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Ion intercalation was recently used to explore two-dimensional (2D) transition metal dichalcogenides (TMDs)
with precise tuning of ion concentration in a field-effect-transistor configuration. However, how to systematically
change the properties of 2D TMDs, e.g., superconductivity and charge density waves, by ion intercalation has not
been explored. We report in this paper results of electrical transport measurements on 2D crystals of 2H-TaSe2

intercalated with Li ions that is tuned continuously by ionic gating. Shubnikov–de Haas magnetoconductance
oscillation and Hall coefficient measurements on crystals of 2H-TaSe2 revealed an ion intercalation induced
multi- to single-band change in the Fermi surface (FS) topology, deep in the charge density wave phase, resulting
in a reduction of the number of independent channels for electronic conduction. A remarkable crossover from
weak antilocalization to weak localization tuned by gate voltage or temperature was found and attributed to
the ion intercalation induced variations in the spin-orbital coupling and electron-phonon interaction. These
observations provide new insight into the enhancement of superconductivity and the suppression of charge
density waves in 2D 2H-TaSe2 induced by ion intercalation and demonstrate furthermore the great potential
of ion intercalation for engineering electronic properties of 2D TMDs.

DOI: 10.1103/PhysRevMaterials.3.104003

I. INTRODUCTION

Motivated by the broad need to develop battery-based
energy storage technologies, ion intercalation into materials
suitable for these applications has been pursued intensively in
recent years. Layered transition metal dichalcogenides (TMD)
featuring a van der Waals interlayer coupling are capable of
hosting ions in its various interstitial sites, making TMDs an
important class of electronic materials for ion intercalation
studies. In this regard, intercalation of organic molecular ions
in layered TMDs was used to systematically increase the
spacing between the layered unit cells to infer the intrinsic
properties of the monolayer TMD [1]. The discovery of
mechanical exfoliation preparation of single-unit-cell crystals
of TMD have not only made true monolayer materials widely
available, but also opened new directions of research ranging
from the valley Hall effect [2], to Ising superconductivity
[3,4], to topological quantum spin Hall effect [5–8].

Intercalating ions of a metal into an electronic material,
on the other hand, renders material engineering of different
aspects, including the electron/ion conduction [9], optical
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[10], and electrochemical [11,12] properties. For example, it
was found that intercalating Li ions into SmNiO3 suppresses
the electronic conduction and enhances the ionic conduction
simultaneously through the formation of a nonconducting
phase of a Mott insulator [13–15], demonstrating an approach
to an enhanced ionic conduction. Intercalating Cu ions into
TiSe2 was found to suppress the critical temperature of charge
density wave (CDW) and induce superconductivity (SC), most
likely by enhancing the effect of electronic correlations [16],
adding a fundamental science aspect to the ion intercalation
studies of TMDs.

Hexagonal TaSe2, referred to as 2H-TaSe2, featuring an
ABAB stacking, where A and B each represents a Se-Ta-Se
trilayer stack, is a metallic TMD possessing both CDW and
SC orders. While the SC order in the bulk was found only
at very low temperatures, T SC

c = 0.15 K [17], a CDW order
occurs below Tc

CDW = 122 K (with an additional lock-in tran-
sition at 90 K) [18,19], the highest among metallic 2H-TMDs
[20]. Because of the very high Tc

CDW, this material has been an
important CDW material for addressing the outstanding issues
concerning the formation of CDW, as well as the interplay
between CDW and SC.

The effect of ion intercalation on 2H-TaSe2 properties
has been studied previously. Intercalation of Na or Cs [21]
and K ions [22] into 2H-TaSe2 were found to change the
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FIG. 1. Sample characterization. (a) Illustration of Li intercala-
tion into 2H-TaSe2 and the first Brillouin zone. (b) Illustration of
3 × 3 CDW superlattice. (c) Longitudinal electrical resistivities of a
10-nm-thick crystal at 2 K with B//c. Inset: The low field dependent
resistivity close to B2 behavior. (d) Field dependent resistivity with a
smooth background subtracted showing Shubnikov–de Haas oscilla-
tions (SdHO) and corresponding fast Fourier transform (FFT). Two
frequencies of 253 and 407 T were obtained, corresponding to FS
pockets centering the � and the K or K ′ points, respectively.

band structure and suppress CDW. For the Li intercalation of
2H-TaSe2, Mössbauer spectroscopy [23] studies in the bulk
also revealed a change in the valence of Ta, from Ta4+ to
Ta3+, suggesting bonding between Li and Se ions. Raman
spectroscopy studies of 2H-TaSe2 intercalated by organic
molecules of NH2CH2CH2NH2 (EDA) revealed enhanced
influence of the crystal lattice on CDW order [24]. Ionic
conduction in a Li ion intercalated 2D crystal of 2H-TaSe2

was measured in a partially covered ionic field effect transistor
device, leading to the determination of the diffusion constant
for the Li ions and insight into intercalation phases controlled
reasonably reversibly by ionic gating [25]. However, no sys-
tematic studies of ion intercalation into 2H-TaSe2 or any
other TMDs aimed at manipulating their material properties
including the interplay between CDW and SC in a device
configuration, have been carried out.

