in Fig. 1(b). Here the carbon atoms with sp3 configura-
tion are denoted by red dots. Since the triptycene molecules
are placed on a honeycomb lattice, the chains of C6 rings
are placed on its dual lattice, namely, a kagome lattice. In
other words, if each chain of C6 rings is regarded as a single
“molecule,” the molecular orbitals of them are aligned on a
kagome lattice [Fig. 1(c)]. This is a geometrical origin of the
kagome-type network in this class of materials.

In the following, we analyze the tight-binding models
where each C6 ring is replaced by a single site [Figs. 2(c), 5(a),
and 5(c)]. Such tight-binding models provide a simplified
description of electronic structures in a sense that six carbon
atoms are reduced to one site. Nevertheless, they are useful to
capture the characteristic electronic structures arising from the
kagome network, as demonstrated in the previous work based
on the first-principles calculations [17].

III. TIGHT-BINDING HAMILTONIAN

A. Polymerized triptycene containing phenyl

In what follows, for simplicity, we neglect the spin degrees
of freedom of the electrons. The role of spin degrees of free-
dom will be discussed in Sec. V in the context of correlation
effects.

For the polymerized triptycene containing one phenyl
between neighboring triptycene molecules, the tight-binding
Hamiltonian (see Fig. 2 for its schematic figure) is written as

HP = c†
kH

P
k ck, (1)

114201-2
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FIG. 3. The band structures for t =1 and (a) t ′ =2, (b) t ′ =0.5,

(c) t ′ =
√

3
2 , and (d) t ′ = √

3. The high-symmetry points in momen-

tum space are � = (0, 0), K = ( 4π

3 , 0), and M = (π, π√
3

).

where HP
k is a 9×9 matrix,

HP
k =

⎡
⎣th

�

t ′E3 0
t ′E3 0 t ′E3

0 t ′E3 th
�

k

⎤
⎦, (2)

with

h
�

=
⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ (3)

and

h
�

k =
⎡
⎣ 0 e−ik·(a1−a2 ) e−ik·a1

eik·(a1−a2 ) 0 e−ik·a2

eik·a1 eik·a2 0

⎤
⎦. (4)

Note that En represents a n×n identity matrix, and ck =
(ck,1, ck,2, ck,3, ck,4, ck,5, ck,6, ck,7, ck,8, ck,9)T represents the
annihilation operators of electrons with momentum k, written
in a form of a nine-component vector.

The lattice structure is similar to that of a star lattice
[60–62], where the vertices of upward and downward trian-
gles, placed on a honeycomb lattice, are connected by bonds.
In the present model, additional sites are inserted in the middle
of bonds connecting the triangles. Therefore we call this series
of lattices decorated star lattices.

Typical band structures for t < t ′ and t > t ′ are shown
in Figs. 3(a) and 3(b), respectively. It should be noted that
t ′ originates from the transfer integral between π orbitals
on the NN carbon atoms, while t from that on the next-NN
carbon atoms [17]. Thus it is physically natural to set t < t ′
rather than t > t ′ in the real material. According to the first-
principles calculations [17], t is estimated to be 83 meV, while
t ′ can be tuned by the relative angle between the hexagonal
planes of neighboring C6 rings (see Sec. III C for details).

For any t and t ′, there exist three flat bands, whose en-
ergies are ε

(1)
flat = −t , ε

(2)
flat = − 1

2 (t + √
t2 + 8t ′2), and ε

(3)
flat =

1
2 (−t + √

t2 + 8t ′2). In Appendix, we explain how to obtain
three flat-band energies; the method is applicable to any length
of chains. The existence of the flat bands means that the
rank of the Hamiltonian matrix subtracted by the flat-band
energy is reduced. To be concrete, consider the matrix H̄( j)

k =
Hk − ε

( j)
flatE9 ( j = 1, 2, 3). Then, one can show that H̄( j)

k can
be rewritten by eight vectors, φ

( j)
p,k (p = 1, . . . , 8), and a 8×8

matrix h( j)
k , as

H̄( j)
k =

8∑
p,p′=1

φ
( j)
p,k

[
h( j)

k

]
pp′φ

( j)†
p′,k

= �
( j)
k h( j)

k �
( j)†
k (5)

with

�
( j)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
( j)
1,k

φ
( j)
2,k

φ
( j)
3,k

φ
( j)
4,k

φ
( j)
5,k

φ
( j)
6,k

φ
( j)
7,k

φ
( j)
8,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (6)

Notice that each φ
( j)
p,k is a nine-component row vector, and thus

�
( j)
k is written as a 8×9 matrix (see Appendix for details).

Equation (5) manifests that the kernel of �
( j)†
k becomes

the zero-energy eigenmode of H̄( j)
k at each momentum k.

Equivalently, it is the eigenmode of H( j)
k with the eigenenregy

ε
( j)
flat, which is nothing but a flat band. The explicit forms of

φ
( j)
p,k and h( j)

k in the present model are given in Appendix.

