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tilting transitions in halide perovskites
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Octahedral tilting transitions are observed in most inorganic halide perovskites and play an important role
in determining their functional and thermodynamic properties. Despite existing near room temperature, the
cubic and tetragonal forms of halide perovskites become dynamically unstable at low temperature, making it
impossible to study their thermodynamic properties with commonly used quasiharmonic models. An anharmonic
vibrational Hamiltonian is constructed that accurately reproduces the low-energy portion of the potential-energy
surface of the halide perovskite CsPbBr;. The Hamiltonian is validated using a large first-principles dataset of
energies calculated within density functional theory for large-amplitude deformations of the CsPbBr; crystal.
Monte Carlo simulations performed on the Hamiltonian reproduce the orthorhombic-tetragonal-cubic phase
transitions observed in CsPbBr; and many other halide perovskites, demonstrating the importance of anharmonic
vibrational excitations in stabilizing the tetragonal and cubic phases in these materials. Measures of local
structure and octahedral tilting in the cubic and tetragonal phases, obtained from Monte Carlo simulations,
confirm the connection between large anisotropic displacement factors and octahedral tilting, as observed

experimentally.
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I. INTRODUCTION

The past decade has seen impressive increases in power
conversion efficiencies of halide perovskite-based photo-
voltaic devices [1]. Halide perovskites differ from most other
electronic materials in that their unique electronic properties
are strongly affected by vibrational excitations. Their soft
anharmonic crystals result in Rashba-Dresselhaus splitting of
the conduction band [2-7] and give rise to strong electron-
phonon interactions that allow for large polaron formation
[8-10]. Anharmonic vibrational excitations also play a key
role in the structural phase transitions of halide perovskites.
Most halide perovskites undergo a series of group/subgroup
structural phase transitions upon cooling as a result of
symmetry-breaking octahedral tilts. The inorganic CsPbBrs
perovskite, for example, is stable in the cubic Pm3m phase
at elevated temperature but transforms to a tetragonal phase
having P4/mbm symmetry at intermediate temperature and
an orthorhombic phase with Pnma symmetry at very low
temperatures [11-19].

The cubic and tetragonal forms of halide perovskites distin-
guish themselves from most other room-temperature phases
in that they are usually dynamically unstable at zero Kelvin
with respect to octahedral tilt modes [5,14,20-25]. Figure 1,
for example, shows an energy landscape, as calculated with
an approximation to density functional theory, of CsPbBr; in
the perovskite crystal structure as a function of two collective
octahedral tilt modes [20]. The cubic form, referred to as
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o, resides at the origin in Fig. 1 and its energy corresponds
to a local maximum. The tetragonal phase g is obtained
from the cubic phase by the activation of in-phase tilt modes
about the z-rotation axis with amplitude a, denoted (00a™) in
Glazer notation [26]. Its energy is a saddle point. The low-
temperature orthorhombic phase y emerges from the tetrag-
onal phase by the activation of two simultaneous antiphase
tilts about the x and y rotation axes, resulting in the (b~b~a™)
tilt pattern. As is clear from Fig. 1, only the orthorhombic
phase resides in an energy well. The negative curvatures in
the energy landscape for the cubic and tetragonal symmetries
show that these phases are dynamically unstable and cannot
be described with harmonic vibrational Hamiltonians, where
the potential energy is expanded to only second order in terms
of atomic displacements. The emergence of the cubic and
tetragonal forms of CsPbBrj at elevated temperature must
therefore arise from large anharmonic vibrational excitations.

Several approaches exist to model anharmonic lattice dy-
namics and temperature-dependent structural phase transi-
tions. A direct approach is to perform ab initio molecular
dynamics (AIMD) simulations to calculate thermodynamic
averages as a function of temperature [25,27-29]. AIMD,
however, is computationally expensive and limited to short
times and small supercell sizes. Approaches that rely on self-
consistent [30] or constrained [31,32] extensions of harmonic
phonon analyses have shown promise for approximating the
free energies of anharmonically stabilized phases, although at
the expense of discarding information about dynamical phe-
nomena in the high-temperature phase. Still other approaches
rely on anharmonic effective Hamiltonians to interpolate
and extrapolate expensive first-principles calculations within
large-scale Monte Carlo simulations. These were developed
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FIG. 1. (a) Many halide perovskites such as CsPbBr; undergo a
series of structural transitions upon cooling, starting in a cubic form
at high temperature and transforming to tetragonal and orthorhombic
forms at low temperature as a result of octahedral tilts. (b) The
energy surface of CsPbBr3 as a function of octahedral tilts, calculated
with density functional theory for configurations with orthorhom-
bic lattice parameters. For each configuration, the PbBrs sublattice
and lattice parameters were held fixed while the Cs sublattice was
allowed to relax. The energy surface shows that the cubic phase o
coincides with a local maximum, the tetragonal phase 8 resides at a
saddle point, and the ground-state orthorhombic phase y corresponds
to a stable minimum. (Crystal structures are visualized using the
VESTA program suite [50].)