II. RESULTS AND DISCUSSION

The normal-state crystal structure and the first Brillouin
zone (BZ) of 2H-TaSe2 are shown in Fig. 1(a). The formation
of CDW is accompanied by a 3 × 3 reconstruction in the
crystalline structure involving, interestingly, moving essen-
tially only Ta ions, leaving the positions of Se ions largely
unchanged [Fig. 1(b)]. This crystal reconstruction enlarges the
size of the real-space unit cell but reduces that of the first
Brillouin zone in the momentum space. Shubnikov–de Haas

oscillation (SdHO) measurements showed that 2H-TaSe2

features a FS of multiple energy bands [26]. While angle
resolved photoemission spectroscopy (ARPES) studies of
2H-TaSe2 also revealed a multiband FS in the CDW state
[27,28], the two methods have failed to arrive at a self-
consistent account of the FS topology, including the very
basic question on the number of FS sheets. Basically, the
crystal reconstruction and the associated bended bands as
well as the lack of the first-principle calculation of the
band structure, which is computationally unattainable, made
the analysis of the SdHO and ARPES data very difficult
[29].

We carried out electrical resistivity measurements on a
10-nm-thick, un-intercalated crystal of 2H-TaSe2 as a function
of the magnetic field at 2 K up to 14 T [Fig. 1(c)]. We observed
the expected parabolic field dependence at low fields [inset
of Fig. 1(c)] and Shubnikov–de Haas oscillations (SdHOs)
high fields—these oscillations are evident only after a smooth
background is subtracted [upper panel of Fig. 1(d)]. The
SdHO frequencies determined by the peak position in our fast
Fourier transformation (FFT) are 253 and 407 T [lower panel
of Fig. 1(d)], close to the two of the many found previously,
258 and 396 T, respectively [26]. Our data suggest that the
FS of this 10-nm-thick crystal is essentially the same as the
bulk. Other frequencies seen in the bulk are missing in the 2D
crystal data most likely due to its disorder stronger in 2D than
in the bulk crystals.

Lithium ions were intercalated into a 10-nm-thick crys-
tal of 2H-TaSe2 in an ionic field effect transistor device
[Fig. 2(a)]. It was shown previously that CDW was suppressed
by the intercalation of Li ions as the gating voltage becomes
sufficiently large. The Hall coefficient RH, obtained from
a 10-nm-thick crystal at 2 K, was found to be negative,
depending on the field nonlinearly at low gate voltages VG

[Fig. 2(b)]. In addition to the CDW and impurities, the
nonlinear dependence is most likely due to the multiband
nature of the FS, with the electronlike bands dominating
the Hall coefficient [30]. As the gate voltage increases, RH

was found to change its sign between VG = 0.8 and 1.1 V.
Furthermore, RH(H) curves obtained in gate voltages equal to
or higher than 1.1 V show linear field dependence [Fig. 2(b)],
suggesting that an ion intercalation induced change in the
FS topology from multiple pockets to a single holelike one
deep in the CDW phase [Fig. 2(c)]. It is interesting to note
that the dramatic change in FS topology and the suppression
of CDW do not occur at the same gate voltage, suggesting
the occurrence of the CDW is most likely unrelated to FS
nesting. We also carried out Raman spectroscopy measure-
ments at room temperature on a 40-nm-thick crystal tuned by
ionic gating induced ion intercalation (see the Supplemental
Material (SM) [31]). We found that the Li ion intercalation
leads to a dramatic change in the phonon spectrum featuring
A1g and E2g modes [24] at the gate voltage closer to the
change in FS topology but not the suppression of the CDW
order.

