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Elastodiffusion and cluster mobilities using kinetic Monte Carlo simulations:
Fast first-passage algorithms for reversible diffusion processes
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The microstructural evolution of metals and alloys is governed by the diffusion of defects over complex energy
landscapes. Whenever metastability occurs in atomistic simulations, well-separated timescales emerge making it
necessary to implement event-based kinetic models at larger scales. The crucial task then involves characterizing
the important events contributing to mass transport. We herein describe fast first-passage algorithms based
on the theory of absorbing Markov chains assuming that defects undergo reversible diffusion. We show that
the absorbing transition rate matrix can be transformed into a symmetric definite-positive matrix enabling us
to implement direct and iterative sparse solvers. The efficiency of the approach is demonstrated with direct
computations of elastodiffusion properties around a cavity in aluminum and Monte Carlo computations of cluster
diffusivity in low-alloyed manganese steels.
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I. INTRODUCTION

Kinetic Monte Carlo (KMC) simulations [1] are exten-
sively used in materials science to predict the microstructural
evolution of alloy systems driven out of equilibrium or to
compute atomic transport properties, either at equilibrium or
in a nonequilibrium steady state. A KMC method is tradi-
tionally implemented whenever the physical model system of
interest is governed by a master equation which corresponds
to a high-dimensional ordinary differential equation over the
discrete or discretized (meshed) space. This equation can
not be solved directly through time-stepping because of the
combinatorial explosion in the number of variables to deal
with. Any KMC method consists of simulating a single kinetic
trajectory among the many possible ones. In materials science,
KMC methods may treat events [2–4], objects [5,6], or atoms
[7].

The efficiency of the KMC method is drastically reduced
whenever the transition matrix describing the evolution of the
system exhibits a wide spectrum. In this situation, the system
transitions a huge number of times between configurations
separated by small energy barriers. These connected config-
urations form trapping basins from which the average escape
time is much larger than the characteristic time for crossing
the small barriers inside the basins. This issue is recurrent in
KMC simulations. Cavities may form under irradiation and re-
main stable over a long period of time due to the low vacancy
emission rate resulting from the strong attraction between
cavities and neighboring vacancies. Kinetic trapping may also
be caused by the formation of dynamically stable clusters of
manganese or copper substitutional atoms and vacancies in α-
iron. These solute clusters migrate slowly without dissociating
owing to numerous atomic rearrangements.

*Deceased.

Several ways of improving the KMC method are currently
implemented in the literature. First, the encountered events
may be tabulated for later reuse [8–16], which avoids repeat-
edly evaluating the same transition rates. This way of proceed-
ing is particularly relevant whenever stable and saddle point
energies are costly to evaluate as in off-lattice simulations
[17]. Transition rates associated to tabulated events are then
retrieved on the fly.

To reduce the dimensionality of the original master equa-
tion and further speedup the KMC simulations, nonlocal
events involving mobile defects may be tabulated and ran-
domly selected using the appropriate rule [18,19]. Avoiding
conflicts between defects evolving in parallel requires spatial
protection of defects and exact time synchronization. Spatial
protection serves to prevent distant walkers from colliding or
conversely to enable two neighboring defects to recombine.
To satisfy the time synchronization requirement, the theory of
absorbing Markov chains [20] is used to draw first-passage
times, and paths to distant states located on the periphery of
the protection, which acts as an absorbing sink [18,21,22].
Drawing a first-passage time and escape from the exact
probability distributions may be achieved through the direct
factorization of the absorbing transition rate matrix [22] or
through its eigenvalue decomposition [18,21,23–25].

The former randomization technique is based on the prob-
abilistic interpretation of the factorization in term of paths
[19,26,27]. This interpretation is implicitly invoked in the
matrix method [28–30] to compute correlation factors asso-
ciated with vacancy-solute exchanges in dilute alloy models
for any crystallographic structure. These correlation factors
are crucial quantities giving access to diffusion coefficients.
They are obtained by inverting a matrix, which amounts to
summing over all paths between two consecutive vacancy-
solute exchanges. Green functions used in atomic transport
theory [31,32] also appear as pseudoinverses of transition rate
matrices and may also be interpreted as geometric sums of
path probabilities.
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The latter randomization technique consists of entirely
computing the evolution operator for transient states, a matrix
exponential. The approach was extended to Gaussian random
walks in continuous three dimensional spaces using a Green
function formalism [33–35]. In this framework, the probabil-
ity that the walker is still in its protected volume appears as a
series of decaying (real) exponential functions. At times large
enough, the infinite sum can be safely truncated retaining
only a limited number of the slowest eigen-modes because
the contributions of the fastest eigenmodes rapidly decay with
time. In these studies [33–35], the spectral decomposition is
analytically tractable for the considered symmetric diffusion
operators.

The symmetry property assumed in Refs. [33–35] entails
that atomic transport is mediated by defects whose diffusion is
reversible at equilibrium, i.e., the involved diffusion processes
obey detailed balance even though the defect concentration
may be out of equilibrium, as for instance after a quench or
an irradiation cascade. This assumption is satisfied in many
materials of practical interest. Even the state-to-state evolution
of far from equilibrium glasses can be well approximated
by a Markov chain that does obey detailed balance. A no-
ticeable exception involves alloy systems subjected to steady
irradiation, temperature gradients, or chemical potential gra-
dients. At the atomic scale, a consequence of reversibility is
that the discrete transition rate matrix can be symmetrized
by similarity transformation [31,36]. For absorbing Markov
processes, reversibility of diffusion is conditional upon the
fact that the system is still located in a transient state. This
guarantees that the transition rate matrix restricted to transient
states is similar to a symmetric definite negative and that the
transient evolution operator is the sum of decaying exponen-
tial functions. In this paper, we investigate the computational
implications of the conditional reversibility of the involved
diffusion processes.

After introducing absorbing Markov chain theory for con-
ditionally reversible processes in Sec. II, we illustrate sev-
eral features of the approach on two realistic problems: the
elastodiffusion of vacancies in the neighborhood of cavities
[37] in pure aluminum and the diffusion of small vacancy-
Mn clusters in α-iron. New features involve the ability to
compute transition currents over large physical volumes and
to approximate the evolution operator through projection on
reduced subspaces, two aspects little discussed in the literature
on lattice-based Markov processes, to our knowledge.

II. THEORY AND METHODS

A. Master equation and evolution operator

The phase space is considered to be discrete and is denoted
by �. States describing the system correspond to the locations
of atoms and defects (such as vacancies) on a crystalline
lattice. Our knowledge about the current state of the system
is materialized by a probability vector, i.e., a probability dis-
tribution over �. The time evolution of the probability vector
pt ≡ p(t ) is governed by the following master equation:

ṗT
t = pT

t K, (1)

where K stands for the Markov matrix of transition rates,
assumed here to be time-independent: Ki j is the rate of tran-

sition from state i to state j (off-diagonal elements only). The
standard convention is used to define the diagonal elements
as Kii = −∑

i �=� Ki�. Superscript T stands for transpose. The
evolution operator, obtained formally from solutions of the
master equation, can be expressed as an exponential of the
Markov matrix of transition rates (t1 > t0)

P(t0, t1) = exp

[∫ t1

t0

Kdt

]
= exp [(t1 − t0)K]. (2)

Matrix element Pi j (t0, t1) is the probability to find the sys-
tem in state j at t1 given that it was in state i at time t0.
This operator fully characterizes the time evolution of the
probability vector: pT (t1) = pT (t0)P(t0, t1). As defined, the
evolution operator belongs to the class of stochastic matrices
such that

∑
� Pi� = 1 and Pi j � 0 for any i, j, t , and τ .