Since the real-space picture of φ
( j)
p,k, obtained by the Fourier

transformation, is composed of the superposition of the small
number of sites, we refer to these real-space objects as “MOs.”
It should be remarked that these MOs are different from the
“true” MOs from the viewpoint of chemistry.

Looking at the dispersive bands, one finds the Dirac cones
at K and K ′ points, originating from the kagome network
we describe in the next section. Besides the Dirac cones at
K and K ′ points, one also finds the triple band touching at

� point for a specific choice of t ′, i.e., t ′ =
√

3
2 t [Fig. 3(c)]

and t ′ = √
3t [Fig. 3(d)]. This is an example of a single

Weyl fermion in lattice models crossed by a nonpropagating
mode, which was first argued by Dagotto, Fradkin, and Moreo
[63]. As is discussed in Ref. [63], this type of the band
structure does not contradict the Nielsen-Ninomiya theorem
on the fermion doubling in lattice models [64], and is indeed
seen in various lattice models such as a Lieb lattice [65], a
superhoneycomb lattice [66], and a breathing kagome lattice
with the upward triangles having opposite-sign hoppings to
those on the downward ones [67].
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FIG. 4. (a) Schematic picture of the reduction of three sites con-
nected by t ′-bonds to a single site, and the resulting kagome lattice.
(b) Schematic picture of the real-space distribution of the three-site
wave functions ϕ1-ϕ3. (c) The band structure for the Hamiltonian of
Eq. (2) with (t, t ′) = (1, 2) (blue solid lines) and the approximate
band structure (red dashed lines).

B. Kagome network for polymerized
triptycene containing phenyl

In Sec. II, we mentioned that the kagome network in this
material is obtained by regarding the chains of C6 rings at the
edges of the honeycomb lattice as a single point. Here, we
employ the similar argument in the tight-binding model, in
order to understand the band structures in terms of the kagome
network. Looking at the lattice structure of Fig. 2, one can find
that, if one regards three sites connected by the hopping of t ′ as
one “site,” then one obtains the kagome lattice [see Fig. 4(a)
for the schematic picture]. Since there are three degrees of
freedom on each “site,” the band structure is approximated by
that for the three-orbital kagome model.

To formulate the above argument, consider the three sites
connected by the bonds with the hopping t ′, e.g., (R, 1),
(R, 4), and (R, 7), where R denotes the position of the unit
cell. Then, consider the three-site Hamiltonian

h3 sites = t ′(c†
R,1cR,4 + c†

R,4cR,7) + H.c.. (7)

The eigenvalues and the eigenstates of h3 sites, εξ and aξ =
ϕξ · (cR,1, cR,4, cR,7)T (ξ = 1, 2, 3), respectively, are easily
obtained as

ε1 = −
√

2t ′, (8a)

ϕ1 = 1

2
(1,−

√
2, 1), (8b)

ε2 = 0, (9a)

ϕ2 = 1√
2

(−1, 0, 1), (9b)

and

ε3 =
√

2t ′, (10a)

ϕ3 = 1

2
(1,

√
2, 1). (10b)

Schematic figures of ϕ1-ϕ3 are shown in Fig. 4(b).
Similar three-site wave functions can be constructed for
[(R, 2), (R, 5), (R, 8)] and [(R, 3), (R6), (R, 9)]. Then, by us-
ing the basis aξ

i with i being the site on a kagome lattice,
the Hamiltonian can be then rewritten in a form of the three-
orbital kagome model, with the on-site potential εξ and the
hopping integral

T ξ,η
i, j = 〈

ϕ
ξ
i

∣∣ H ′ ∣∣ϕη
j

〉
, (11)

where j is the NN site of i, |ϕξ
i 〉 denotes the wave fucntion

corresponding to aξ
i , and H ′ denotes the part of the Hamilto-

nian HP of Eq. (1) depends only on t (i.e., blue triangles in
Fig. 2).

The above transformation of the Hamiltonian does not
include any approximations, because we just change the basis
from c to a. We now approximate the band structure as fol-
lows: If t � t ′, the difference of the on-site energy εξ between
different ξs is much larger than T ξ,η

i, j , thus we can neglect the

hoppings between T ξ,η
i, j with ξ �= η. If we do so, the band

structure thus obtained is equal to that of three NN kagome
bands with different on-site energies. The corresponding NN
hoppings are

t1 = T 1,1
i, j = t

4
, (12)

t2 = T 2,2
i, j = t

2
(13)

and

t3 = T 3,3
i, j = t

4
. (14)

In Fig. 4(c), we show the true band structure (blue solid lines)
and the dispersion obtained by the present approximation
(red dashed lines), with (t, t ′) = (1, 2). They show a good
agreement, besides the band width of the top and bottom
kagome bands.