Ion intercalation introduces disorder into the crystal, lead-
ing to quantum transport characterized by the effect of weak
localization (WL) or weak antilocalization (WAL) depending
on the strength of the spin-orbital coupling. For a 2D weakly
disordered electronic system, Maekawa and Fukuyama (MF)
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FIG. 2. Superconductivity and CDW. (a) Hybrid image of sample configuration and optical image of a real device. (b) Hall coefficient RH

as a function of magnetic field for the 10-nm-thick sample at various gate voltages for VG = 0 and 0.8 V at 2 K showing that Rxy is negative
and nonlinear and for VG = 1.1 and 1.5 V showing that RH is positive and magnetic field independent. (c) The gate voltage dependence of
transition temperature of CDW and superconductivity [41].

calculated the field dependence of MC [32], yielding

�σ (T, B) = Ne2

πh

{
F

(
B

Bφ + Bso

)
− 1

2

[
F

(
B

Bφ

)
− F

(
B

Bφ + 2Bso

)]}
+ aB2, (1)

where F (z) = ψ ( 1
2 + 1

z ) + ln(z), B is the magnetic flux in-
tensity, ψ (z) is the digamma function, Bϕ = h̄/4el2

ϕ and
Bso = h̄/4el2

so, with lϕ and lso the inelastic scattering induced
dephasing and spin-orbital scattering lengths l2

ϕ = Dτϕ and
l2
so = Dτso, respectively, D is the diffusion constant, and N

is the number of independent conduction channels [33]. The
last term in Eq. (1) accounts for the background from the
conventional MC, as found in the literature [34]. The N
represents the multiband effects (see the SM [31]). In addition,
the temperature dependence of σWL in zero field when only
WL is present is given by [35]

σWL = σ (T ) − σB = −C(e2/πh) ln (T/T0), (2)

where σB is the Boltzmann or classical conductance, C is a
constant, e is the electron charge, and h is the Planck constant.
Here σ (T ) − σB can be approximated by �Rs(T )/[Rs(T0)]2,
where Rs(T ) is the temperature dependent sheet resistance
and T0 is the temperature at which Rs reaches the minimum.
In general, C = N p + γ , where N is the number of con-
duction channels following Ref. [18] (see below), the index
p is related to the inelastic scattering induced dephasing
time τϕ (τ−1

ϕ ∼ T p) [36], and γ is a parameter characterizing
the electron-electron scattering rate, with t−1

ee ∼ T γ [35,36].
These scattering times describe the properties of a metallic
electronic material.

Experimentally, the MC of a 10-nm-thick crystal of
2H-TaSe2 was found to be negative at low gate voltages,
featuring distinctive ∼B2 behavior at low fields [Fig. 3(a),
upper panel] without WL or WAL. As VG increased to
1.1 V, at which the Hall coefficient was found to change its
sign [Fig. 2(b)]. Equation (1) was found to describe the MC
data obtained at VG � 1.1 V [Fig. 3(a), lower panel]. As the
VG increased, the WAL behavior in MC was found to be
largely unchanged. However, at VG = 2.5 V, MC is seen to

first decrease and then increase again. At VG = 2.6 V, fully
positive MC was seen [Fig. 3(b)]. All this is consistent with
the MF theory [32], with the change in the sign of MC an
indication of a crossover from WAL to WL behavior. Fitting
the MC data at each VG to the MF theory led to gate voltage
dependencies of lϕ and lso [Fig. 3(c)]. When lϕ > lso, the
spin-orbit scattering dominates, leading to negative MC and
WAL. However, when lϕ < lso, the opposite is true. The WAL
to WL crossover was also seen in the temperature dependence
of the zero-field �σ . As seen in Fig. 4(a), a crossover from
metallic to weakly insulating behavior was observed as VG

was raised from 2.5 to 2.6 V, with the resistivity at VG = 2.6 V
depending on the temperature logarithmically as described in
Eq. (2).

The best fit of the MF theory to our MC data for VG �
1.1 V yielded a value of N = 2, including for those dominated
by WL when VG = 2.6 V. Interestingly, the temperature de-
pendence of the sample conductivity at VG = 2.6 V was found
to be consistent with this result. Importantly, as inferred from
the relative magnitudes of the corrections to the conductance
and Hall coefficient, the electron-electron scattering contri-
bution to the quantum correction of the sample conductance
appears to be negligible (see the SM [31]). The coefficient in
the logarithmic sample conductivity then becomes C = N p.
The best fit to the data yielded a value of C = 4.88 ± 0.02 at
VG = 2.6 V. The value N p = 4.88 obtained from fitting the
σ (T ) at VG = 2.6 V [Fig. 4(a)] will yield a value of N = 2
as an experimental value of p ≈ 2.5 was found (see below).
The same fitting to the MC data obtained on 3-nm-thick
un-intercalated crystals yielded N = 6 [Fig. 4(b)]. Similarly,
for the 10-nm-thick crystal, fitting the MC data obtained after
VG was swept back from 2.6 to 0 V [Fig. 4(c)], which was
found to show WAL instead of ∼B2 dominated behavior,
presumably due to disorder caused by residual ions stuck in
the crystal, also yielded N = 6. We note that a 12-nm-thick,
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un-intercalated crystal of 2H-TaSe2 was found previously to
show WAL without SdHOs and N = 6 as well [37].

