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Tomographic reconstruction of triaxial strain fields from Bragg-edge neutron imaging
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This paper presents a proof-of-concept demonstration of triaxial strain tomography from Bragg-edge neutron
imaging within a three-dimensional sample. Bragg-edge neutron transmission can provide high-resolution
images of the average through thickness strain within a polycrystalline material. This poses an associated rich
tomography problem which seeks to reconstruct the full triaxial strain field from these images. The presented
demonstration is an important step toward solving this problem, and toward a technique capable of studying
the residual strain and stress within engineering components. A Gaussian process based approach is used that
ensures the reconstruction satisfies equilibrium and known boundary conditions. This approach is demonstrated
experimentally on a nontrivial steel sample with use of the RADEN instrument at the Japan Proton Accelerator
Research Complex. Validation of the reconstruction is provided by comparison with conventional strain scans
from the KOWARI constant-wavelength strain diffractometer at the Australian Nuclear Science and Technology
Organisation and simulations via finite-element analysis.
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I. INTRODUCTION

Bragg-edge neutron transmission techniques provide a
means for obtaining lower-dimensional (one- or two-
dimensional) strain images from higher-dimensional (two- or
three-dimensional) strain fields within polycrystalline mate-
rials [1,2]. The success of these techniques [3–6], and the
development of associated instruments [7–13] and detectors
[1,5,14], has prompted research into the tomographic recon-
struction of strain, i.e., strain tomography. This research aims
to provide methods analogous to conventional computed to-
mography (CT) whereby the complete triaxial strain distribu-
tion within a sample could be reconstructed from a sufficient
set of strain images. As the strain field is a tensor, this is a
more complex task than conventional scalar CT.

If successfully developed, methods for the tomographic
reconstruction of strain fields from these images could be
used to study the residual elastic strain and stress within
engineered components. Residual stresses are those which
remain after applied loads are removed, for example due to
heat treatment or plastic deformation. Residual stresses may
have a significant and unintended impact on a component’s
effective strength and service life, particularly its fatigue life.
A full field analysis of these stress and strains could have a
significant impact on several areas of experimental mechanics.
In particular, it could be used to study the residual stress
within additively manufactured, laser-clad, preened, welded,
cast, forged, and/or otherwise processed components. This
full field analysis would have significant advantages over de-
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structive and semidestructive techniques [15–19], and would
be complementary to pointwise x-ray and neutron diffraction
methods [20–24].

Strain tomography falls into the class of “rich” tomography
problems where the projected strain image is related to an un-
known tensor field. The acquisition and analysis of these strain
images is described in detail elsewhere [1,3,25]. Summarizing
this process, the relative transmission of neutron pulses with
known wavelength-intensity spectra through the sample is
measured at a pulsed neutron source [e.g., the Japan Proton
Accelerator Research Complex (J-PARC) in Japan, ISIS in
the United Kingdom, or the Spallation Neutron Source in
the USA]. For example, current state-of-the-art microchannel
plate detectors [14] are capable of measuring the transmitted
spectra over an array of 512 × 512 pixels with a pixel size of
55 μ m. From these data, the position of a given Bragg edge
(a sudden increase in transmitted intensity as a function of
wavelength) is observed at each pixel within the array. The
relative position of a Bragg edge provides a measure of strain
at each pixel of the form

〈ε〉 = λ − λ0

λ0
, (1)

where λ is the wavelength at which the Bragg edge occurs, λ0

is the corresponding Bragg-edge wavelength in a stress-free
sample, and the following apply:

(1) As with all diffraction measurements, only the elastic
component of strain is measured.

(2) The measured strain is the normal component in the
direction of the transmitted neutron beam.

(3) The measurement corresponds to a through-thickness
average along the path of the corresponding ray.
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FIG. 1. A two-dimensional representation of the longitudinal ray
transform. A ray of direction n̂ enters the sample at p and has a
through-thickness length of L. The ray represents the path taken
through the sample by neutrons arriving at the pixel with which the
measurement is associated.