C. Polymerized triptycene containing biphenyl

For a series of polymerized triptycene, one can consider
the materials in which the number of phenyls connecting the
triptycene molecules is more than one [17]. If there are two
phenyls, the corresponding tight-binding model can be ob-
tained by increasing the number of sites inserted in the bonds
connecting the triangles [Fig. 5(a)], and the Hamiltonian can
be written as

HBP = c†
kH

BP
k ck, (15)

with

HBP
k =

⎡
⎢⎢⎣

th
�

t ′E3 0 0
t ′E3 0 t ′E3 0

0 t ′E3 0 t ′E3

0 0 t ′E3 th
�

k

⎤
⎥⎥⎦, (16)
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FIG. 5. (a) The tight-binding model of Eq. (15). The primitive
vectors and the sublattices are indicated in the figure. (b) The band
structure for t = 1, t ′ = 2. (c) The tight-binding model of Eq. (17).
(d) The band structure for (t, t ′, t ′′) = (1, 3, 1.5).

and ck = [ck,1, . . . , ck,12]T. A typical band structure for t < t ′
is shown in Fig. 5(b). We see that the number of flat bands is
four; this implies that, in general, the number of flat bands
in this series of tight-binding models with q sites between
triangles is equal to q + 2. This can be proved by explicitly
constructing the flat bands; see Appendix for details.

One of the interesting consequences of increasing the
number of inter-triptycene phenyls is that one can tune the
NN hopping between π orbitals on the phenyls by changing
the relative angle of the hexagonal planes of C6 rings. For
a particular configuration of C6 rings, one obtains the tight-
binding Hamiltonian [17]:

H̃BP = c†
kH̃

BP
k ck, (17)

with

H̃BP
k =

⎡
⎢⎢⎣

th
�

t ′E3 0 0
t ′E3 0 t ′′E3 0

0 t ′′E3 0 t ′′E3

0 0 t ′′E3 th
�

k

⎤
⎥⎥⎦. (18)

The schematic figure of the model of Eq. (17) is shown
in Fig. 5(c). Here a new parameter t ′′( �= t ′) is introduced,
reflecting the difference of the relative angles of the hexagonal
planes. A typical band structure for t < t ′′ < t ′ is shown
in Fig. 5(d). Although there still exist four flat bands, the
massless Dirac dispersion at K point observed in Fig. 5(b) is
now gapped out, which is reminiscent of the breathing kagome
lattice [30,37,38,42].

(a)

(b) (c)
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FIG. 6. (a) Schematic picture of the reduction of four sites con-
nected by t ′ or t ′′ bonds to a single site, and the resulting breathing
kagome lattice. (b) Schematic picture of the real-space distribution
of the four-site wave functions ϕ1-ϕ4. Dashed lines denote the case
for t ′ = t ′′, where the inversion symmetry is restored. (c) The band
structure for the Hamiltonian of Eq. (17) with (t, t ′, t ′′) = (1, 3, 1.5)
(blue solid lines) and the approximate band structure (red dashed
lines).

D. Kagome network for polymerized
triptycene containing biphenyl

Similar to the case of HP, we can apply the approximate
kagome description to H̃BP [Fig. 6(a)]. In this case, we reduce
four sites connected by t ′ or t ′′ to one site, which allows us
to employ the four-orbital kagome description [Fig. 6(b)].
Interestingly, due to the imbalance between t ′ and t ′′, the
four-site wave function ϕξ becomes inversion asymmetric.
Consequently, the hoppings for ϕξ acquire the breathing struc-

ture, namely, T ξ,ξ

i, j|〈i, j〉∈� �= T ξ,ξ

i, j|〈i, j〉∈�, which, as pointed out in
the above, becomes the source of the massive Dirac dispersion
at K point [Fig. 6(c)].

IV. POSSIBILITY OF HIGHER-ORDER
TOPOLOGICAL PHASE

Having the approximate kagome picture at hand, we now
propose how to realize the HOTI phase in this material.
Previous studies have revealed that the HOTI phase on a
kagome lattice is obtained by introducing a “breathing” struc-
ture [37,38,42,46], i.e., the imbalance of hopping integrals
between upward triangles and downward triangles. This is es-
sentially a two-dimensional analog of the Su-Schriffer-Heeger
model [68], where the gapless end state appears associated
with the nontrivial winding number.

Our strategy is to mimic the breathing kagome structure
in the present materials. In this paper, we examine two ways
to realize the HOTI in polymerized triptycene as follows. (i)
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FIG. 7. (a) The tight-binding model for Eq. (19). (b) Schematic figure of the finite system used to investigate the corner state. (c) The
energy spectrum for the finite system with (t, t̃, t ′) = (0.5, 0.1, 3) and L = 12 (the number of sites is 1491). Two in-gap states are indicated
by light-blue circles; here, I is 313th state and II is 1323th state. Insets are energy levels near the in-gap states. The amplitude of the wave
functions in the real space for (d) the state I and (e) the state II.