early on to study polar and octahedral tilt distortions in oxide
perovskites [33—45] and have been refined in recent years
to study other classes of group/subgroup structural phase
transitions [46—49].

The aim of this study is to elucidate the group/subgroup
structural phase transitions involving octahedral tilts in in-
organic halide perovskites. To this end, we develop a min-
imal anharmonic vibrational Hamiltonian that captures the
essential physics of the orthorhombic to tetragonal to cubic
structural transitions of inorganic halide perovskites such as
CsPbBr3. We parametrize the Hamiltonian to approximate the
first-principles potential-energy surface of CsPbBr; near its
observed perovskite phases to develop a model that faithfully
reproduces the dynamical instabilities exhibited by common
halide perovskites. We then explore the finite temperature
behavior of this Hamiltonian with Monte Carlo simulations
and demonstrate that the cubic and tetragonal phases emerge

at elevated temperature, in spite of the fact that they reside
at local maxima or saddle points on the zero-Kelvin energy
landscape. The use of a minimal anharmonic vibrational
Hamiltonian allows us to parametrically isolate the role of par-
ticular interactions in affecting the nature of structural phase
transitions in halide perovskites due to octahedral tilt modes.
We explore how small changes in the energy surface of Fig. 1
manifest themselves in the finite temperature behavior and
find that changes in the interaction strength between halides of
neighboring octahedra can have a strong influence on the finite
temperature stability of the intermediate tetragonal form.

II. METHOD

We express the potential-energy surface of a crystal as
a sum of contributions due to individual clusters of sites,
according to [51]

EC...0,..)=E+ Y ®u(qf.....qL). (D

Ey is the energy of a specified reference crystal, and the
i; are displacement vectors of the sites i relative to their
position in the reference crystal. The contribution from a
cluster o is a function of variables g7, ..., qﬁu that measure
the degree to which the cluster is distorted relative to its
state in the reference crystal. The set of clusters {«} typically
comprise pair clusters and compact multibody clusters such as
tetrahedra and octahedra. Defining the variables 47, . . ., g, to
be invariant to rigid translations and rotations of the distorted
cluster ensures that the energy expression is itself invariant
to rigid translations and rotations of the crystal. In studying
group/subgroup structural phase transitions, it is common to
use the high-symmetry phase as the reference crystal. The
symmetry of the reference crystal then imposes additional
constraints on the cluster functions &, to ensure that any
two displacement fields that are equivalent under a symmetry
operation of the reference crystal have the same energy.
There are multiple ways to arrive at variables that rig-
orously describe deformations of a cluster « relative to its
undistorted shape in a reference crystal [47,51]. One is to
rely on distances, d;, between each constituent pair, /, of sites
within cluster « in its deformed state. Each pair distance d; is
invariant to rigid translations and rotations of cluster «, and
knowledge of all pair distances of a cluster is sufficient to
reconstruct the cluster up to a rigid translation and rotation.
Since we are interested in deformations of a cluster relative
to its undistorted state in a reference crystal, it is more
convenient to work with functions of pair distances f(d;) that
are zero in the reference state. Several possible functional
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FIG. 2. (a)Linear (blue), quadratic (green), and logarithmic (red)
pair functors plotted as a function of pair distance. The refer-
ence pair distance is denoted as dy, and the dotted line represents
f(d) = 0. (b) The square of the different pair functors are plotted.
The log functor is used in this study in order to penalize pair
contraction over pair expansion giving rise to volumetric expansion
upon heating.

where d; represents the reference pair distance. A suitable
pair-deformation function satisfies three constraints: (1) f
is monotonic; (2) the slope of f at d; = dy is 1 /571; and
(3) f(d;) = 0. As is evident from Fig. 2, the log function is
particularly useful to model the energy of a crystal since it
penalizes pair contraction more heavily than pair expansion,
thereby naturally accounting for the typical behavior of solids
to become softer upon volumetric expansion.