The strain measured at each pixel can be related to the
strain field using the longitudinal ray transform (LRT) [26,27].
With the inclusion of measurement error this gives a measure-
ment model as

y = 1

L

∫ L

0
n̂Tε(n̂s + p)n̂ ds + e, (2)

where the LRT geometry is defined in Fig. 1 and e is the
measurement error term, which is assumed to be zero-mean
Gaussian with standard deviation σ . Estimating the strain field
given a set of LRT measurements is made more complex as
the LRT mapping is noninjective [27,28]. This means that if
the strain field components are considered independent, then
infinitely many fields could produce the same set of measure-
ments. The null space of the LRT poses a significant challenge
to the development of methods for strain tomography.

Strain tomography is an emerging field and research has
been undertaken by a small number of groups, providing
several methods to reconstruct two-dimensional strain fields.
With the exception of [29] the majority of recent research has
been undertaken by our own group. Several special cases have
been considered including axisymmetric systems [26,29–33]
and granular systems [34]. More arbitrary strain fields caused
by in situ loadings have been successfully reconstructed by
assuming compatibility [35,36]. Methods for reconstructing a
broader class of strain fields (i.e., residual strains caused by
manufacturing processes) have been developed by ensuring
the strain field satisfies equilibrium [37–39]. Outside the
field of strain tomography, neutron imaging has a range of
applications from neutron radiography and tomography of ge-
omaterials [40] to phase and texture imaging using diffraction
contrast techniques [41], and Anderson et al. [42] is a good
reference for the interested reader.

Recently, a Gaussian process based approach suitable for
modeling and estimating three-dimensional strain fields has
been presented for simulated high-energy x-ray measurements

[43]. Here, following the success of this approach, we present
a Gaussian process based approach for neutron transmission
strain tomography, and provide an experimental proof-of-
concept demonstration.

II. RECONSTRUCTION APPROACH

The reconstruction approach is modified from the method
presented by Hendriks et al. [43]. This approach models the
strain field by a Gaussian process (Rasmussen and Williams
[44] provide a good introduction), and ensures that the re-
constructed strain field satisfies the physical properties of
equilibrium; this method assumes the sample to be linearly
elastic and isotropic (i.e., without texture). Ensuring the strain
field satisfies equilibrium is critical as the LRT mapping (2)
has a nontrivial null space [27] (i.e., without these constraints
a unique solution to the inverse problem does not exist). By
enforcing equilibrium the null space is reduced to contain only
the trivial field, giving a unique solution to the problem [39].

Gaussian processes are suitable for the modeling and
estimation of spatially correlated phenomena. The use of
Gaussian processes to model and estimate strain fields was
pioneered in Jidling et al. [38]. By modeling the Airy stress
function, a scalar potential field, by a Gaussian process a
solution to the two-dimensional stress (and hence strain) could
be given that satisfies equilibrium in the absence of body
forces. This method can be extended to three dimensions for
which the Beltrami stress functions are used instead of the
Airy stress function. The Beltrami stress functions consist of
six unique potential fields from which a complete solution to
the equilibrium equations in three dimensions can be given
[45]. These potential fields are each modeled by a Gaussian
process allowing a triaxial strain field satisfying equilibrium
to be reconstructed.

In addition to equilibrium, boundary conditions can be
included following the work by Hendriks et al. [39]. Knowl-
edge about unloaded surfaces for which the distribution of
applied forces, known as tractions, is known to be zero can
be incorporated. This can be done by including artificial
measurements of zero traction at points on the surface not
subject to an applied load. This provides information about
the stress of the form

0 = nT
⊥σ(xb), (3)

where xb is a point on an unloaded surface, σ is the triaxial
stress field, and n⊥ is the unit vector perpendicular to the sur-
face. Hooke’s law can then be used to relate this information to
the strain field, improving the reconstruction near the sample’s
boundary.

A detailed description of the method and its implementa-
tion is given by Hendriks et al. [43]. This requires only minor
modification to the measurement model and the inclusion of
traction measurements. The measurement model requires a
slight modification due to the difference between high-energy
x-ray and neutron transmission strain measurements. For
high-energy x-ray strain measurements, the measured strain
direction, denoted κ̂, is almost perpendicular to the ray direc-
tion n̂, whereas for neutron transmission strain measurements
the direction of measured strain is aligned with the ray, and so
κ̂ = n̂. Additionally, a large variation in strain measurement
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FIG. 2. Left: The sample (dark gray) and plug (light gray) assembly, as well as the coordinate systems used. Middle left: Cross section
plane 1 used for validation with KOWARI and FEA. Middle right: Cross section plane 2 used for validation against KOWARI and FEA. Right:
Cross section plane 3 used for validation against FEA. For section planes 1 and 2, the location of the KOWARI measurements are shown in
orange. Note that gauge volume orientation shown is indicatively only, as it varies for each component of strain measured.

uncertainty is observed and therefore the method is modified
so that each measurement can be assigned its own standard
deviation. In essence this weights the importance of each
measurement according to its confidence given by the strain
imaging process. Details of these modifications are given in
the Appendix.