We consider a material where triptycene molecules placed on
the downward triangles in Fig. 2 are replaced with some other
molecules [see Fig. 7(a)]. Note that we neglect the difference
of on-site energies between triptycene molecules and the
newly introduced molecules. In the tight-binding description,
the hoppings on downward triangles are changed from t to
t̃ �= t . In this case, the Hamiltonian matrix given as follows:

H(i)
k =

⎡
⎣th

�
t ′E3 0

t ′E3 0 t ′E3

0 t ′E3 t̃ h
�

k

⎤
⎦. (19)

One can easily see that the approximate network of such a
material corresponds to the breathing kagome lattice, by using
the same method as in Sec. III B.

(ii) As we have already seen in the previous section,
the polymerized triptycene containing biphenyl with t ′ �= t ′′
[Fig. 5(c)] is a candidate of the HOTI, since its approximate
network corresponds to the breathing kagome structure.

A. Corner states under the open boundary conditions

To demonstrate the realization of the HOTI, we first ex-
amine the existence of the corner states. We diagonalize the
Hamiltonian on the finite systems in a rhombus geometry,
shown in Figs. 7(b) and 8(a) for the cases (i) and (ii), re-
spectively. Note that the edges and corners are chosen such
that the blue or purple triangles are not cut off, since, from
the materials point of view, they represent the triptycene
molecules.

Let us first consider the case (i). In Fig. 7(c), the energy
eigenvalues are plotted. We see two in-gap states, whose
energies are located between two dispersive bands of the
breathing kagome band. Figures 7(d) and 7(e) represent the
amplitudes of the in-gap eigenstates in the real space. They
are sharply localized at the top-right corner of the rhombus
sample, indicating that the HOTI phase is realized in this

material. It is naively expected that each breathing kagome
band has one corner state between the two dispersive bands
[37,38,42], meaning that there are three in-gap states. In the
present case, however, the middle kagome band does not host
the in-gap state, indicating that the corner state is buried in the
bulk or edge state.

Figure 8 illustrates the results for the case (ii). We see
six in-gap states [Fig. 8(b)]; among them, the states I–IV are
located between the two dispersive bands of the breathing
kagome bands, while the states V and VI are located between
the different breathing kagome bands.

In Figs. 8(c)–8(h), we depict the wave functions of the
in-gap states I–VI. Among them, the states I–IV are localized
at bottom-left or top-right corners, as is the case with the
breathing kagome lattice [38,42]. In contrast, for the states V
and VI are localized at the bottom-right and the top-left
corners, which cannot be accounted for the breathing kagome
picture. The emergence of the states V and VI may be
attributed to the fact that the sites at bottom-right and the
top-left corners [the orange circles in Fig. 8(a)] do not belong
to the four-site chain of which the breathing kagome network
is composed. Note that these sites cannot be removed since, as
mentioned before, they are parts of the triptycene molecule.

It is interesting to find that, for the states I–IV, the position
of the site having the maximum amplitude differs from state
to state. More precisely, the states I and IV are the top-right
corner state, whereas the states II and III are the bottom-left
corner state. This difference originates from the fact that the
breathing pattern for the first and the fourth kagome bands is
opposite to that for the second and the third kagome bands. To
be more specific,

∣∣T 1,1
i, j|〈i, j〉∈�

∣∣ >
∣∣T 1,1

i, j|〈i, j〉∈�
∣∣,

∣∣T 4,4
i, j|〈i, j〉∈�

∣∣ >
∣∣T 4,4

i, j|〈i, j〉∈�
∣∣, (20)
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FIG. 8. (a) Schematic figure of the finite system used to investigate the corner state in polymerized triptycene containing biphenyl. Orange
circles denote the sites at bottom-left and top-right corners. (b) The energy spectrum for the finite system with (t, t ′, t ′′) = (1, 3, 1.5) and
L = 12 (the number of sites is 1972). Six in-gap states are indicated by light-blue circles; here I is 313th state, II is 818th state, III is 1323th
state, IV is 1804th state, and V and VI, which are degenerate, are 963th and 964th states, respectively. [(c)–(h)] The amplitude of the wave
functions in the real space. (c), (d), (e), (f), (g), and (h) correspond to I, II, III, IV, V, and VI, respectively.

and ∣∣T 2,2
i, j|〈i, j〉∈�

∣∣ <
∣∣T 2,2

i, j|〈i, j〉∈�
∣∣,

∣∣T 3,3
i, j|〈i, j〉∈�

∣∣ <
∣∣T 3,3

i, j|〈i, j〉∈�
∣∣, (21)

are satisfied in the present choice of parameters, (t, t ′, t ′′).
It follows from Eq. (11) that the amplitude of T ξ,ξ

i, j|〈i, j〉∈� is
determined by the real-space distribution of ϕξ . Hence, the
above relations of Eqs. (20) and (21) indicate that ϕ1 and ϕ4
have a large amplitude at the left edge in Fig. 6(b), while ϕ2
and ϕ3 have a small amplitude.