This property entails conservation of the total probability.
Besides, the stationary distribution satisfies ρT P(t1, t0) = ρT ,
it is a left-eigenvector of the evolution operator associated
with eigenvalue one.

If known, the evolution operator can be used to sample
transitions between any two states and over arbitrary time
intervals τ = t1 − t0. In practice, the evolution operator can
only be solved for small subspaces delimited by artificial
absorbing boundaries. Substantial simulation speed-ups can
be achieved by sampling transitions to distant states located
on the absorbing perimeters of encountered trapping basins
[18,19,21,22,25]. Prior to presenting the theory of absorbing
Markov chains, which will be used to formulate such acceler-
ated KMC algorithms, we recall the standard KMC method.

B. Standard kinetic Monte Carlo

Standard KMC methods avoid exponentiating the transi-
tion rate matrix. The evolution operator is instead linearized to
get a simple stochastic matrix and a randomization procedure
is invoked to draw the time at which the event occurred. The
simplest form of such matrix is

Plin = I + τK, (3)

where I is the identity operator and τ is a positive time
step that must be lower or equal to −1/Kii for all states
Si ∈ �. Time randomization then consists in drawing a time
in the exponentially decaying distribution of rate τ−1. Since
Plin

ii � 0, it is possible that no transition has occurred after
time incrementation. In practice, a different stochastic matrix
is implemented, so as to guarantee a KMC transition at each
step. Letting Diag(K) denote the diagonal matrix composed
of the diagonal elements of K, the following stochastic matrix
is rather used:

Pstd = I − Diag(K)−1K. (4)

If system is currently located in state i, the exponentially
decaying distribution of rate −Kii must instead be used to
sample the residence time, i.e., a stochastic variable yielding
the elapsed time. The mean residence time on i is then −1/Kii,
compensating for the fact that the stationary distribution of
Pstd is proportional to −Diag(K)ρ, a left eigenvector asso-
ciated with the eigenvalue equal to 1. In the following, we
consider the generic stochastic matrix of the form

P(0) = I + diag(τ (0) )K, (5)
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where τ (0) stands for an effective residence time vector such
that τ

(0)
i � −1/Kii for all i and diag(τ (0) ) denotes the diagonal

matrix composed of the elements of τ (0).

C. KMC implementations

The natural way of implementing KMC algorithm does not
involve explicitly forming the transition matrices appearing in
(5). At each cycle, the possible transition events are tabulated
and two random numbers r1 and r2 are drawn uniformly in
)0, 1] interval. The selected transition � satisfies the following
double inequality:

�−1∑
l=1

Ki, j(l ) < −r1Kii �
�∑

l=1

Ki, j(l ),

where i and j(l ) denote the current state and the ending state
associated with the l-th listed transition, while the elapsed
time is simulated from Kii ln r2.

An alternative algorithm consists in assigning an indepen-
dent Markov process and time clock to each diffusing or
reacting entity, while keeping a time ordered list of events up
to date. Let κd

i stand for the total transition rate of the dth
diffusing entity from state i. At each KMC cycle, the time
of the master clock is incremented to the time of the next
event and the corresponding transition is performed. After
an event occurred, a limited number of events needs being
annihilated, created or resampled. This way of proceeding is
statistically equivalent because the distribution of the min-
imum of exponential random variables is exponential with
rate

∑
d κd

i = −Kii. This alternative algorithm is easier to
implement on a parallel computer architecture [38,39]. It is
currently implemented in EKMC methods [2,3], wherein dis-
tant binary collisions can easily be simulated using simplified
laws assumed to be mutually independent.

D. First-passage kinetic Monte Carlo

FPKMC is a statistically exact EKMC algorithm in which
spatial protections is introduced to ensure that binary col-
lisions are handled rigorously [21,25,33–35]. Figure 1 de-
picts the principle of the first-passage approach applied to
the diffusion and collision of two vacancies in presence of
trapping precipitates. FPKMC computations of the mobilities
of vacancy-manganese clusters in iron are reported in Sec. IV.
FPKMC technique requires forming the transition rate matri-
ces appearing in (5).

E. Absorbing Markov processes

For the ease of exposition, trapping states are labeled from
1 to N and are called transient. Perimeter states connected to
the transient states are pooled together into a single absorbing
state labeled by index N + 1. Transitions from a transient state
to any perimeter states are thus replaced by a single tran-
sition to the absorbing macrostate with an overall transition
rate cumulating the transition rates towards pooled peripheral
states. Transitions from the macrostate to transient states
or any other states are no more permitted. As defined, the
absorbing Markov process coincides with the original Markov
process as long as it remains located inside the trapping basin.

(a)

1

2

(a) (b)

1

2

1

2

(c)

1

2

(d)

FIG. 1. Schematic of FPKMC method for two vacancies evolv-
ing on a square lattice symbolizing a FeMn alloy. Fe and Mn
atoms are displayed in orange and violet. Vacancies V 1 and V 2,
represented by the two labeled squares, are initially trapped inside
Mn clusters. Exit sites for the trapped vacancies are indicated the
stars. First-passage events are represented by dotted arrows. Events
occurring first and second are colored in green and red, respectively.
The sequence of events is as follows. (a) The two V -Mn clusters
are spatially protected, first-passage times t1

fp and t2
fp are drawn (here

t2
fp < t1

fp); (b) V 2 dissociates from Mn cluster, diffuses and collides
with spatial protection of V 1 at time t2

col (here t2
col < t1

fp), a no-
passage event [21,25,33–35], materialized by the green solid arrow,
is generated for synchronization; (c) V 2 attaches to the V 1-Mn cluster
(nearest neighbor interactions are assumed); and (d) a diffusing
entity composed of two vacancies is created and spatially protected.
Vacancy locations inside the thick solid line correspond to states
that are referred to as transient in the theory of absorbing Markov
processes. Absorbing states are those with the vacancy located on a
starred site, beyond the solid line and before the dashed line.