In this paper, this approach is used to reconstruct the
strain field within an EN26 steel sample from a set of strain
images. The sample, load case, and strain image acquisition
are described in Sec. II A. The resulting strain field is validated
by comparison with conventional diffraction strain scans and
finite-element analysis (FEA) results, which are described in
Sec. II B. The reconstructed strain field and a comparison with
the validation data are given in Sec. II C; potential sources of
error are also discussed in this section.

A. Sample design and strain imaging

The method is applied to a set of strain images collected
on the RADEN energy-resolved-neutron-imaging instrument
at J-PARC [8,9] of an EN26 steel (medium carbon, low alloy)
sample. The sample consisted of a 17 × 17 × 17 mm steel
cube with a precision ground hole of diameter 12mm along
the diagonal. A load was applied by a 40 ± 2 μ m interference
fit, i.e., shrink fit, with a titanium plug. The sample and plug
are shown in Fig. 2.

Prior to assembling, the sample was heat treated to relieve
stress and provide a uniform tempered-martensite (i.e., fer-
ritic) structure with minimal texture, and with a final hardness
of 290 HV. The sample was assembled by first inserting the
plug into a cylinder with an interference fit of 40 ± 2 μ m,
after which a cube with 17 mm sides was milled from the
cylinder and plug.

This sample and loading setup was designed to provide
a smooth three-dimensional strain field suitable for the first
demonstration of three-dimensional strain tomography. This
has additional advantages for validation as FEA of strain re-
sulting from interference fits is a more straightforward process
than FEA of strain fields resulting from plastic deformation.

To this end, a titanium plug was chosen as strain within
the plug was “invisible” to the strain imaging process. This
is because titanium does not have a Bragg-edge near the
steel Bragg-edge that was chosen for analysis (see Fig. 3).

As a result, the titanium plug can be ignored during the
reconstruction process and considered as imparting an in situ
load on the interior face of the hollow cube.

Strain images were measured using a microchannel plate
detector (512 × 512 pixels, 55 μm per pixel) [14] at a distance
of 17.9m from the source. Each image required 2.5 hours of
beam time. At the time of the experiment (January 2019) the
source power was 500 kW. Pixels were grouped together into
macropixels of 24 × 24 giving sufficient neutron counts to
provide a reasonable edge fit, giving a final strain image of
21 × 21 macropixels, each with a resolution of 1.3mm. It is
worth noting that this does correspond to the resolution of the
final reconstruction and this is discussed more in Sec. II C.

Each macropixel provides a strain measurement of the
form (1) where the Bragg-edge position was found follow-
ing the procedure given by Santisteban et al. [3] applied
to the (110) Bragg-edge. The undeformed location λ0 was

FIG. 3. Bragg-edge height map for a projection that aligned the
beam direction and the plug. This illustrates that the titanium plug
does not contribute to the Bragg edge chosen for analysis.
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FIG. 4. (a) Sample positioning. The sample, detector, goniometer, and beam direction are shown. The goniometer enabled rotation in
azimuth and elevation. The x axis of the sample was aligned with the beam and the z axis aligned with vertical. (b) The measurement directions
corresponding to the azimuth and elevation used for the strain images. The coordinates of the blue and orange points correspond to the x, y, z
components of the direction unit vectors. The region between the purple and green line represents the achievable elevation range of 0 to 52◦.
As such, measurement directions represented by the orange points required the sample to be rotated.

determined from a stress-free sample. The resulting strain
measurements had, on average, an uncertainty of standard
deviation σ = 2.7 × 10−4. This measurement uncertainty is
higher than previously achieved in two-dimensional strain
tomography experiments [36,37]. However, further increasing
the macropixel size did not provide a sufficient decrease in
uncertainty to warrant the loss in strain image resolution.
Additionally, a systematic bias in the edge fit as a function
of the measurement path length was observed. This effect
was previously described in Vogel [46] and Gregg et al. [37],
although the exact mechanism is yet to be established. Fol-
lowing Gregg et al. [37], a linear correction was applied to λ0.