While the f(d;) evaluated for all constituent pairs of the
cluster could by themselves serve as descriptors of the cluster
deformation, it is more convenient to work with collective
cluster deformation (CCD) variables, which are symmetry-
adapted linear combinations of the f(d;) according to

qe =Y Uuf(dy). (5)
l

The Uy are elements of a matrix U that transforms a
vector having elements {f(d;)} to a new vector Q% =
(qY,....qf -..) representing collective distortions of the
cluster . The matrix U is chosen such that the resulting CCD
variables can be grouped into distinct subspaces correspond-
ing to irreducible representations (irreps) of the cluster point
group P¢ (this is the subgroup of the crystal space group
that maps the reference cluster « onto itself). As an example,
Fig. 3 illustrates the CCDs generated in this manner for an
octahedral cluster and a pair cluster. The octahedron CCDs ¢,
¢, and g3 of Fig. 3, for instance, define a three-dimensional
CCD subspace corresponding to an individual irrep. A sym-
metry operation acting on a CCD vector within this subspace
can map it to a new vector within the subspace having the
same length, but it cannot map it to a new vector having a
component corresponding to any other irreducible represen-
tation. Similarly, any volumetric deformation is completely
encompassed by the one-dimensional irrep corresponding to
the gy CCD. Detailed definitions of the octahedral CCD
variables, including the geometry of the undeformed reference
cluster, are provided in the Supplemental Material [52].

With robust collective cluster deformation variables that
are both translation and rotation invariant, we next establish
a functional form for the cluster functions &, of Eq. (1).
Similar to the anharmonic vibrational cluster expansion [47],
we express @, as a linear expansion of polynomials of

(a) octahedron

qo q1 é q2 qs
q gs de qr qs
q9 q1 q1
(b) pair
e
%% qi q1

FIG. 3. Collective cluster deformations (CCDs) for (a) an oc-
tahedron and (b) a pair. The octahedral CCDs are organized by
irreducible representations, with one 1D irrep, one 2D irrep, and four
3D irreps. A pair cluster has only one CCD corresponding to the pair
distance.

0" =gqf..... g, according to

Do (0%) = Y VI (0%), (6)

where V¥ are expansion coefficients, referred to as ef-
fective cluster interactions (ECI), that are determined by
the chemistry of the crystal, and ¢; (Q%) are polynomials
of the elements of $%. The polynomials must be invariant to
the symmetry of the cluster within the reference crystal. For
instance, although the second-order functions g7, ¢3, and g3 of
the octahedron cluster are not symmetry invariant, the func-
tion (¢ + 3 + ¢3) is symmetry invariant, since deformations
along q, g2, and g3 are related by symmetry. A complete set
of polynomials {¢; (0)} that are invariant to the relevant sym-
metries of the parent phase can be constructed systematically
using the Reynold’s operator, as described in Ref. [47].

In general, it is necessary to include several different
cluster types in the expansion of Eq. (1). For the perovskite
crystal structure, for example, a minimal Hamiltonian should
include the octahedron, along with a variety of pairs not
already included in the octahedron. All clusters 8 that can be
mapped onto a prototype cluster « by a symmetry operation
of the parent crystal structure are said to belong to the orbit
of &, denoted as ,. Any two cluster functions ¢# and ¢
corresponding to clusters belonging to the same orbit, €2,
have the same set of expansion coefficients V,*. The total
energy of the crystal can then be expressed as

EC.. 0 ..)=E+Y. Y > Vah@"., ()
a BeQ, n

where o indexes the unique cluster types, B indexes the
symmetrically equivalent clusters within the orbit €2,, and n
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TABLEI. Basis functions and fitting coefficients as parametrized
from the neural-network model.

Cluster function  ECI*  ECI value (meV) Basis function
qDCsBr V() 70.035 4q0
Vi —14.314 a
V, —19.616 a
Vs 9.093 qs
Dcgpy Vo —4.236 40
1% 11.276 a
Dy, Vo —3.620 90
Vi 8.687 q
qDCsCs V() —24.677 40
Vi 49.844 q
q)PbBr(, VO —267.550 qo
Vi 215.810 q
V, —32.585 a
Vs 5.605 a4
Vi 157.590 E+E+aq
Vs 23.388 @ +a+a3)
Ve 121.620 a+q
Vs 6.324 (q; + ¢3)*
Vi 25.468 @+¢+aq;
Vo 0.986 @+ +aq3)
Vio 16.996 % +qio + a1
Vi 0102 (g3 +qhy+4h)
Via 1171 i + 413 + i,
Vi3 0.045 (a1, + 415 + 414)°

2ECI stands for effective cluster interaction.

indexes the basis functions for that type of cluster, «. In princi-
ple, there are an infinite number of basis functions per cluster,
but, in practice, only basis functions up to second, fourth, or
sixth order are used. An example of the basis functions ¢, and
fitting coefficients used in this study are presented in Table I.
The expansion coefficients V,* can be determined by training
the energy expression, Eq. (7), to a large dataset of energies
calculated for many different distorted states of the crystal.