As a result, the N trapping states become transient and the
absorbing macrostate, acting like an artificial sink trapping
the system infinitely, remains the only recurrent state of the
system. The system being initially in a transient state, states
beyond the perimeter states can not be reached and need
not being considered. The Markov matrix for the absorbing
process is thus defined as

Ka =
(

−A A�1
�0T 0

)
, (6)

where A is a N × N matrix such that Ai j = −Ki j and �1 =
(1, · · · , 1)T the N-dimensional column vector whose com-
ponents all equal one. Vector �0 = (0, · · · , 0)T is similarly
defined and I will stand for the N × N identity matrix. The
associated evolution operator reads

Pa(t ) = exp[Kat]. (7)
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With these definitions, Ka is a proper transition rate matrix
and likewise Pa is a proper stochastic matrix. Their compo-
nents in each row sum to zero and one, respectively,

Ka

(
�1
1

)
=

(
�0
0

)
and Pa

(
�1
1

)
=

(
�1
1

)
. (8)

Consequently, for any probability vector πt ≡ π(t ) evolving
according to the master equation π̇T

t = πT
t Ka, the probability

to find the walker in one of the N + 1 states is conserved
over time and we have πT

t = πT
0 exp [Kat]. We are now going

to express the evolution operator (7) as a function of the
exponential of A. We first notice that the powers of minus the
absorbing transition rate matrix writes for h � 1

(−Ka )h =
(

A −A�1
0T 0

)h

=
(

Ah −Ah�1
0T 0

)
. (9)

This relation enables us to rearrange the matrix exponential as

exp[Kat] =
(

I 0

0T 1

)
+

+∞∑
h=1

(
Ah −Ah�1
0T 0

)
(−t )h

h!

=
(

exp [−At] (I − exp[−At])�1
0T 1

)
, (10)

where we substituted back the two matrix exponentials for the
series in the two upper blocks of Eq. (10). The probability of
being in state j � N at time t starting from state i � N is

Pa
i j (t ) = eT

i exp (−At )e j, (11)

where ei denotes the ith standard basis vector.

F. Conditional reversibility

We assume here that the original Markov process obeys
detailed balance, which implies that the probability flux from
state i to state j is equal to the reverse flux. The i-to- j
probability flux is defined as the product of the stationary
probability ρi to be in state i and the rate Ki j of transitioning
to state j. The equation of detailed balance thus writes

ρiKi j = ρ jKji. (12)

When condition (12) is satisfied, the stationary probability
vector ρ of the reference Markov process is usually associated
with an equilibrium Gibbs-Boltzmann distribution. It corre-
sponds to the left eigenvector of the Markov rate matrix for
eigenvalue 0, since we have ρT K = 0T .

The detailed balance condition (12) can be recast with
respect to the absorbing Markov process considering the
allowed transitions between the N transient states (1 � i,
j � N):

√
ρiAi j/

√
ρ j = √

ρ jA ji/
√

ρi. (13)

The following symmetric matrix is defined from (13):

AB
i j = sis j

√
ρiAi j

/√
ρ j = AB

ji, (14)

where the scaling factors si are strictly positive. They are
numerical parameters reflecting the degree of freedom in
the construction of stochastic matrices for KMC simulations
based on (5). To specify this statement, we cast transformation

(14) into matrix form resorting to the N × N diagonal matri-
ces

S =
N∑

i=1

sieieT
i , R =

N∑
i=1

1√
ρi

eieT
i , (15)

which are both diagonal definite positive. Hence matrices S,
R and B = S2 commute and are invertible, enabling one to
define

AB = SR−1ARS = (SR)−1BA(SR). (16)

Scaling matrix B acts like a preconditioner. Its aim is to
decrease the condition number of AB, which will be the
main matrix in the first-passage problems investigated in the
following. B-scaling is introduced in the formalism for the
sake of generality. Setting B to identity amounts to disabling
the explicit preconditioning, as done in most literature studies
and in Ref. [22] in particular. This setup also arises in the
linearized KMC method based on (3), up to the τ limiting
factor. In other works [19,26,27,40], B is set to Diag(A)−1.
This setup arises in the standard KMC method based on (4).
Noticeably, it entails that si = 1/

√
Aii and AB

ii = 1 for all i.
We carry out a comparative study between the two mentioned
setups in Sec. III B.

Matrix SR serves to make a diagonal similarity transfor-
mation and to formulate a generalized symmetric eigenvalue
problem. Setting B to identity allows us to conclude that A is
similar to a symmetric matrix AI . Similarity transformations
preserving spectral properties and the spectrum of symmetric
matrices being real, we conclude that the eigenvalues of A
are real. By applying Gershgorin circle theorem to A, we also
conclude that they are positive. Eventually none of the eigen-
values are equal to zero, otherwise a stationary distribution
over transient states would possibly be established, which is
excluded.

G. Spectral decomposition of the evolution operator

Matrices A and B−1AB being similar, we deduce that the
spectrum of A can be obtained by solving the generalized
symmetric eigenvalue problem (GSEP)

ABϕk = Bϕkλk. (17)

Sorting the eigenvalues (λ1, · · · , λN ) of (17) in ascending
order and letting � = (ϕ1,ϕ2, · · · ,ϕN ) be a B-orthonormal
basis of eigenvectors, the GSEP can be cast in the following
matrix form

AB� = B��, (18)

where � is a diagonal matrix with diagonal elements 	ii equal
to λi. Left multiplying both sides of (18) by �T and then right-
multiplying (18) again by �T yields the two relations

�T AB� = �, AB = B���T B (19)

where we simplified resorting to B orthogonality of �:

�T B� = I, ��T = B−1. (20)

Using the generalized spectral theorem (19) and reverting
relation (16), the absorbing matrix may therefore be decom-
posed as A = RS���T SR−1. Expanding the matrix expo-
nential of A in series, substituting B for S2 and invoking B
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orthogonality (20) eventually yield

exp [−At] = RS� exp [−�t]�T SR−1. (21)

To express components of the matrix exponential, it is practi-
cally convenient to introduce a few additional notations. We
denote the scaling and rescaling vectors composed of the
diagonal elements of S and R by s and r, respectively. We
have s = S�1 and r = R�1. Letting � and 	 symbols stand
for elementwise multiplication and division, we also define
two sets of rescaled basis vectors gi = ei � s � r and d j =
e j � s 	 r. Then, resorting to the scalar products gh

i = ϕT
h gi

and dh
j = ϕT

h d j , the evolution operator (11) reads

Pa
i j (t ) =

N∑
h=1

gh
i dh

j exp (−λht ),

where (i, j) � N . The survival probability after duration t
given that the system was prepared in state i � N at t0 = 0
corresponds to the probability of not having been absorbed
during the elapsed time, i.e., the probability of remaining in
one of the N transient states,

ps
i (t ) �

N∑
j=1

Pa
i, j (t ) = (

eT
i , 0

)
exp[Kat]

(�1
0

)
= eT

i exp [−At]�1

=
N∑

h=1

ah
i exp (−λht ), (22)

where the weighing coefficients read

ah
i = gh

i

N∑
j=1

dh
j . (23)

Since matrix �T is B-orthogonal, the ah
i coefficients sum to

one:
N∑

h=1

ah
i =

N∑
j,h=1

ri

r j

ihs2

h
 jh =
N∑

j=1

ri

r j
Ii j = 1.