In total 70 strain images were collected. For these images
the sample was positioned using a two-axis goniometer, which
allowed rotation in azimuth and elevation [see Fig. 4(a)].
Limitations of the experimental setup restricted the achievable
elevation angles to the range from 0 to 52◦. Therefore, in
order to cover the full range of measurement directions, the
sample was repositioned by rotating 90◦ about the y axis
for the final 11 strain images. The measurement directions
corresponding to azimuth and elevation angles used are shown
in Fig. 4(b). Since the LRT is symmetric, measurements
with opposite directions provide the same information. Hence,
only measurement directions covering one hemisphere are
required.

The exact geometry of each neutron ray passing through
the sample before reaching the detector is required to model
the measurements by the LRT (2). In addition to designing a
sample holder to carefully position the sample, an optimiza-
tion routine was run to determine the remaining orientation
offsets and the offsets between the center of rotations. The
optimization maximized the sum of Bragg-edge heights as-
sociated with rays that would pass through the sample for a
given choice of offsets.

Strain fields were reconstructed from this set of strain
images using the Gaussian process method described earlier
with the inclusion of 400 measurements of zero traction
evenly distributed on each of the exterior faces.

B. Validation data

Validation relies on comparison with conventional strain
scans [21–23] from the KOWARI constant-wavelength strain
diffractometer at the Australian Nuclear Science and Technol-
ogy Organisation [47,48] and finite-element analysis (FEA).
The strain scans provide measurements of the 6 components
of strain on two section planes (33 points on plane 1 and
45 points on plane 2). As with all diffraction methods, these
measurements correspond to the average strain inside gauge
volumes. These gauge volume locations were chosen on two
section planes that were expected to exhibit strong skew
symmetry and therefore help to validate a larger region of
the reconstruction. The section planes and gauge volume
locations are shown in Fig. 2.

These measurements were based on the relative shift of the
(211) diffraction peak measured with neutrons of wavelength
λ = 1.67 Å (90◦ geometry) and a 1.0 × 1.0 × 1.0 mm3 gauge
volume. The {211} and {110} lattice planes have effectively
the same diffraction elastic constants [49]; therefore the re-
sults from the transmission and diffraction experiments can be
directly compared without rescaling or recalculation to stress.
Sampling times with the KOWARI diffractometer were based
on providing uncertainty in strain around 1 × 10−4, which
required 60 hours. The long sampling times required for the
comparatively small gauge volumes meant that only a portion
of each section plane could be measured.

While only a small amount of the strain field can be verified
using the strain scanning measurements, the full reconstructed
strain field can be compared to FEA results to provide further
validation. Comparison of the reconstruction to the FEA
results is made for the three section planes shown in Fig. 2.

C. Results and discussion

The reconstructed strain field is shown together with strain
scans made on the KOWARI diffractometer and FEA results
in Figs. 5 and 6. As the KOWARI strain scans cover only a
region of section planes 1 and 2, comparison between all three
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FIG. 5. Comparison of the KOWARI strain scans, the reconstruction from RADEN strain images, and FEA results. Shown is the region
on section plane 1 for which KOWARI strain scans were made. The KOWARI strain scans correspond to measured averages within the
1 × 1 × 1 mm3 gauge volumes and so are shown as a constant value within representative gauges to best reflect this.

sets is made in these regions only. Example MATLAB code to
perform this reconstruction and produce the strain plots shown
in this paper is available on Github [50].

Comparison of the KOWARI strain scans, the RADEN
reconstruction, and the FEA results shows good agreement in
general. However, some specific differences can be noted:

(1) In the εzz component of plane 1, the reconstruction
shows a region of tension in the bottom right that is also
present in the strain scans but is not seen in the FEA.

(2) In the εyz and εxz components of plane 1, the recon-
structed strain has the same shape but a greater magnitude than
the FEA strain and it is not clear whether this is supported in
the strain scans.

(3) In the εyy component of plane 2, the reconstructed
strain field has a region of compression also present in the
FEA but not seen in the strain scans.