III. RESULTS

A. Anharmonic vibrational cluster expansion
model for perovskites

We formulated a model Hamiltonian for CsPbBr; within
the anharmonic potential cluster-expansion framework [47] as
a linear expansion of polynomial basis functions according
to Eq. (7). The minimal anharmonic vibrational Hamiltonian
was constructed starting from a neural-network model of
the CsPbBrj potential-energy surface described in Ref. [51].
Each cluster-based interaction in that model is computed via
an artificial neural network, which is a hierarchical model
comprising layers of simple nonlinear functions weighted
by free parameters. The free parameters can be adjusted to
approximate arbitrary functions, allowing high fidelity to the
training data, though with nontrivial computational overhead
and a tendency towards overfitting. Details of how various
neural-network architectures may be formulated for a crys-
talline system are provided in Ref. [51].

We parametrized the minimal anharmonic vibrational
Hamiltonian utilized in this work by fitting the polynomial
interaction of each cluster to data generated by its corre-

sponding neural network from [51]. In doing so, we obtain
a computationally efficient energy expression that captures
salient features of the potential-energy surface of CsPbBrs
while avoiding overfitting. The error of the resulting Hamil-
tonian was tested against the validation set of over 30 000
density functional theory (DFT)-calculated energies utilized
to train the original neural-network model [53]. This proce-
dure resulted in a model with total root-mean-square error
of 0.0277 eV /atom for all validation samples and of 0.0024
eV /atom for validation samples having DFT-calculated ener-
gies below the reference cubic energy. The CASM library was
employed for constructing symmetry-invariant basis functions
and parametrizing the anharmonic vibrational Hamiltonian
[47,54-56].

The results of the fitting procedure are the effective cluster
interaction coefficients listed in Table I. The anharmonic
vibrational Hamiltonian includes terms for the PbBrg octa-
hedron cluster and for four pair clusters: Cs—Br, Cs—Pb,
Cs—Cs, and Br—Br. Several polynomial basis functions in
terms of the cluster CCDs are included for each cluster. As
shown in Table I, the nearest-neighbor CsBr pair energy and
the octahedral cluster energy were expanded to fourth order in
terms of their CCDs, while the remaining pairs were expanded
only to second order. Figures 4(a)—4(e) show the clusters that
are included in the anharmonic vibrational Hamiltonian along
with depictions of their contribution to the total energy as a
function of gy, which is a measure of a symmetry-invariant
deformation of each cluster.

Figure 5 shows that the anharmonic vibrational Hamilto-
nian reproduces many of the qualitative features of the DFT
energy surface of CsPbBr; within the subspace of octahe-
dral tilt modes that connect y, B8, and « (fixing the unit-
cell dimensions to those of the orthorhombic unit cell). The
Hamiltonian, based upon only four pairs and one octahedral
cluster, is capable of reproducing the minima corresponding
to orthorhombic y, the saddle point for tetragonal B, and the
local maximum for cubic «. Furthermore, it also correctly
predicts a saddle point for the orthorhombic distortion corre-
sponding to the € phase, which, in a manner that is similar
to tetragonal B, separates pairs of translational variants of
the ground-state y phase. The energy of this saddle point,
however, is overestimated by 7.6 meV /atom relative to the
DFT-calculated value. At regions of large tilts the minimal
anharmonic model severely overestimates the energy. This
is likely an artifact of fitting only to deformations near the
minima, thereby resulting in an overestimation of the energy
for large deformations. The comparison in Fig. 5 shows that
the anharmonic cluster expansion qualitatively reproduces the
DFT energy landscape in a small, but important subspace of
all possible vibrational excitations that are possible relative to
a cubic perovskite crystal. We emphasize that the validation
dataset includes a large number of energies corresponding
to homogeneous distortions and internal displacements that
reside outside of the subspace shown in Fig. 5. More details
can be found in Ref. [51].