This feature is consistent with the fact that initially the sur-
vival probability of the absorbing process is one : ps

i (0) = 1.
KMC simulations require drawing first-passage times with

the appropriate statistics. This may be achieved by sampling
a random number r2 ∝ U)0,1] (that is uniformly distributed
)0,1] and looking for tfp satisfying ps

i (tfp) = r2. This way
of proceeding requires evaluating the survival distribution
though the spectral decomposition of A. To avoid collision
with another absorbing process interacting with the transient
states, it is sometimes necessary to stop the simulation at a
given time tcol for synchronizing the Markov processes. This
task, depicted in Fig. 1(b), involves the ability to sample the
so-called no-passage distribution [21,25,33–35].

H. No-passage and quasistationary distributions

The no-passage distribution is the conditional probability
to find the system in transient state j at time t given that it
was initially in transient state i and that the process has not

been absorbed yet. It is obtained by dividing the probability
of being in j by the survival probability ps

i (t ):

Pnp
i j (t ) = eT

i exp [−At]e j

eT
i exp [−At]�1 .

The quasistationary distribution over transient states corre-
sponds to the probability vector q that is reached asymp-
totically in time by the no-passage distribution [41]. This
asymptotic distribution is independent of the initial distribu-
tion, arbitrarily set equal to state i in the limit below

q j = lim
t→∞ Pnp

i j (t ) = d1
j∑N

�=1 d1
�

.

The quasistationary distribution being proportional to ϕ1 �
s 	 r, is also a left eigenvector of the lowest eigenvalue of
the transition rate matrix A.

I. Expected values of first-passage times, residence times, and
exit probabilities

The complementary of the survival probability, pa
i (t ) =

1 − ps
i (t ), corresponds to the probability of having been

absorbed. Its time derivative at t is positive and equal to
the probability density of exiting at t . Since pa

i (0) = 0 and
pa

i (∞) = 1, the absorbing probability pa
i (t ) coincides with the

cumulative distribution of the time probability of first passage.
The mean first-passage time from i is the time expected with
respect to the first-passage probability distribution. It can be
formally obtained through integration by part:

τ
(N )
i =

∫ ∞

0
t

d

dt
pa

i (t )dt

= [
t pa

i (t ) − t
]∞

0 −
∫ ∞

0

{
pa

i (t ) − 1
}
dt

=
∫ ∞

0
eT

i exp (−At )�1dt = eT
i A−1�1. (24)

The mean-first passage time satisfies Aτ (N ) = �1 and is always
more rapidly obtained by solving the linear system of equa-
tions involving the definite symmetric matrix AB:

ABxB = bB. (25)

Symmetrizing the linear system entails scaling the right-hand
side vector bB and rescaling back the obtained solution. This
is done by resorting to relation (16) between A and AB. Setting
bB to s 	 r yields the mean first-passage times as τ (N ) = xB �
s � r.

The mean residence time in transient state j knowing that
the system started from state i is given by the time integral∫ ∞

0
dtPi j (t ) =

∫ ∞

0
eT

i exp (−At )e jdt

= eT
i A−1e j . (26)

The residence time vector associated with initial distribution
π reads θ(N )T = πT A−1 or, after taking the transpose, θ(N ) =
A−T π. As for the mean first-passage problem, the symmetric
linear system (25) is invoked. However, it is solved using a
different right-hand side vector and with transposed scalings.
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Setting bB to π � s � r eventually provides us with mean
residence times via θ(N ) = xB � s 	 r.

The absorbing probability at state � is the sum of the
probability flux from neighboring connected states and of the
initial source contribution, reflected by the identity matrix Ii�

below:

P(N )
i� = Ii� +

N∑
j=1

∫ ∞

0
dtPa

i j (t )Kj�

= Ii� +
N∑

j=1

eT
i A−1e jKj�. (27)

The probability P(N )
i� is equal to 0 if state � is transient (� < N)

or not connected to any transient state. It is nonzero for
transitions to the peripheral states pooled in the absorbing
macrostate.

The stochastic matrix P(N )
i� yields the transition probabil-

ities used in first-passage or mean first-passage KMC meth-
ods. The latter variant method, implemented in Sec. IV and
referred to as factorized KMC, increments the elapsed time
by the mean first-passage time. The mean of the first-passage
times can be used when a simulated walker (defect) never
collides with another walker. In this case, the Markov pro-
cess needs not being interrupted and synchronization is not
required. Note that the stochastic matrix and residence time
vector can be extended so as to encompass transitions from
nontransient states i > N :

P(N )
i j = P(0)

i j +
N∑

�=1

P(0)
i� P(N )

� j , (28)

τ
(N )
i = τ

(0)
i +

N∑
�=1

P(0)
i� τ

(N )
� , (29)

where P(0) and τ (0) are defined in (5).

J. Rank-one update

Let us assume that we have already identified n − 1 trap-
ping states, turned them transient by computing the transition
probabilities P(n−1) together with the mean times τ (n−1) and
θ(n−1), and eventually performed a distant move. In practice, it
may happen that the selected peripheral state is also a trapping
state, in the sense that the system will later return to this
peripheral state with a high probability. Fortunately, stochastic
matrix P(n) needs not being computed again from scratch. It is
possible to perform a rank-one update of the stochastic matrix
P(n−1) by directly adding the selected peripheral state to the
list of transient state. Based on P(n−1), the probability of a
transition from i to j via the new transient state labeled n is

P(n)
i j = P(n−1)

i j + P(n−1)
in

+∞∑
f =0

[
P(n−1)

nn

] f
P(n−1)

n j , j > n,

P(n)
i j = 0, j � n,

where the sum accounts for the probabilities of all possible
roundtrips from n. Note that the updating rule involves both
transient and peripheral states as starting states i. It is also
possible to update the mean time vectors directly to get τ (n)

and θ(n). The mean first-passage time to make a nonlocal
transition starting from state n to any state j > n is updated
by accounting for the mean time spent performing flickers
from n

τ (n)
n =

+∞∑
f =0

[
P(n−1)

nn

] f [
1 − P(n−1)

nn

]
( f + 1)τ (n−1)

n

= τ (n−1)
n

/(
1 − P(n−1)

nn

)
. (31)

Concerning the mean first-passage time to make the nonlocal
transitions from any state i to any state j > n, one must
account for a possible transition to state n, which eventually
leads to

τ
(n)
i = τ

(n−1)
i + P(n−1)

in τ (n)
n . (32)

The updating rule obviously covers the case i equal to n.