When making these comparison it is important to remem-
ber that the KOWARI strain scans are themselves measure-
ments which are relatively noisy (1 × 10−4 standard devia-
tion) and are averages over the gauge volumes; this in some
cases makes comparison difficult. In particular, the εxz and
εyz components of plane 1 and the εxx and εyz components of
plane 2 appear particularly noisy.

The FEA strain fields and the reconstructed strain fields are
available for the entire sample allowing comparison over the
entire section planes 1, 2, and 3; these are shown in Figs. 7,
8, and 9, respectively. A selection of strain components is
shown for each section plane so that all components are shown
at least once. This comparison indicates that the reconstruc-
tion shows close agreement with the FEA strain fields on
plane 2 and plane 3. The shape of the reconstructed strain
field is very similar with the main difference being noted

FIG. 6. Comparison of the KOWARI strain scans, the reconstruction from RADEN strain images, and FEA results. Shown is the region
on section plane 2 for which KOWARI strain scans were made. The KOWARI strain scans correspond to measured averages within the
1 × 1 × 1 mm3 gauge volumes and so are shown as a constant value within representative gauges to best reflect this.
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FIG. 7. The strain field reconstructed from the RADEN strain images and the FEA strain field for section plane 1.

in slightly reduced magnitudes and the peak strains are less
concentrated. There is a slightly greater difference between
the reconstruction and FEA results observable in plane 1,
particularly in the εxz and εzz components. However, at least
for the εzz component some of this difference is supported by
the KOWARI strain scans which also showed the region of
tension present in the bottom right. Additionally, as the strain
fields are skew symmetric this would lend some support to the
region of tension present in the top left of this component.

From these results, a quantitative assessment of the dis-
crepancies between the KOWARI strain scan measurements
and the reconstruction as well as between the reconstruction
and the FEA results was carried out. In both cases the dif-
ferences are mean zero and Gaussian, implying that there is

no systematic error or bias resulting from the reconstruction
technique. The differences between the KOWARI strain scans
and the reconstruction are calculated by taking gauge volume
style averages of the reconstructed strain field and com-
paring these to the KOWARI measurements. The resulting
differences have an average magnitude of 48 μStrain. The
discrepancies between the FEA and reconstructed strain fields
have an average magnitude of 145 μ Strain.

Although the reconstruction shows, in general, good agree-
ment with the FEA results and KOWARI strain scans, some
differences have been noted and these differences may be
attributed to several sources. First, the number and quality
of strain measurements acquired are less than have been
previously achieved in two-dimensional strain tomography

FIG. 8. The strain field reconstructed from the RADEN strain images and the FEA strain field for section plane 2.

113803-6



TOMOGRAPHIC RECONSTRUCTION OF TRIAXIAL STRAIN … PHYSICAL REVIEW MATERIALS 3, 113803 (2019)

FIG. 9. The strain field reconstructed from the RADEN strain images and the FEA strain field for section plane 3.

experiments. In total, 14 000 strain measurements were ac-
quired with an average standard deviation of 2.7 × 10−4 com-
pared to approximately 20 000 with a standard deviation of
1 × 10−4 in previous two-dimensional experiments [36,37].

This is in part due to the trade-off between macropixel
size and uncertainty in the Bragg-edge fits. While smaller
macropixels (16 × 16 pixels) would give better resolution
in the strain image, the measurement standard deviations
would be increased to around 3.4 × 10−4. Conversely, larger
macropixels (32 × 32) could be used to decrease the measure-
ment standard deviation to around 2.3 × 10−4; however the
resolution in the strain image would be made worse. This is in
contrast to two-dimensional geometry where the assumption
of no out-of-plane strain variation meant the pixels could be
binned into columns without affecting the resolution of the
resulting one-dimensional strain image.

It is important to highlight that this measurement uncer-
tainty does not directly correspond to the uncertainty in the
reconstructed strain field. Since the reconstruction relies on
combining information from multiple strain images, it can
have lower uncertainty than the individual strain measure-
ments. A benefit of the Gaussian process method used is that it
also gives an estimate of the reconstruction’s standard devia-
tion (i.e., the uncertainty in the estimate). For the presented re-
construction, the average standard deviation was 4.1 × 10−5,
which is marginally better than the neutron diffraction strain
measurements used for validation.