B. Z3 Berry phase

To demonstrate that the corner states we have shown in
the previous subsection are indeed topologically protected, we
calculate the topological invariant that characterizes the HOTI
states, namely, the Z3 Berry phase [30,56–59]. The Z3 Berry
phase is defined with respect to the parameters � = (θ1, θ2),
which is included in the twisted Hamiltonian, H (�). To be
more specific, we define H (�) as follows. First, we pick up an
upward triangle at the unit cell labeled by R0, and decompose
the Hamiltonian as H = h0 + (H − h0), where

h0 = t
(
c†

R0,1
cR0,2 + c†

R0,2
cR0,3 + c†

R0,3
cR0,1

) + H.c.. (22)

Then, we introduce the “twist” of the Hamiltonian only at
h0 as H (�) = h0(�) + (H − h0), where � = (θ1, θ2) with

θ1 ∈ [0, 2π ], θ2 ∈ [0, 2π ], and

h0(�) = teiθ2 c†
R0,1

cR0,2 + te−i(θ1+θ2 )c†
R0,2

cR0,3

+ teiθ1 c†
R0,3

cR0,1 + H.c.. (23)

See Fig. 9(a) for the schematic figure of Eq. (23). Note that
H (�) does not have a translational symmetry due to the local
twist. Now, let |�0(�)〉 be the many-body ground state of
H (�). Then, the Z3 Berry phase is defined as a contour
integral of the Berry connection along the path Cη with η =
1, 2, 3, shown in Fig. 9(b):

γη ≡ −i
∫

Cη

d� · 〈�0(�)|∇��0(�)〉 (mod 2π ). (24)

The (fractional) quantization of γη is enforced by C3 symme-
try of the Hamiltonian. Namely, it is clear from Fig. 9(b) that∑3

η=1 γη ≡ 0 due to the cancellation of the paths, while the C3

symmetry leads to γ1 ≡ γ2 ≡ γ3. Combining these, we have
γη = n 2π

3 with n = 0, 1, 2. In the following, we abbreviate γη

as γ .
The nontrivial Berry phase indicates that the ground state

is adiabatically connected to the product state of the “minimal
clusters” [30,56–59]. Here, the term “minimal means that the
cluster cannot be decomposed into the smaller element under
the restriction imposed by the symmetry, without closing the
energy gap. The minimal cluster can be obtain by switching
off some hoppings in the original tight-binding Hamiltonian
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(b)(a) (c) (d)

 0

 1

 0  0.5  1  1.5  2

(e)

 1/3

 2/3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

(f)

FIG. 9. (a) Schematic figure for the twist introduced in Eq. (23). (b) The paths of the contour integral in Eq. (24) in the parameter space.
[(c) and (d)] The minimal cluster for the Hamiltonian of Eq. (19). (c) is obtained by setting t̃ = 0, while (d) is obtained by setting t = 0. (e) t̃/t
dependence of the Z3 Berry phase for the model of Eq. (19) [i.e., case (i)] with 2/9-filling. The system size used for the computation is 12×12
unit cells. (f) t ′/t ′′ dependence of the Z3 Berry phase for the model of Eq. (18) [i.e., case (ii)] with 5/12-filling. The system size used for the
computation is 8×8 unit cells. The insets in (e) and (f) represent the minimal clusters to which the ground states are connected adiabatically.

[see Figs. 9(c) and 9(d) for the model in Eq. (19)]. In general,
the Berry phase takes nontrivial value when the minimal
cluster contains the bonds where we have introduced the twist
in H (�) [30,56–59].

The decoupled cluster picture indicates that the corner
states appear under the open boundary condition when the
minimal clusters are cut off at the boundaries [30,59]. This
picture provides us of a simple understanding of the bulk-
boundary correspondence [69] in the various symmetry-
protected topological phases. Therefore the quantized Berry
phase serves as a topological invariant for the HOTI phase and
is associated with the emergence of the corner states under
appropriate choices of boundaries.

Turning to the present models, we plot γ for the case (i)
with 2/9-filling and case (ii) with 5/12-filling, in Figs. 9(e)
and 9(f), respectively, as a function of the parameter which
controls the breathing of the kagome bands. Note that we
follow Ref. [55] for the method of the numerical computations
of the Berry phase. We clearly see that the topological phase
transition, associated with the change of the Berry phase,
occurs at the point where the breathing structure is lost, i.e.,
t = t̃ for the case (i) and t ′ = t ′′ for the case (ii). At the
transition point, the bulk band gap at the K point closes as
we have seen in Sec. III.

V. DISCUSSIONS

So far, we have demonstrated that the polymerized trip-
tycene is a promising candidates for the HOTI in the solid-
state systems, by investigating the tight-binding models for
the spinless fermions. In this section, we discuss some per-
spectives beyond the tight-binding analysis.