K. Path factorization and space-time randomization

Path factorization [22] consists of directly constructing
stochastic matrix P(N ) by repeatedly applying rank-one up-
dates starting from stochastic matrix P(0) defined in (5). The
factorization may involve on-the-fly reindexing. The mean
first-passage time vector needs to be initialized. For all rel-
evant states i, τ

(0)
i may be set to either τ = mini∈� (−1/Kii )

or −1/Kii. The repeated updates can also be performed on the
mean residence time vector θ(n−1). The starting vector θ(0) is
initially set to τ (0) � π and the updating rule (32) becomes

θ
(n)
j = θ

(n−1)
j + P̃(n−1)

n j θ (n)
n , (33)

where the involved probability is defined from detailed bal-
ance and reads

P̃(n−1)
n j = ρ jτ

(0)
n

ρnτ
(0)
j

P(n−1)
jn . (34)

This quantity corresponds to the canceled probability to elim-
inated states j < n, otherwise it is P(n−1)

n j , the usual absorbing
probability to the states j � n that are not yet eliminated.
Hence, setting j equal to n in (33) yields

θ (n)
n = θ (n−1)

n

/(
1 − P(n−1)

nn

)
. (35)

Note that updating rules (31) and (35) exhibit a similar form.
The usefulness of path factorization is that it can be used

not only to compute the expected values of the first-passage
and residence times, but also to draw these two random
variables from their exact distributions. Such randomization
thus obviates the need to perform an eigenvalue decompo-
sition. Algorithm 3 described in Appendix A and illustrated
in Sec. III C implements time randomization based on the
probabilistic interpretation of the factorization.

Path factorization amounts to constructing the triangular
matrices involved in LU or LDLT decomposition as well as
their inverses, as shown in Appendix B. It is shown that the
repeated application of updating rules (32) and (33) to obtain
τ (N ) and θ(N ) from τ (0) and θ(0) amounts to directly applying
the inverted triangular factors on τ (0) and θ(0). Noticeably,
transitions to new transient states are removed within path
factorization in the same way as matrix elements are canceled
through Gaussian elimination. The latter technique is crucial
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ingredient for direct solvers. A direct sparse solver is imple-
mented in Sec. III B to investigate the algorithmic complexity
on the vacancy elastodiffusion problem. The solver computes
the solutions τ (N ) and θ(N ) of (25) through forward and back-
ward substitutions based on the symmetric triangular factor
without its explicit inversion. The advantage of programming
the rank-one updates is that the transition rate property of the
transformed matrices can be preserved, as explained by Wales
et al. in Refs. [27,40]. Hence, the approach is more robust,
albeit much slower, than available direct solvers. Preserva-
tion of probability fluxes is achieved by imposing that the
flicker probability P(n−1)

nn from n and the corresponding escape
probability, Dnn = ∑

j>n P(n−1)
n j , exactly sum to one after each

elimination. Path factorization is found more appropriate for
studying trapping of vacancies in small Mn clusters in iron.
It is used to accelerate KMC measurements of Mn-cluster
diffusion coefficients in Sec. IV.

III. ELASTODIFFUSION OF VACANCIES IN ALUMINIUM

In the first application, we consider the diffusion of a
single vacancy around a cavity in aluminium. The crystalline
structure is face-centered cubic. The coordination number is
Z = 12. The vacancy formation energy is E f

V = 0.67 eV. It
corresponds to the energy difference for displacing a vacancy
from a free surface to the bulk. In our model, it determines
the interaction energy of two neighboring vacancies. We con-
sider nearest-neighbor pair interactions only and set Enn

VV =
−2E f

V /Z . We also set Enn
V Fe = 0 and Enn

FeFe = 0. These interac-
tion energies entail that nearest-neighbor vacancy pairs are en-
ergetically favored. The model describing thermally activated
jumps of aluminum atoms into next nearest-neighbor vacancy
accounts for the elastic field created by the cavity [37]. The
dipole tensor associated with the vacancy has been computed
using electronic structure calculations. It is assumed to be

independent of the induced elastic strain, i.e., higher-order
terms in the fast-multiple expansion of elastic interactions are
neglected.

A. Vacancy emission flux from cavity

We focus on the emission of a single vacancy from a cavity.
In this setup, we neglect some dynamical effects and assume
that only a single vacancy can migrate and be emitted from a
static cavity. The vacancy emission rate could conceivably be
impacted by a dynamically evolving cavity. The cavity is com-
posed first of 2243 vacancies. Cavity sites are located inside a
sphere of radius 20.7 Å. The mobile vacancy is considered to
be initially equilibrated at temperature T = 600 K on the sites
of the first shell of the cavity. Trapping results from the fast
intrashell vacancy jumps and from the immediate reconnec-
tion of the vacancy after it just disconnected from it. A total
of N = 259 320 transient states are used to characterize the
vacancy emission properties, which correspond to the vacancy
sites located inside the protective sphere of radius 101 Å and
centered on the cavity center.

We first resorted to algorithm 1 to construct matrix AB.
We next solved equation (25) by implementing a direct solver
(see Sec. III B) to obtain the mean residence time vector θ(N )

associated with the imposed initial distribution π and through
appropriate rescaling (see Sec. II I). We next define the mean
probability currents θ jKj� − θ�K� j between both transient and
absorbing states, where θ stands for an extended mean res-
idence time vector coinciding with θ(N ) on transient states
and canceling elsewhere. Probability currents are a practical
tool serving to characterize not only nonequilibrium steady
states [36,42], but also transient nonequilibrium regimes as
presently. Letting r̂i denote the three-dimensional lattice co-
ordinates of the vacancy associated with state i, the vacancy
flux at r̂i is defined as the three-dimensional vacancy current

Algorithm 1 Assembly of transition submatrices.

1: N ← 1; N tot ← 1;
2: initial transient state is indexed 1; i ← N ;
3: while i � N do
4: list the Zi possible transitions of Si;
5: for � = 1, · · · , Zi do
6: evaluate key for final state associated with �-th transition;
7: if new key then
8: N tot ← N tot + 1; j ← N tot;
9: add key and its state index j to dictionary;
10: if state transient then
11: N ← N + 1;
12: end if
13: else � key exists
14: retrieve state index j of existing key;
15: end if
16: evaluate Ki j , transition rate from Si to Sj ; � for �th listed transition
17: end for
18: i ← i + 1
19: end while
20: reorder transient states from 1 to N and absorbing states from N + 1 to N tot;
21: construct τ (0), P(0) and absorbing transient rate matrix AB from K.
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FIG. 2. Emission of a single vacancy from the centered gray cavity of radius 20.7 Å to the absorbing sphere of radius 101 Å: (a) and
(b) display the residence times using two distinct color scales; (c) and (d) display the radial and orthoradial vacancy fluxes, respectively.
Coordinates of displayed sites satisfy r̂ j · k̂ = 0 where k̂ is the normalized basis vector orthogonal to (001). The Euclidean norm ‖r̂ j‖
corresponds to the distance to the cavity center and θ (‖r̂ j‖) is the average residence time on the centered sphere of radius ‖r̂ j‖ and surface
area 4π‖r̂ j‖2. Vector n̂ j = r̂ j/‖r̂ j‖ is the normalized radial vector. The cross product n̂ j × k̂ corresponds to the orthoradial direction of the
flux at r̂ j .

density:

φ̂ j = 1

2v

∑
�

(θ jKj� − θ�K� j )(r̂� − r̂ j ).