B. Finite temperature properties

The energy surface of Fig. 1 gives preliminary insights
about the types of structural phase transitions that can occur
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FIG. 4. (a)-(e) Symmetrically equivalent clusters (top panel) and evaluated cluster energy function (bottom panel) as a function of gq
(volumetric deformation) for each cluster included in the anharmonic vibrational Hamiltonian.

as a function of temperature. At low temperatures, the crystal
will sample states within an energy well corresponding to the
orthorhombic y-phase ground state. Figure 1 shows four of
these energy wells corresponding to the translational variants
of the same orthorhombic orientational variant, of which there
are six [20]. At sufficiently low temperatures, the vibrational
excitations are harmonic and restricted to the bottom of one
of the wells. Upon heating, the crystal is able to sample
more energetically unfavorable states. The shallow and highly
anharmonic energy surface of Fig. 1 indicates that anharmonic
vibrational excitations should already become important at
low temperatures. Above a particular temperature, there is
sufficient thermal energy for the crystal to no longer be
constrained to a single orthorhombic well. Figure 1 shows the

60
40 4

energy (meV/atom)
N N
o o o

A
o
p

in-phase tilt anti-phase tilt

FIG. 5. Potential energy landscape of the minimal anharmonic
vibrational Hamiltonian (solid) compared to the DFT energy land-
scape (mesh). Energy barriers through the € phase and 8 phases
are depicted and labeled AE,_.. and AE,_ g, respectively. The
minimal Hamiltonian reproduces many of the qualitative features
of the DFT energy landscape; however, it overestimates the energy
barrier AE,, ...

existence of shallow valleys connecting pairs of translational
variants of y with a tetragonal 8 residing at a saddle point
separating each pair of y variants. We can expect the emer-
gence of an averaged crystal having tetragonal 8 symmetry
once the available thermal energy allows the crystal to escape
a particular orthorhombic well of Fig. 1. At even higher
temperature, the crystal is able to escape the valley centered
around the tetragonal 8 symmetry and start sampling a larger
part of phase space that has on average cubic symmetry.

It is important to note that the energy surface in Fig. 1
represents homogenous deformations to the crystal, while a
real crystal will sample a much higher dimensional space of
microstates, since each local environment is free to sample
states relatively independently of other local environments.
The anharmonic vibrational Hamiltonian allows us to sam-
ple this high-dimensional space of microstates within Monte
Carlo simulations where thermodynamic averages and local
correlations can be calculated. These averages provide insight
about the nature of anharmonic vibrations that stabilize the
tetragonal and cubic phases at elevated temperature.

Finite temperature Monte Carlo simulations using the
Metropolis-Hastings algorithm were performed on the an-
harmonic cluster expansion to investigate structural phase
transitions as a function of temperature. During each Monte
Carlo pass, atomic displacement perturbations and homoge-
nous strain perturbations were proposed such that, on average,
each site in the crystal is visited once. Strain perturbations
were proposed in a ratio of 1:100 to atomic perturbations.
Thermodynamic averages are computed once the system has
equilibrated, typically around 2000-4000 passes, and aver-
ages were taken for 4000 passes. Monte Carlo simulations
were initialized at low temperature with the ground-state
structure. Thermodynamic averages of the deformation tensor,
(F), from which strains can be calculated [47,57], and atomic
displacements, (i), were used to analyze the evolution of
local and average structure as a function of temperature.
Simulations were performed in a 8,640-atom 12 x 12 x 12
supercell of the CsPbBrj; primitive cell, except where noted.

Figure 6 shows the temperature dependence of averaged
strain order parameters [S8] as calculated with Monte
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FIG. 6. (a) Thermodynamically averaged strain order parame-
ters as calculated with Monte Carlo simulations applied to the
anharmonic cluster expansion of Table I. (b) Thermodynamically
averaged displacement covariances were used to compute the atomic
displacement parameters (ADPs). The ADP ellipsoids enclose 90%
of the cumulative probability density of atomic motion.

Carlo simulations applied to the anharmonic cluster
expansion of Table I. The strain order parameters, ey, ..., ¢,
are symmetry-adapted linear combinations of the Hencky
strains measured relative to a cubic reference state of
perovskite, with the Cartesian axes aligned parallel to
the cubic perovskite primitive unit-cell vectors [58]. The
first strain order parameter, e;, measures shape-preserving
volumetric change. The other five strain order parameters
measure symmetry changes relative to the cubic reference
and are zero in the cubic phase. The pair of order parameters
(ea, e3) describes tetragonal and/or orthorhombic symmetry
breaking, with e3 describing tetragonal deformations along the
z axis. The subspace (ey, es, €¢) describes shear strain, with
e¢ describing tetragonal-orthorhombic symmetry breaking
relative to the z-oriented tetragonal phase. In short, the
tetragonal phase 8 can be distinguished from the cubic phase
by a nonzero e; order parameter, while the orthorhombic
phase y has nonzero e; and eg order parameters [20]. Figure 6
shows that the orthorhombic phase is predicted to be stable
at low temperature where e3 and eg differ from zero. At high
temperature, the crystal adopts an average cubic structure
as only the volumetric strain order parameter e; is nonzero.
While it is not immediately evident from Fig. 6, the inset
suggests a very narrow temperature interval centered at 270 K
in which the tetragonal phase becomes stable, as manifested
by a nonzero e;.