These observations suggest that the number of independent
conduction channels was lowered from 6 to 2 as VG increases.
Incidentally, in the CDW state, the FS in 2H-TaSe2 was found
by ARPES measurements to be extremely complex because
the onset of CDW leads to band folding and the opening of an
energy gap on irregular parts of the FS, making its topology
not fully resolved to date. The N = 6 result obtained from the
quantum transport then provides an important parameter on
the FS topology.

The interband scatterings are important for determining
the property of a 2D electronic material, as seen in graphene
in which the expected WAL due to a Berry phase of π

would turn to WL because of the intriguingly consequential
interband scatterings [38–40]. The N = 6 result for 2H-TaSe2

suggests that interband scatterings are not present between
any pair of FS pockets that are sufficiently well separated in
the momentum space. This is unexpected at low gate voltage
as sparsely intercalated 2H-TaSe2 with a scattering potential
varying at an atomic length scale should be able to facilitate
large momentum transfer needed for interband scatterings. In

any case, as VG increases, the FS pockets around the K and the
K ′ points (see the SM [31]) must have moved below the Fermi
energy for VG � 1.1 V, with the only remaining FS pocket
being that of the largest holelike pocket near the � point. This
would lead to the experimentally observed N = 2 result.

The Li ions intercalation induced variations in l−2
ϕ ∼

τ−1
j and l−2

so ∼ τ−1
so are clearly due to the change in FS

topology. The spin-orbit scattering rate τ−1
so is given by

2niu2
soπN (0)(k × k′)2, where ni is the density of impurities

and uso is the spin-orbit interaction potential, N(0) is the
density of states, k and k′ are the crystal momenta for the two
scattered charge carriers, and the bar represents the average
over the FS [32]. Li intercalation will introduce disorder
into the system, increasing ni and both l−1

ϕ and l−1
so as a

consequence. The Li ion intercalation into 2D crystals of
2H-TaSe2 will also lower the Fermi energy, reducing the size
of the FS, or Fermi wave vector, and ultimately the average

(k × k′)2, leading to an increased lso.
The temperature was also found to lead to a WAL-WL

crossover. As shown in Figs. 5(a) and 5(c), negative MC
was observed at VG = 1.5 and 1.8 V, with its magnitude
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Temperature dependence of fitting parameter Bϕ and Bso obtained from fitting the MF theory to the data. Fitting values of Bϕ to A + BT p was
also shown. WL was found to persist to such a high temperature because even at T = 70 K and VG = 2.5 V, at which we found lϕ = 13 nm.

decreasing with increasing temperature. At VG = 2.5 V, a
crossover between WL to WAL was seen as the temperature
went up [Fig. 5(e)]. Given that l2

ϕ = Dτϕ , Bϕ = h̄/(4eDτϕ )
we may fit the data shown in Figs. 5(b), 5(d), and 5(f) using
τ−1
ϕ = A + BT p. The best fit yielded a value of p in the range

of 2.5–2.9. For electron-phonon scattering, the value of p is
expected to be 2–4, suggesting that the main factor controlling
lϕ is electron-phonon scattering. Similar results were obtained
previously in graphene [39,40].

The decrease in electron-phonon scattering dominated lϕ
as VG was raised [Fig. 3(c)] suggest that the electron-phonon
interaction is strengthened in 2D crystals of 2H-TaSe2 by ion
intercalation. Phonon spectrum calculations (see the SM [31])
suggest that Li intercalation hardens acoustic phonons. The
soft acoustic phonon modes associated with the formation
of the CDW disappeared in fully intercalated LiTaSe2. The
hardening of the phonons would tend to enhance the electron-
phonon interaction. In addition, as suggested by the first-
principles calculation, chemical bonds form between Li and
Se ions—the hybridization between d and p orbitals (Fig. S4
in the SM [31]). The integration of Li ions into a 2D crystal
of 2H-TaSe2 appears to lead to an enhanced electron-phonon
interaction because of the small mass of Li.