The site volume v is uniform and the half factor stems from
the fact that adjacent transitions are counted twice and entails
an average of the fluxes entering and leaving lattice site r̂ j .
Note that reversible dynamics obeying detailed balance, prob-
ability currents and vacancy fluxes vanish at equilibrium. The
absorbing probability to state � > N given initial distribution
π is eventually computed by plugging the residence time
vector into relation (27), which yields

πa
� =

∑
i�N

πiP
(N )
i� =

∑
i�N

θ
(N )
i Ki�. (36)

Residence times and vacancy fluxes are displayed in Fig. 2
for sites j located in the (001) plane intercepting the cav-
ity center. Vacancy fluxes along [001] direction inside this
particular (001) plane cancel due to the reflective system
symmetry. The absorbing probabilities to the peripheral states

are displayed in Fig. 3 for the emission of a single vacancy
from the (hidden) cavity located at the center.

In Fig 2(a), we have scaled the residence times with respect
to the corresponding equilibrium distribution for comparison.
We observe that residence time distribution coincides with
the equilibrium distribution on trapping sites located on the
first two shells of the cavity. However, the former distribution
become considerably smaller than the latter one as the va-
cancy moves away from the cavity. The emission anisotropy is
clearly evidenced in Fig 2(b) wherein the residence times have
been rescaled with respect to their spherical averages. The
vacancy preferentially resides along 〈100〉 crystalline direc-
tions. This trend induces an identical anisotropy of the radial
flux observed in Fig. 2(c). Preferential emission paths along
〈100〉 crystalline directions may result from the orthoradial
components of the flux that move the vacancy away from
〈100〉 directions beyond the first outer shells as evidenced
in Fig. 2(d). The emission anisotropy is not due to the
nearest-neighbor chemical interactions between the vacancy
and the cavity but to the elastic interactions. This property is
confirmed by the fact that isotropic fluxes are obtained when
elastic interactions are switched off.
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FIG. 3. Anisotropy of peripheral site absorption for vacancies
emitted from a small Aluminum cavity. Absorbing probability vector
is paT = πT P(N ). Red and blue coloration respectively indicates
larger and lower than average for the displayed site absorbing prob-
abilities. The inverse mean probability corresponds to the number
of peripheral sites. Cavity and protection radii are 20.7 and 101 Å,
respectively.

The strong local heterogeneity observed in Fig. 3 for the
absorbing probabilities is attributed to the varying numbers
of interconnections between transient and absorbing states.
However, smaller modulations are clearly visible at larger
scale indicating that absorption is more important along 〈100〉
directions and smaller along 〈110〉 directions, in agreement
with the measured vacancy fluxes.

Further, we discuss about the computational aspects of the
sparse linear solvers tested in the vacancy emission problem.

B. Computational complexity and stability

For problems involving the hopping of a defect on a lattice,
the absorbing transition rate matrix is sparse and contains
a maximum of Z + 1 nonzero elements per rows (Z = 12),
while its size may exceed several millions in practice. Such
linear systems are efficiently solved using either a multifrontal
sparse direct solver based on LDLT decomposition [43,44] or
sparse iterative solvers based on Krylov subspace projection
(KSP) methods [45] based on PETSC software [46]. We first
compare the costs of solving the linear system using iterative
solvers to those of using direct solvers.

As for sparse iterative solvers, conjugate gradient (CG) is
the appropriate method when the matrix is symmetric defi-
nite positive, however we also tested the minimum residual
(MinRes) method that is adapted to general symmetric matri-
ces. Three preconditioners were tested: the additive Schwarz
method (ASM) and the Jacobi and Block-Jacobi methods (B
and BJ, respectively).

As for the multifrontal sparse LDLT factorization, we in-
stalled version 5.2 of MUMPS [43,44], which enables OpenMP
threading and implements several ordering packages to con-
struct the elimination tree. Among them, we selected METIS
for its efficiency. The block-low rank (BLR) compression of
the factors was also tested. Enabling this option reduces both
storage and number of operations by an amount inversely

10−3

10−2

10−1

100

101

102

102 103 104 105 106

∝ N2

∝ N

N

LDLT

LDLT

FIG. 4. Comparative cost of direct and iterative linear solvers.
See text for details on the solvers. Simulations are performed on an
Intel 4-Cores i5-4310U processor running at 2.00 GHz with 8 GB
memory. OpenMP shared-memory parallelism is enabled for LDLT

factorization.

proportional to the tolerance on the solution. The tolerance
control parameter was set to 10−5 which yielded a good
trade-off between performance and accuracy. Simulations are
performed for the emission problem in which the emitted
vacancy reaches a protective sphere of increasing radii. The
largest matrix size is nearly 2 × 106 (number of transient
states). Results are displayed in Fig. 4. Scaling matrix B is
first set to identity.

We observe that the iterative solver performs better than
the direct solver, by a factor of 10–20. We obtain a square
complexity for the standard direct solver, as expected for a
sparse matrix describing transitions or connections within a
three-dimensional space. BLR becomes more beneficial the
larger the matrices. For 106 transient states, BLR is 2.5 times
faster and requires 15 times less operations than the stan-
dard factorization. The observed complexity of the iterative
solvers is between square and linear with the combination of
conjugate gradient and Jacobi preconditioning being the most
efficient.

CPU costs for computing the transition rates and assem-
bling AB matrix are also reported in Fig. 4. They are repre-
sented by the dotted line referred to as “Assembly.” Asymp-
totically, the overhead cost grows linearly with system size.
It however remains larger than the one taken by any iterative
solver for all simulated sizes. The preliminary calculation of
transition rates is in fact substantial and should certainly be
optimized in future KMC applications.

KSP methods for sparse symmetric linear system [45]
allow to solve first-passage problems over large volume,
with matrix sizes that could not be investigated before. Note
that implementing iterative KSP methods with the original
non symmetric matrix, for instance resorting to generalized
minimal residual method, increases the computational cost by
one-to-two orders of magnitude and requires more memory by
the same amount. The deterioration of efficiency results from
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FIG. 5. Effect of scaling matrix B on accuracy of residence and
first-passage time calculations. The residual norms and condition
numbers are displayed for two setups: B equal to I and 
 =
Diag(A)−1. The corresponding mean-first passage times, evaluated
from πT τ (N ) and θT �1, are displayed for comparison. Note that ‖�1‖1 =
N and ‖π‖1 = 1.

the orthogonalization procedure that must be performed with
respect to all Krylov basis vectors. At variance, with symmet-
ric matrices orthogonalization is performed with respect to
the two last vectors, omitting occasional re-orthogonalizations
aiming at preserving accuracy.