Further, the resolution of the strain images, given by
the macropixel size, does not explicitly correspond to the

resolution of the reconstruction. Although analogous to con-
ventional CT, the reconstruction method used is fundamen-
tally different. This method does not break the region into
discrete voxels; instead it provides a continuous smooth es-
timate of the strain field where the maximum rate of change
is automatically adapted to suit the available data. This means
the idea of a reconstruction resolution does not directly apply.
Instead, we could look at the maximum strain gradient that can
be captured in the reconstruction. For instance, by applying
the method to a sample with a step change in strain and
analyzing the distance over which this change occurs in the re-
construction an equivalent “resolution” could be determined.
Since the LRT is only defined within the sample, this step
change must be internal, ruling out the application of this
idea to our sample. While the reduced peak magnitudes are
in part due to the inherent smoothing and as such related to an
equivalent resolution, these reductions in magnitude are also
due to low certainty in measurements of these regions as a
result of small Bragg-edge heights and macropixel binning.
Hence, an important study for future research would be to
apply the method to a sample with an internal step change
in strain.

The impact of the binning to form macropixels is partic-
ularly significant in regions near the sample boundary, for
example in the corners where the plug and sample intersect.
These regions contain a small amount of material and so
the averaging effect of the LRT means that the strains are
poorly sampled. Additionally, the smaller amount of material
means that the Bragg-edge height of any strain measurements
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passing predominately through these regions is reduced,
resulting in poorer measurement confidence. When combined
with the macropixel averaging and inherent smoothing of the
Gaussian process method, this results in the peak strains in
these regions being somewhat obscured. This issue may be
somewhat alleviated in future experiments at J-PARC with an
expected source power increase to 1MW over the next few
years.

Differences between reality and the FEA model may also
account for some of the observed discrepancies. The sample
was milled into a cube from a typical ring and plug. Dur-
ing this process it was not possible to ensure the plug was
perfectly on the diagonal of the cube. This would account
for the measured strain fields (KOWARI and RADEN) not
being entirely skew symmetric and for some of the difference
between these fields and the FEA strain field. Additionally, the
milling process itself may have introduced residual stresses
not accounted for in the FEA model. Finally, the peak stresses
are around the yield strength of the material which could
result in effects such as hardening and account for differences
between the measured strain fields and the FEA strain field.

III. CONCLUSION AND FUTURE WORK

A proof-of-concept demonstration for triaxial strain recon-
struction from neutron transmission strain images has been
provided. Strain images were collected using the RADEN
energy-resolved-neutron-imaging instrument at J-PARC. The
reconstructed strain field was validated by comparison with
conventional strain scans from the KOWARI diffractometer
and FEA results and shows good agreement.

The reconstruction was performed using a Gaussian pro-
cess based method that ensures the resulting strain field satis-
fies equilibrium. This is achieved by using the Beltrami stress
functions to provide a complete solution to the stress (and
strain) fields in three dimensions. The reconstruction provides
a smooth, continuous estimate of the strain field throughout
the entire sample.

The reconstructed strain field was developed within a hol-
lowed EN26 cube by an in situ loading created by interference
fitting a titanium plug. Although this strain field is compatible,
the method is applicable to a broader class of problems,
for example residual strains, as it makes no assumption of
compatibility. To this end, future work involves the plan-
ning of a three-dimensional residual strain experiment. This
could also involve adapting the Gaussian process model to
be more suitable for strain fields exhibiting rapid changes or
discontinuities.

This is an important step toward the development of strain
tomography techniques that can be applied to complex engi-
neered components. While comparison with neutron diffrac-
tion measurements was used for validation, we would argue
that these methods are complementary rather than opposing.
These methods are substantially different; neutron diffraction
can measure the average strain within a gauge volume at a
specific location, whereas tomography methods attempt to
reconstruct the entire strain field. Therefore, we would suggest
diffraction measurements are a good choice if a specific region
of interest is known, while tomographic methods, such as the

one presented in this paper, provide a good alternative if the
user wishes to analyze the full field.

Additionally, it was noted that the strain measurements
were fewer and of poorer quality than has been previously
achieved and that this may have affected the accuracy of the
reconstruction. Although this issue may be somewhat allevi-
ated by an increase in source power, future work will also
investigate full pattern fitting methods [51–53] which could
provide better measurement statistics by analyzing multiple
Bragg edges. Full pattern fitting may also provide a path
to extending the method to samples that contain significant
texture.