On the other hand, increasing VG moves the Fermi energy
towards the top of the band near � point, decreasing the size of
the FS. This is consistent with the observation that RH remains
essentially a constant as a function of the magnetic field
[Fig. 6(a)] and a constant of the temperature [Fig. 6(b)] while
the corresponding carrier density dropping by two orders of

magnitude as VG increases [Fig. 6(c)]. The decreasing of the
Fermi surface or the density of charge carriers tend to increase
the effective Coulomb repulsion.

We found previously that T SC
c was increased by over an

order of magnitude from 0.15 K in the bulk to nearly 2
K in the Li ion intercalated 2D crystals [Fig. 2(c)] [41],
which is direct evidence that the electron-phonon interac-
tion is strengthened by the Li ion intercalation, through the
combined effect of carrier doping and interlayer coupling.
The present study suggests that this increase is due to the
increase in the electron-phonon interaction matrix element as
the electron-phonon scattering corresponds to its first-order
and SC pairing the second-order effect (see the SM [31]).
Interestingly, whether the enhancement of SC by ion interca-
lation observed previously in Cu intercalated TiSe2 [16] and
Li intercalated 1T-TaS2 [42] is due to the enhancement of the
electron-phonon interaction has not been resolved. Indeed, Sn
or Cu intercalated 2H-NbSe2 was found to show a suppressed
rather than enhanced T SC

c [43,44]. The present study is the first
explicitly demonstrated example of ion-intercalation induced
enhancement of SC originating from the strengthening of the
electron-phonon interaction.

As noted above, the multi- to single-band change in FS
topology deep in the CDW phase suggests that the formation
of the CDW is unlikely related to the FS nesting. The dramatic
change in the Raman spectrum deep in the CDW phase in
2H-TaSe2, on the other hand, has important implication on
the role played by the electron-phonon interaction in the
formation of the CDW order, an issue considered previously
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[45]. The new insight provided by the present work is that
the electron-phonon interaction is unlikely to be primarily
responsible for the formation of CDW order in 2H-TaSe2

either, given that the strengthening of the electron-phonon
interaction by Li ion intercalation was already taking place
when CDW order was hardly affected. The present work
therefore raises an intriguing question on the mechanism for
CDW in 2H-TaSe2.

III. METHODS

A. Sample preparation

Single crystals of 2H-TaSe2 were grown by the chemical
vapor transport (CVT) method. A stoichiometric ratio of
Ta and Se powder was mixed and put into a quartz tube,
adding a small amount of iodine (∼20 mg) as transport agent.
After being sealed under vacuum, the quartz tube was placed
horizontally in a double zone furnace. The charge and the
“cold” end were heated at 400 and 450 ◦C for 1 day, followed
by elevated temperature to 850 and 750 ◦C for two weeks,
respectively. The furnace was then shut down to allow it to
cool down to room temperature before the quartz tube was
opened to retrieve the crystals. Hexagonal platelike single
crystals of TaSe2 were found to be grown at the cold end of
the quartz tube.

Atomically thin crystals of 2H-TaSe2 were obtained by
mechanical exfoliation and layer transfer using a silicone
elastomer polydimethylsiloxane (PDMS) stamp and 300-nm-
thick SiO2/Si substrate [46]. The crystal thickness was esti-
mated by a color code with the thickness of the crystal inferred
from the color and faintness of the crystal. The color code
was calibrated by atomic force microscope measurements.
The device pattern was defined by standard photolithography,
with the contacts prepared by the deposition of a 10-nm-thick
Ti and 100-nm-thick gold film in series, followed by a lift-
off process. Magnetoelectrical transport measurements were
carried out down to 2 K on Hall bar shaped FET devices of
multilayer 2H-TaSe2 prepared using mechanical exfoliation
and photolithography [Fig. 2(a)]. The electrodes were also
covered by a photoresist layer to minimize the background.
An electrolyte gate of LiClO4/PEO was then applied, covering

the TaSe2 conduction channel and gate electrode, with the
crystal sides exposed to the electrolyte.

B. Electrical transport measurements

The transport measurements were performed in a Quantum
Design Physical Properties Measurement System. The system
was able to reach a base temperature of 2 K and equipped
with a magnet coil capable of sustaining fields up to 14 T.
The source current and gate voltage were applied and probed
with Keithley 2400 and 2182a. To take the measurements at
certain Li concentration, the gate voltage is slowly ramped
to a desired value at 330 K. We also waited for at least
1 h to allow Li ions to diffuse throughout the crystal to
minimize the inhomogeneities before the sample was cooled
down from 330 to 2 K at a constant rate, 1 K/min. A magnetic
field was applied along the c axis of the crystal during the
magnetotransport measurements.
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