Further, we investigate the effect of scaling matrix B on
the condition number of AB, denoted by κ (AB), and on
the accuracy of the direct solver (LDLT factorization with
MUMPS). The 1-norm of the obtained residual vectors with
respect to the absorbing rate matrix serves as a measure of
accuracy. The 1-norms and condition numbers are evaluated
for a series of temperatures ranging from 160 to 600 K and
are displayed in Fig. 5 wherein 
 stands for Diag(A)−1 and
B is set to I or 
. We notice that the latter scaling variant im-
proves mainly the numerical accuracy for mean first-passage
time calculations. Besides, it systematically yields the lowest
condition numbers κ (AB). Note that the direct solver fails
below 180 K, compared to 250 K for the best iterative solver
(conjugate gradient). When the solvers fail to converge, the
probability flux is not preserved and negative times may even
be returned. As Wales et al. [27,40], we believe that this issue
is due to round-off errors and too large differences between
the diagonal and nondiagonal elements. For stiff problems,
like the one involving the diffusivity of Mn clusters in Sec. IV,
path factorization is to be implemented to guarantee that the
special structure of the transition matrix is preserved during
eliminations.

Another advantage of performing the factorization is that
additional solutions can be obtained at a much smaller cost

using forward/backward substitution. The factorization can
be reused to compute mean residence times over each site
given any new initial conditions or to generate first-passage
times directly from the exact distribution through randomiza-
tion. To validate the latter time randomization procedure, we
show that it is possible to reconstruct the survival probability
distribution from a sample of first-passage times.

C. Survival probabilities and spectral truncation

Equation (22) yields the survival probabilities at time t
with respect to the set of initial distributions {ei}i�N . For
the particular initial distribution π, the probability becomes
S(t ) = πT ps(t ). Defining and plugging the scalar product
αh = ∑

i�N πiah
i into the survival probability yields

S(t ) =
N∑

h=1

αh exp [−λht]. (37)

Considering the vacancy emission problem again, we en-
tirely solved the eigenvalue problem for a small system con-
taining 236 transient states and 13 immobile vacancies in
the central cavity of radius 4.04 Å. The protective sphere
radius is 10.1 Å. The default dense solver from Lapack
library was used. The survival probability and the distribution
of first-passage logarithmic times are reported in Fig. 6 for
reference. We next run algorithms 1 and 2 of Appendix A
to make the factorization of BA and algorithm 3 to generate
a sample of 105 first-passage time to the protective sphere.
The survival probability distribution reconstructed from the
generated sample of first-passage times is reported in Fig. 6.
It perfectly matches with the reference distribution obtained
from (37), which validates the time randomization approach.

Interestingly, a perfect agreement is also observed when
the survival probability is evaluated retaining only the lowest
eigenvalue associated with the quasistationary distribution.
This suggests that it is possible to truncate the spectral de-
composition above a certain threshold and approximate the
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FIG. 6. Emission of a single vacancy from cavity (4.04 Å radius)
to protective sphere (10.1 Å radius). The survival probabilities (left
axis) and first-passage distributions (right axis) are evaluated from
the quasistationary distribution (lowest eigenvalue), the exact dis-
tribution (full spectrum), and randomization (factorization). Time is
given in unit of mean first-passage time (mfpt).
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Algorithm 2 path factorization [22] adapted from graph
transformation [27] and an early version [19].

1: construct P(0) and τ (0);
2: if flux calculation enabled then
3: θ(0) = τ (0) � π;
4: end if
5: for n from 1 to N do
6: if adaptation enabled then
7: select new transient state and label it n
8: re-order P(n−1), τ (n−1) and possibly θ(n−1);
9: end if
10: compute P(n) by performing rank-one update of P(n−1);
11: compute τ (n) by performing rank-one update of τ (n−1);
12: if flux calculation enabled then
13: compute θ(n) by performing rank-one update of θ(n−1);
14: end if
15: end for
16: if flux calculation enabled then
17: compute fluxes from θ(n)

18: end if

survival probability retaining the k first terms:

Sk (t ) =
k∑

h=1

αh exp [−λht]. (38)

The truncation error can be directly quantified at time t = 0
since we know that S(0) = 1. The time integral of the error
can also be quantified from the ratio

Tk =
∑k

h=1 αh/λh∑N
h=1 αh/λh

, (39)

where the denominator formally corresponds to the mean first-
passage time πT τ (N ) and is thus computed from a linear solve.

For the large considered systems, the k lowest eigenvalues
and their associated eigenvectors are efficiently extracted by
performing reverse iterations using the Krylov-Schur method
[47,48] and the factored matrix. This amounts to extracting
the largest eigenvalues of the inverse matrix. Calculations
are performed using SLEPC software [49,50]. We investigate
the effect of truncating the spectral decomposition on two
computational setups: (i) the emission of a single vacancy

Algorithm 3 Kinetic path sampling [22]: subset E = {1, · · · , N} encompasses the transient states and subset

A = {N + 1, · · · , Ntot} includes absorbing peripheral states; system is initially in state α ∈ E ∪ A.
See Appendix A for the definition of stochastic variables and laws.

1: define Nc × Nc hoping matrix H(N ) and set its entries to zero;

2: while α ∈ A ∪ E do

3: draw j ∝ Cα;

4: increment H (N )
α, j by one;

5: α ← j; � move current state α to j

6: end while �α ∈ A ∪ E

7: for n = N to 1: do

8: evaluate P(n−1);

9: deallocate P(n);

10: for i ∈ {E ∪ A} \ {n} and j ∈ {n + 1, ..., Nc} do

11; evaluate R(n)
i j = P(n−1)

i j /P(n)
i j

12: draw H (n−1)
i j ∼ B

(
H (n)

i j , R(n)
i j

)
13: end for

14: for i ∈ {E ∪ A} \ {n} do � count new hops from i to n:

15: H (n−1)
in = ∑

j∈{n+1,...,Nc} H (n)
i j − H (n−1)

i j

16: end for

17: for j ∈ {n + 1, ..., Nc} do � count hops from n to j

18: H (n−1)
n j = H (n)

n j + ∑
i∈E\{n} H (n)

i j − H (n−1)
i j

19: end for

20: hn = ∑
j∈{n+1,...,Nc} H (n−1)

n j � count hop number from n,

21: H (n−1)
nn ∼ NB

(
hn, 1 − P(n−1)

nn

)
� draw flicker number

22: Tn = hn + H (n−1)
nn � evaluate hop number from n,

23: θ̃n ∼ j
(
Tn, τ

(0)
n

)
� convert to residence time in n,

24: deallocate H(n) and R(n);

25: end for

26: evaluate first-passage time τ̃ (N ) = ∑
�∈E∪A θ̃� associated with

the path generated in (2);

27: increment the physical time t by τ̃ (N ).
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FIG. 7. Emission of a single vacancy from the cavity (20.5 Å
radius) to the protective sphere (101 Å radius). Survival probabilities
and first-passage distributions are respectively plotted in panels
(a) and (b) using various truncation thresholds k.

from a cavity of radius 20.7 Å to a protective sphere of
radius 101 Å (same conditions as in Fig. 2 and 3) and (ii) the
absorption by the cavity of a single vacancy initially located
at a distance of 57.13 Å from cavity center in [110] direction.
In setup (ii), there is no protective sphere and the cell is
periodically replicated along 〈100〉 directions with periodicity
length 80.8 Å. The absorbing macrostate is reached whenever
the hopping vacancy becomes connected to the cavity. Setup
(ii) entails 34 801 transient states compared to 259 320 for
setup (i).