Firstly, for the observation of the HOTI in the present
system, robustness of the corner states against disorders is
important because disorders exist inevitably in solid-state
systems. In the present system, the HOTI phase is protected
by the C3 symmetry, while disorders break this symmetry.
Hence, it is not trivial whether or not the corner states are
stable against the disorders. In fact, the previous study has
revealed that the corner states in the breathing kagome model
is stable against the nonmagnetic impurities, as far as the bulk
band gap remains to be opened [46]. We therefore expect
that the corner states in polymerized triptycene behave in
the similar way when the disorders are introduced, and thus
can be observed experimentally even in the presence of weak
disorders. Meanwhile, the corner states are sensitive to the
shape of the boundaries. For instance, if we remove of the sites
at left-bottom or right-top corners, the energy of the corner
states will change and they will be buried in the bulk contin-
uum. Thus fabrication of the proper corner shape is important
for experimental observation of the corner states.

Secondly, the effect of electron-electron correlation will
also give rise to interesting properties. To be concrete, con-
sider the effect of the Hubbard interaction. Note that we need
to restore the spin degrees of freedom to consider the Hubbard
interaction. The physical properties in the presence of the
Hubbard interaction are crudely dependent on the Fermi level.
If the Fermi level is right at the flat band, one expects that flat-
band ferromagnetism occurs, as is inferred from the results of
studies based on the spin-dependent density functional theory
for related materials [12–14]. In contrast, if the free-electron
ground state is the HOTI phase, where the Fermi level is
located at the corner-state energy, infinitesimally small on-site
interaction is enough to gap out the charge excitation at the
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corner, i.e., double occupancy of the corner state costs the
finite energy. We can therefore expect that the present system
will be a good candidate to search the higher-order topological
Mott insulator (HOTMI), which was proposed recently for the
breathing kagome model [58].

Finally, we address the experimental observation of the
HOTI phase. To observe the HOTI phase, one has to tune
the filling of electrons such that Fermi level is located in
the middle of the band gap so that two out of three bands
are completely filled for a certain breathing kagome band.
Comparing our tight-binding model and the real material, the
system is either full-filled, if we regard our model as that for
the highest occupied molecular orbital of C6 ring, or totally
empty, for the lowest unoccupied molecular orbital. So, the
electron or hole doping is necessary, and this can be achieved
either by chemical doping or by placing the sample on a
substrate and applying the gate voltage [12].

VI. SUMMARY

To summarized, we have investigated the characteristic
band structures of a family of polymerized triptycene by
the tight-binding models on decorated star lattices. We have
found that this class of tight-binding models is indeed a fertile
ground to realize exotic band structures, such as flat bands,
and HOTIs, which arise from the underlying kagome network.
As for the flat bands, we have demonstrated their existence
by using the MO representation (see Appendix for details).
As for the HOTIs, we have proposed two methods to realize
the HOTIs, and have demonstrated the existence of the HOTI
phase by directly showing the corner states on the finite
system. Further, we have associated the corner states with
the bulk topological invariant, namely the Z3 Berry phase. We
then conclude that these materials are promising candidates
of the HOTI in the solid-state systems.

Similar strategy to realize the HOTI phase can be appli-
cable to various materials hosting the kagome-type network
with tunable hopping parameters. Metal-organic frameworks
with kagome-type network [70,71] will be suitable candidates.
Besides the kagome-type network, similar realization of the
HOTI was proposed in graphdiyne [72,73], where the hexag-
onal plaquettes are interconnected instead of triangles [74,75].
Further, a three-dimensional cousin of the present system has
been also studied [76–78], which will be a candidate for three-
dimensional third-order topological insulator. We expect that
the organic materials with polymerized structures will be a
fertile ground to search the HOTIs.

Note added in proof. Recently, we became aware of the
related work [79] where the flat bands and corner states of the
similar model are studied in the context of 1T-TaS2 in a charge
density wave state [80]. We also found after completing the
present manuscript that the decorated star lattice is formed in
a newly proposed carbon allotrope called cyclicgraphene [81].
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APPENDIX: MOLECULAR-ORBITAL REPRESENTATION:
EXACT TREATMENT OF THE FLAT BANDS

In this Appendix, we clarify the origin of flat bands in the
polymerized triptycene by using the framework which we call
the MO representation [30–32].

As we have shown in the main text, there are q + 2 flat
bands with different energies for the system containing q
phenyls between triptycene molecules. Here, we first explain
how to determine the flat-band energies. Through this pro-
cedure, we find that there are indeed q + 2 flat bands for
generic q. Then, we show the explicit forms of the MOs which
describe the Hamiltonian in the form of (5) for the case with
q = 1. More precisely, we show that for each flat band, the
Hamiltonian matrix HP

k subtracted by the flat-band energy
can be written by eight k-dependent vectors whose inverse
Fourier transformations correspond to what we call MOs in
the previous studies [30,32]. This description of flat-band
models with multiple flat bands was used in Ref. [31], where
the Weaire-Thorpe model [82] was studied.