Finally, future work should also investigate methods for
validating the results when other data sets are not available,
such as cross validation [54].
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APPENDIX: MODIFICATIONS TO THE METHOD

This section provides details on the required modifica-
tions to the method presented in Hendriks et al. [43]. This
method is modified to adapt the measurement model from
one suitable to high-energy x-ray measurements to a model
suitable for Bragg-edge neutron transmission measurements,
to use individual variances for each each measurement, and to
include artificial traction measurements (following Hendriks
et al. [39]). This method models the strain field as a Gaussian
process,

ε̄ ∼ GP (0, Kεε (x, x′)), (A1)

where ε̄ = [εxx εyy εzz εxy εxz εzz]
T is a vector of the unique

components of strain, and Kεε (x, x′) is a covariance function
designed to ensure all estimated strain fields satisfy equilib-
rium.

Since both the LRT (2) and the traction measurement
model are linear operators, the strain field estimate at location
x∗, denoted as ε̄∗, and the measurements are jointly Gaussian,

⎡
⎣ y

T
ε̄∗

⎤
⎦ = N

⎛
⎜⎝

⎡
⎣0

0
0

⎤
⎦,

⎡
⎢⎣

Kyy + �n KT
Ty KT

yε

KTy KT T + σ 2
T I KT

εT

KεI KεT Kεε

⎤
⎥⎦

⎞
⎟⎠,

(A2)

where y and T are vectors of all the LRT and traction
measurements, respectively. Here, �n is the variance matrix
with the variance of each LRT measurement as an entry on
the diagonal, σt is a small variance placed on the traction
measurements for numerical stability, and the required modi-
fications are described in the following.
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Within [43] the high-energy x-ray strain measurements
were modeled using the line integral

y = 1

L

∫ L

0
κ̂Tε(n̂s + p)κ̂ ds + e, (A3)

which differs from the LRT (2) only in that the measure-
ment direction κ̂ is a unit vector almost perpendicular to the
direction of the ray n̂. Hence the method is easily adapted
by substituting κ̂ = n̂, giving the covariance between a strain

estimate and the ith measurement, yi, as

(K∗)i = 1

Li

∫ Li

0
Kε (x∗, pi + n̂is

′)n̄T
i ds′, (A4)

where n̄ = [n2
x n2

y n2
z 2nxny 2nxnz 2nynz]. The covariance be-

tween each pair of measurements, yi and y j , is similarly given
by

(KI )i j = 1

LiL j

∫ Li

0

∫ L j

0
n̄iKε (pi + n̂is, p j + n̂ j s

′)n̄T
j ds′ds. (A5)

Following the work by Hendriks et al. [39], a traction measurement can be modeled as

Ti =
⎡
⎣n⊥1 0 0 0 n⊥2 n⊥3

0 n⊥2 0 n⊥1 0 n⊥3

0 0 n⊥3 n⊥1 n⊥2 0

⎤
⎦C

︸ ︷︷ ︸
H

ε̄(xs), (A6)

where xb is a load-free point on the surface with surface normal n⊥ = [n⊥1 n⊥2 n⊥3], and C is the stiffness matrix for
isotropic materials from Hooke’s law:

C = E

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1 − 2ν 0 0
0 0 0 0 1 − 2ν 0
0 0 0 0 0 1 − 2ν

⎤
⎥⎥⎥⎥⎥⎦

. (A7)

Here we will represent the mapping from an estimate of
strain to the kth traction measurement as Tk = Hk ε̄∗, which
allows the following covariance to be given:

(KεT )k = Kεε (x∗, xsi )HT
k , (A8)

and the covariance between traction measurement Tk and LRT
measurement yi as

(KTy)ki = 1

Li

∫ Li

0
HkKε (x∗, pi + n̂is

′)n̄T
i ds′. (A9)

Finally, the covariance between a pair of traction measure-
ments Tk and Tq is given by

(KT T )qk = HqKεε (x∗, xsi )HT
k . (A10)

Once the values for the LRT measurements are known, we
can give the strain estimates by using conventional Gaussian
conditioning. The rest of the implementation details are the
same as those in Hendriks et al. [43].
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