In addition to tracking variations in average lattice param-
eters and symmetries with temperature, we can also analyze
local atomic displacements. To this end, we collected thermo-
dynamically averaged atomic coordinates and displacement
covariance matrices, U;; = (u;u;) — (u;)(u;), for each atom
(where i and j represent Cartesian components of the atomic

T T T T T Ll T
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§-10 W &?320 ]
5 [ E@ | 1¢ :
e 20 [ 'E'(v) 7 & 280 ; -

m—a—y - ] L 1

0.00  0.02 0.00  0.02
ECI VBB (eV) ECI VBB (eV)

FIG. 7. (a) Energies of y, 8, and € relative to undistorted o (set
equal to zero) as a function of V™" while keeping the relative values
of all other coefficients of the anharmonic vibrational Hamiltonian
of Table I constant (all Hamiltonian coefficients were rescaled to
maintain a constant difference in energy between y and «). (b) Tran-
sition temperatures as a function of V;2'®". The temperature interval in
which the tetragonal 8 phase is stable increases as the energies of 8
and € decrease relative to those of y. The dashed gray line indicates
an effective cluster interaction (ECI) of 0.018 eV and is the model
used to investigate local octahedral tilt environments.

displacement vector #). The displacement covariance matri-
ces define an anisotropic Gaussian probability distribution
for atomic displacements and are used to compute thermal
ellipsoids at 90% probability contours in Fig. 6(d) for the
observed orthorhombic, tetragonal, and cubic phases. The
structures reproduce the tilt modes and A-cation displace-
ments of the experimentally observed y and o phases. Re-
markably, the atomic displacement parameters show excellent
qualitative agreement to those observed experimentally for
the halide perovskite CsSnBr; [14]. In particular, the high-
temperature cubic phase shows very large pancake-shaped Br
atomic displacement parameters (ADPs), indicating a high
degree of motion in only one plane. These correspond to large-
amplitude and highly anharmonic lattice dynamics associated
with octahedral tilting of the PbBr¢ inorganic sublattice.

C. Stabilizing the tetragonal phase

The anharmonic vibrational Hamiltonian of Table I, while
reproducing the experimentally observed y to B and the 8
to « structural phase transitions exhibited by many inorganic
halide perovskites, stabilizes the tetragonal S phase in only
a very narrow temperature interval (Fig. 6). Experimental
studies of halide perovskites usually show a larger temper-
ature interval in which the tetragonal phase is stable. It is
possible to increase the predicted stability window of the
tetragonal B phase by parametrically adjusting the expansion
coefficients of the anharmonic vibrational Hamiltonian of
Table I. Figure 7(a), for example, shows that the stability
of B relative to y and o can be enhanced by increasing the
first-order term, VOBrBr , of the Br-Br pair-cluster function [i.e.,
Vo in ®gp:(q0) = Vogo + qué]. An increase in the value of
VP™®r has the effect of shifting the minimum in the Br-Br
pair-cluster function to smaller distances relative to its refer-
ence distance in the cubic phase. As is clear from Fig. 7(b),
increasing V™" lowers the saddle-point energy of g relative
to that of y and «. It also lowers the energy of the other
saddle point corresponding to the orthorhombic e variant
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FIG. 8. (a) Thermodynamically averaged strain order parameters
from Monte Carlo simulations using an anharmonic vibrational
Hamiltonian that stabilizes the B phase over a wide temperature inter-
val (see text for more details). Representative structures are shown in
(b), along with thermodynamically averaged ADP ellipsoids, which
enclose 90% of the cumulative probability density of atomic motion.

but slightly increases the gap between B and €. In varying
VB parametrically, we rescaled all other parameters of the
anharmonic vibrational Hamiltonian such that the energy
difference between y and « remains constant. Monte Carlo
simulations performed on supercells containing 1728 unit
cells at 5-K temperature increments show that an increase
in V2™ results in a divergence of the ¥ to B and the B to
« transition temperatures, thereby widening the temperature
interval in which g is stable [Fig. 7(b)].