1. Determination of flat-band energies

Consider the Schrödinger equation

H(q)
k Uk = εUk, (A1)

where H(q)
k is the Hamiltonian in the form

H(q)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

th
�

t1E3 0 · · · · · · 0
t1E3 0 t2E3 · · · · · · 0

0 t2E3 0 · · · · · · 0
...

. . .
...

0 · · · · · · · · · 0 tq+1E3

0 · · · · · · · · · tq+1E3 th
�

k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(A2)

and Uk = (u1,k, u2,k, . . . , u3(q+2),k )T is an eigenvector of H(q)
k .

The Hamiltonian matrix H(q)
k is a generalization of (2)

and (18). We define q + 2 three-component vectors un,k =
(u3n−2,k, u3n−1,k, u3n,k )T, with n = 1, . . . , q + 2, by which Uk

is written as Uk = (u1,k, · · · , uq+2,k)T.
Now, to obtain the flat bands, we assume the following: the

vectors u1,k and uq+2,k respectively corresponding to the wave
functions on an upward triangle and a downward triangle,
satisfy the conditions

[1, 1, 1] · u1,k = 0, (A3)

[eik·a1 , eik·a2 , 1] · uq+2,k = 0. (A4)

These conditions are inferred from the wave function of a flat
band of the kagome lattice [30], and ubiquitous among the
class of models composed of interconnected triangles. From
Eqs. (A3) and (A4), one obtains

h
�

u1,k = −u1,k (A5)

and

h
�

k uq+2,k = −uq+2,k. (A6)

Then, substituting (A5) and (A6) into (A1), we find that the
Schrödinger equation is reduced to the eigenvalue equation
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FIG. 10. Schematic figure for the q + 2-site chain (in a gray box)
described by the Hamiltonian of (A8). Blue triangles at the ends
correspond to th

�

and th
�

k , operation of which gives rise to the
on-site energy −t at the end sites [see Eqs. (A5) and (A6)].

for the matrix whose dimension is q + 2 as

HC
q

⎛
⎜⎝

up,k
...

u3(q+1)+p,k

⎞
⎟⎠ = ε

⎛
⎜⎝

up,k
...

u3(q+1)+p,k

⎞
⎟⎠, (A7)

for p = 1, 2, 3, where

HC
q =

⎡
⎢⎢⎢⎢⎢⎢⎣

−t t1 0 · · · · · · 0
t1 0 t2 · · · · · · 0
0 t2 0 · · · · · · 0

...
. . .

...
0 · · · · · · · · · 0 tq+1

0 · · · · · · · · · tq+1 −t

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A8)

Since HC
q is independent of k, we obtain q + 2 k-independent

eigenvalues, which are nothing but q + 2 flat bands. It is worth
noting that HC

q can be regarded a tight-binding Hamiltonian
of the q + 2-site chain whose end points have the on-site
energy −t (Fig. 10). It means that the flat-band energies can

be obtained by calculating the eigenvalues of the q + 2-site
chain; we emphasized that this is true even when the object
connecting the triangles is not a chain but a generic form of
clusters.

The wave function Uk is obtained as follows. Suppose
that the eigenvector of HM

q is ψ = (ψ1, ψ2, . . . , ψq+2)T. Then,
each component of Uk, ui,k, is given by using three coeffi-
cients, λ1, λ2, and λ3, as

u3(n−1)+p,k = λpψn, (A9)

with n = 1, . . . , q + 2 and p = 1, 2, 3. Then, in order for the
conditions (A3) and (A4) to be satisfied, λp is determined as
(up to the normalization constant),⎛

⎝λ1

λ2

λ3

⎞
⎠ ∝

⎛
⎝1

1
1

⎞
⎠ ×

⎛
⎝eik·a1

eik·a2

1

⎞
⎠ =

⎛
⎝ 1 − eik·a2

eik·a1 − 1
eik·a2 − eik·a1

⎞
⎠. (A10)

For a specific example of q = 1 and t1 = t2 = t ′, which
corresponds to Eq. (2), the flat-band energies are given by the
eigenvalues of the matrix

HC
1 =

⎡
⎣−t t ′ 0

t ′ 0 t ′
0 t ′ −t

⎤
⎦, (A11)

that are ε = −t, 1
2 (−t ± √

t2 + 8t ′2), as shown in Sec. III.

2. Explicit forms of the projection operators

Here, we show the explicit forms of φ
( j)
p,k of Eq. (6).