Figure 8 shows thermodynamically averaged strain or-
der parameters as calculated with an anharmonic vibrational
Hamiltonian in which V™" has a value corresponding to the
dashed line in Fig. 7 and all other parameters of Table I are
rescaled to maintain a constant energy difference between y
and «. Also shown in Fig. 8 is the average structure at different
temperatures along with the ADPs derived from the thermo-
dynamically averaged displacement covariance matrices. This
reparametrized anharmonic vibrational Hamiltonian exhibits
a much more robust range of stability for the tetragonal S
phase. Both the orthorhombic and cubic phases show the same
distinctive behavior as predicted by the original Hamiltonian
of Table I; however, the tetragonal phase shows an additional
anisotropy of the Cs displacements with a football-shaped
thermal ellipsoid.

D. Octahedral tilts across transitions

The phase transitions in inorganic halide perovskites are
often described in terms of the collective tilt modes of the
halide sublattice. We explored the local environment due
to octahedral tilts as shown in Fig. 9 with the anharmonic
vibrational Hamiltonian used to calculate the properties of
Fig. 8. At each temperature, we collected extrinsic Euler
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g 01t 1t 1 F .
Q‘ b= ~ - - - E
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R.(¢) Rry(0) R.(y)

FIG. 9. (a) Diagram of the extrinsic Euler rotations about the x, y,
and z rotation axes denoted by ¥, ¢, and 6, respectively. Histograms
of octahedral rotation angles are shown for (b) 400, (c) 300, and
(d) 200 K, representing the distribution of tilts in the cubic, tetrag-
onal, and orthorhombic phases, respectively. Histogram data was
averaged for a 8 x 8 x 8 simulation cell and fit with Gaussian kernel
density estimation. (e) Order parameter plots show the maxima of the
octahedral tilt histograms as a function of temperature. In the cubic
to tetragonal transition, the tilts along x and y go to zero, while the
tilts along z go to zero only during the tetragonal to cubic transition.

rotation angles for all octahedra in the simulation cell after
every Monte Carlo pass. Euler angles were extracted by first
applying the Kabsch algorithm to each octahedron to find the
optimal rotation matrix that minimizes the squared distances
between the deformed and reference octahedra. The rotation
matrix was then decomposed into elementary extrinsic Euler
angles, R.(¢), Ry(9), and R, (), which represent rotations
about the Cartesian x, y, and z axes, respectively.

Figure 9(b) shows histograms of the individual octahedral
rotations in each phase. In the orthorhombic phase there exist
bimodal peaks in the distribution for each Euler angle. In
these simulations the in-phase rotation takes place about the
z axis, while the out-of-phase rotations occur along the x and
y axes. There is a progression in octahedral rotations between
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the orthorhombic and tetragonal phases as the bimodal peaks
along x and y combine to a single peak centered at zero in the
tetragonal phase. Likewise, the in-phase tilting peaks coalesce
into one peak centered at zero upon heating to the cubic phase.
The distributions are shown as a function of temperature in
Fig. 9(e), where the average rotation angles can serve as order
parameters through the two phase transitions.

IV. DISCUSSION

The cubic and tetragonal forms of many halide perovskites
are predicted to be dynamically unstable at zero Kelvin by
DFT electronic structure methods. Nevertheless, these phases
exist at finite temperature, often even at room temperature.
The anharmonic vibrational Hamiltonians introduced in this
study allow us to understand the finite temperature properties
of halide perovskites. They faithfully reproduce important
features of the energy surface of typical inorganic halide
perovskites and are validated against a large database of first-
principles energies for large-amplitude deformation states of
CsPbBr; perovskite [51]. Remarkably, Monte Carlo simula-
tions utilizing this Hamiltonian predict the thermodynamic
stability of the cubic and tetragonal phases at elevated temper-
ature, in spite of the fact that they are dynamically unstable at
zero Kelvin.

The Monte Carlo simulations also enable characterization
of local structural features as a function of temperature. The
bimodal distribution of thermodynamically averaged octa-
hedral tilt angles coalesce into one peak, centered at zero,
upon passing through the tetragonal-cubic phase transition.
Although the average octahedral rotation angles are zero in
the cubic phase, their distributions indicate large local devia-
tions from the high-symmetry phase. Hence our Monte Carlo
simulations suggest that the material is on average cubic, but
large octahedral tilt modes are still present, consistent with ex-
perimental observations [5]. Moreover, the calculated thermal
ellipsoids qualitatively match those observed experimentally
in similar halide-perovskite chemistries. These results suggest
that anharmonic vibrational excitations play a determining
role in the wide variety of electronic and mechanical proper-
ties of halide perovskites and should be explicitly accounted
for when studying these properties.

The anharmonic vibrational Hamiltonian of the present
study can be viewed as a cousin of other lattice Hamiltonians,
such as the Ising model, the Heisenberg model, and the rigid
rotor cluster expansion [59-66]. It is remarkable that the rich
physics of structural phase transitions in perovskites due to
octahedral tilts can be predicted with a Hamiltonian consisting
of only an elastically deformable octahedron and four pair
interactions. Although the interaction potential for the PbBrg
octahedron is globally convex and nearly harmonic, the CsBr
pair-cluster interaction shown in Fig. 4(a) has a minimum at a
bond length that is shorter than in the reference cubic crystal.
The low-temperature dynamical instability of the o and 8
phases thus appears to arise wholly due to pairs whose optimal
bond length cannot be realized in either high-temperature
phase, in qualitative agreement with perspectives on
perovskite structural phase transitions based on the
Goldschmidt tolerance factor. The parametrized Hamiltonian
corresponds to a Goldschmidt tolerance factor that is less than

1 for CsPbBrj, which indicates that the A-site cation (Cs in
CsPbBr3) is undersized and therefore undercoordinated in the
cubic symmetry. Octahedral tilting occurs in the perovskites
with a Goldschmidt factor less than 1 upon cooling in order
to satisfy the coordination environment of the A-site cation.

While the anharmonic vibrational Hamiltonians of this
work are capable of predicting the essential physics of the
structural transitions of halide perovskites, further refine-
ments of the Hamiltonian are possible. As an example, our
parametric study of the anharmonic vibrational Hamiltonian
indicates that a decrease in the optimal length of Br-Br
pairs, achieved by increasing the first-order coefficient V8",
enhances the stability of the tetragonal phase relative to the
cubic phase. Other coefficients are likely to affect the se-
quence of octahedral tilt-phase transformations in different
ways. The inclusion of more or higher-order cluster interac-
tions may result in models that can capture more complex
symmetry-breaking phenomena while also achieving higher
fidelity to ab initio validation data. A higher-order interaction
function for the PbBrg octahedron would be able to describe
instabilities within the octahedron itself, for example, due
to Pb off-centering. As presented, the minimal anharmonic
Hamiltonian does not account for electrostatic interactions,
which are important in more ionic crystals and tend to die off
more slowly than those due to covalent bonds. These can be
captured by adding longer-range pair clusters or by explicitly
correcting for dipole-dipole interactions, which follow well-
known functional forms in reciprocal space [67]. The qualita-
tive changes in the phonon dispersion near I', such as LO-TO
splitting, that result from explicit consideration of electrostatic
effects have minimal impact on the phonon density of states
and therefore on integrated properties such as free energies.
Consequently, it is typically unnecessary to incorporate a
rigorous electrostatic treatment in a model Hamiltonian to
accurately predict thermodynamic equations of state. The
minimal anharmonic Hamiltonian can also be combined with
tight-binding Hamiltonians to develop a Hamiltonian that
describes both electronic and anharmonic vibrational degrees
of freedom. These are left to future studies.

V. CONCLUSIONS

In this work, we developed an anharmonic vibrational
Hamiltonian based on descriptors of cluster deformations
that is capable of capturing the qualitative features of tilt
transitions in halide perovskites. The Hamiltonian is able to
reproduce low-energy DFT configurations with a high degree
of accuracy and qualitatively reproduce the energy landscape
associated with octahedral tilts. Monte Carlo simulations
showed that a minimal anharmonic vibrational Hamiltonian is
capable of predicting the complex phase sequence of octahe-
dral tilt modes in halide perovskites observed experimentally.
The simulations demonstrated that the cubic and tetrago-
nal forms of CsPbBr3, which are predicted to be dynami-
cally unstable at zero Kelvin, emerge at finite temperature
as a result of large anharmonic vibrational excitations. An
analysis of octahedral tilt statistics in Monte Carlo simula-
tions shows that the cubic and tetragonal phases only adopt
those symmetries on average, exhibiting large octahedral tilts
around their average tilt angles. These results suggest the
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importance of anharmonic vibrational excitations in determin-
ing the electronic, thermodynamic, and mechanical properties
of room-temperature halide perovskites.
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