Firstly, as for the flat band at −t , we have

H̄(1)
k = HP

k + tE9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
(1)
1,k

φ
(1)
2,k

φ
(1)
3,k

φ
(1)
4,k

φ
(1)
5,k

φ
(1)
6,k

φ
(1)
7,k

φ
(1)
8,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h(1)
k

[
φ

(1)†
1,k , φ

(1)†
2,k , φ

(1)†
3,k , φ

(1)†
4,k , φ

(1)†
5,k , φ

(1)†
6,k , φ

(1)†
7,k , φ

(1)†
8,k

]
, (A12)

where φ
(1)
1,k = (1, 1, 1, 0, 0, 0, 0, 0, 0)T, φ

(1)
2,k = (0, 0, 0, 0, 0, 0, e−ik·a1 , e−ik·a2 , 1)Tφ

(1)
3,k = (1, 0, 0, 0, 0, 0, 1, 0, 0)T, φ

(1)
4,k =

(0, 0, 0, 1, 0, 0, 0, 0, 0)T, φ
(1)
5,k = (0, 1, 0, 0, 0, 0, 0, 1, 0)T, φ

(1)
6,k = (0, 0, 0, 0, 1, 0, 0, 0, 0)T, φ

(1)
7,k = (0, 0, 1, 0, 0, 0, 0, 0, 1)T,

φ
(1)
8,k = (0, 0, 0, 0, 0, 1, 0, 0, 0)T, and

h(1)
k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t 0 0 0 0 0 0 0
0 t 0 0 0 0 0 0
0 0 0 t ′ 0 0 0 0
0 0 t ′ t 0 0 0 0
0 0 0 0 0 t ′ 0 0
0 0 0 0 t ′ t 0 0
0 0 0 0 0 0 0 t ′
0 0 0 0 0 0 t ′ t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

From Eq. (A12), we see the eight out of nine degrees of freedom are described by φ
(1)
p,k, therefore the remaining 1 mode, which

is the kernel of �
(1)
k , has to be a zero-energy mode for H̄k. For the original Hamiltonian Hk, it corresponds to the flat band with

the energy −t .
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Similarly, for the flat band at − 1
2 (t + √

t2 + 8t ′2), we can rewrite the Hamiltonian as

H̄(2)
k = Hk + 1

2
(t +

√
t2 + 8t ′2)E9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
(2)
1,k

φ
(2)
2,k

φ
(2)
3,k

φ
(2)
4,k

φ
(2)
5,k

φ
(2)
6,k

φ
(2)
7,k

φ
(2)
8,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h(2)
k

[
φ

(2)†
1,k , φ

(2)†
2,k , φ

(2)†
3,k , φ

(2)†
4,k , φ

(2)†
5,k , φ

(2)†
6,k , φ

(2)†
7,k , φ

(2)†
8,k

]
, (A13)

where φ
(2)
1,k = (1, 1, 1, 0, 0, 0, 0, 0, 0)T, φ

(2)
2,k = (0, 0, 0, 0, 0, 0, e−ik·a1 , e−ik·a2 , 1)T, φ

(2)
3,k = (x1, 0, 0, x2, 0, 0, 0, 0, 0)T, φ

(2)
4,k =

(0, 0, 0, x2, 0, 0, x1, 0, 0)T, φ
(2)
5,k = (0, x1, 0, 0, x2, 0, 0, 0, 0)T, φ

(2)
6,k = (0, 0, 0, 0, x2, 0, 0, x1, 0)T, φ

(2)
7,k = (0, 0, x1, 0, 0, x2,

0, 0, 0)T, φ
(2)
8,k = (0, 0, 0, 0, 0, x2, 0, 0, x1)T, and

h(2)
k = diag[t, t, 1, 1, 1, 1, 1, 1],

with x1 =
√√

t2+8t ′2−t
2 and x2 =

√√
t2+8t ′2+t

4 .

Finally, for the flat band at − 1
2 (t − √

t2 + 8t ′2), we have

H̄(3)
k Hk + 1

2
(t −

√
t2 + 8t ′2)E9 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ
(3)
1,k

φ
(3)
2,k

φ
(3)
3,k

φ
(3)
4,k

φ
(3)
5,k

φ
(3)
6,k

φ
(3)
7,k

φ
(3)
8,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

h(3)
k

[
φ

(3)†
1,k , φ

(3)†
2,k , φ

(3)†
3,k , φ

(3)†
4,k , φ

(3)†
5,k , φ

(3)†
6,k , φ

(3)†
7,k , φ

(3)†
8,k

]
, (A14)

where φ
(3)
1,k = (1, 1, 1, 0, 0, 0, 0, 0, 0)T, φ

(3)
2,k = (0, 0, 0, 0, 0, 0, e−ik·a1 , e−ik·a2 , 1)T, φ

(3)
3,k = (y1, 0, 0,−y2, 0, 0, 0, 0, 0)T,

φ
(3)
4,k = (0, 0, 0,−y2, 0, 0, y1, 0, 0)T, φ

(3)
5,k = (0, y1, 0, 0,−y2, 0, 0, 0, 0)T, φ

(3)
6,k = (0, 0, 0, 0,−y2, 0, 0, y1, 0)T, φ

(3)
7,k =

(0, 0, y1, 0, 0,−y2, 0, 0, 0)T, φ
(3)
8,k = (0, 0, 0, 0, 0,−y2, 0, 0, y1)T, and

h(3)
k = diag[t, t,−1,−1,−1,−1,−1,−1],

with y1 = √
2x2 and y2 = x1√

2
.
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