The survival probabilities and first-passage distributions
are reported for various truncation threshold in Figs. 7 and
8. We observe that the trapping kinetics is governed by the
quasistationary distribution [41] for the vacancy emission
process, and for the vacancy absorption at times larger than the
mean first-passage time. At short times, a substantial portion
of 10% of the decaying exponentials needs to be included
to faithfully reproduce the early stages of the absorption
kinetics.

To rationalize this trend, the convergence of the truncated
and reduced quantities Tk and Sk (0) are displayed in panel
(a) and (b) of Fig. 9, respectively. We observe that truncation
errors are lower in the estimation of the mean first-passage
time than of the initial survival probability. Convergence is
non monotonous and proceeds by plateaus, suggesting the
predominance of specific modes. To evidence them, scatter
plots of computed eigenvalues and associated αk factors are
shown in Fig. 10. We indeed observe that many more modes
with large eigenvalues contribute in the absorption problem
compared to the emission one. Furthermore, the large spectral
gap between λ1 and λ2 explains the fast time-decay of the
truncation error on the survival probability. At times larger
than the mean-first passage time, the quasistationary distri-
bution is reached. The early stage absorption kinetics is the
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FIG. 8. Absorption of a single vacancy by the cavity (20.5 Å
radius). Survival probability distribution (a) and first-passage distri-
bution (b) as a function of time.

most problematic to compute from spectral decomposition
because many modes contribute. In this situation, we observe
that it is far more efficient to compute the probability vector
πT

t = πT
0 exp[−At] at a given time t using a Krylov subspace

method [51] for evaluating the application of a vector on a
matrix function. Here, we applied the scaled initial probability
to the exponential of −tAI and then reverted the scaling as
follows:

πt = {exp[−tAI ](π0 � r)} 	 r. (40)
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FIG. 9. Effect of retaining the k lowest modes for approximating
the reduced mean first-passage time Tk (a) and the initial survival
probability (b).
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FIG. 10. Absolute values of αk contributing coefficients dis-
played as a function of the eigenvalues scaled relatively to the lowest
eigenvalue λ1.

This method however becomes less efficient than the truncated
eigenvalue decomposition method as time increases. At half
the mean first-passage time of the absorption kinetics, the
QSD already yields an excellent approximation. This one
is less efficiently extracted using the forward iterations of
Ref. [51] than reverse iterations within Krylov-Schur method.
The open question to address is how to combine both ap-
proaches optimally.

Note that the absorption kinetics is paradoxically easier to
simulate using KMC simulations because the energetic basin
of attraction is precisely the absorbing sink. Extensive KMC
simulations have been performed for the present absorption
problem in Ref. [37] for calculating sink strengths of various
cavities and dislocations.

IV. DIFFUSION OF MN-V CLUSTERS IN α-IRON

In this second application, we illustrate how path factoriza-
tion can be implemented in kinetic Monte Carlo simulations
to compute diffusion coefficients in FeMn system and how
additional simulation speedups can be obtained by storing
and efficiently retrieving the factorizations in hash tables.
Simulation aims at computing the diffusivity of small Mn
clusters. The enhanced mobility of solute clusters impacts the
early stage of phase separation kinetics in quenched alloys
[52], and is also suspected to be responsible for the anomalous
incubation times observed in some aluminium commercial
alloys [53].

The simulation box contains 103 unit cells with two nodes
per cell. The crystalline structure is body centered cubic and
periodic boundary conditions are used. Interaction energies of
Fe and Mn atoms and vacancies have been deduced from elec-
tronic structure calculations and are given in Refs. [54,55].
Below 700 K, Mn atoms tend to form a single cluster that

rarely dissociates during the simulations. This is due to their
thermodynamic stability and to the high emission barriers.
The two following algorithms are implemented and tested.

(1) The standard kinetic Monte Carlo algorithm denoted by
KMC; at each cycle, a single vacancy transitions to one of its
nearest neighbor sites, i.e., exchanges with a nearest neighbor
atom. Time is incremented by the mean residence time on the
previously occupied site.

(2) The factorized KMC algorithm denoted by F-KMC:
The vacancy makes a nonlocal transition and escapes the
trapping basin based on the path factorization algorithm. The
set of transient states (the trap) encompasses the initial va-
cancy state and all states that can be reached via vacancy-Mn
exchanges exclusively. The physical time is increased by the
mean first passage time associated with the nonlocal escaping
transition. It corresponds to the kinetic path sampling algo-
rithm of Ref. [22].

Because a single vacancy is used in simulations, the time
for performing a transition does not need to be drawn in its
first-passage distribution and its expected value is used. This
amounts to performing conditioning over time [56] and aims
at reducing the statistical variance of the estimated diffusion
coefficients. We consider here the diffusion coefficient of
solute Mn atoms, defined as the three-dimensional average
of half the time derivative of the mean square displacement
(MSD)

D(X, T ) = 1

6
lim

t→∞
d

dt
〈‖x̂(t ) − x̂(0)‖2〉, (41)

where X is the number of Mn atoms, T is temperature,
and x̂(t ) is the solute displacement vector at time t . With
nonlocal events and conditioning performed over time, the
time variable is replaced by the product of �, the number of
involved jumps, and τ̂ L = 1

L

∑L
h=1 τh, the mean first-passage

time averaged over a sample of size L generated using KMC
or F-KMC. The solute diffusion coefficient is then estimated
resorting to the following estimator:

D̂ L
� =

1
L−�

∑L−�
h=1 ‖x̂h+� − x̂h‖2

6� τ̂ L
, (42)

where x̂�+h is the solute displacement vector after � + h
jumps.

Simulations are carried out for temperatures T ranging
from 300 to 1200 K and numbers X of Mn atoms increasing
from 1 to 60. For each (X, T ) pair, a series of ten runs of eight
hours are performed using a Gold-6140 Intel Xeon processor
running at 2.30 GHz. The computed diffusion coefficients
and their average over the 10 runs are displayed in Fig. 11.
For better visualization, a rescaling has been done using the
high temperature activation energy for Mn monomer diffusion
(X = 1) at 600 K. The diffusivity of V-MnX clusters increases
with increasing X before tapering off for temperatures lower
than 800 K. Furthermore, the diffusivity maximum increases
with temperature, suggesting the presence of a maximum at
Mn content that could not be simulated. A similar increasing
trend has been reported in FeCu system using standard KMC
simulations (see Fig. 9 in Ref. [57]), although the temperature
dependence of the maximum could not be investigated due to
a severe vacancy trapping in Cu clusters.
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FIG. 11. Diffusion coefficients of Mn solute atoms as a func-
tion of cluster size for various temperatures. For clarity, scaling is
done relative to monomer diffusivity at T0 and its high-temperature
activation energy E a = 0.646 eV. Reference temperature is T0 =
600 K and reference diffusivity is D(1, T0 ) = 6.716 × 10−15m2/s at
vacancy concentration of 5

With increasing Mn content, F-KMC simulations failed
to converge. This is because path factorization becomes too
costly. Besides, at the lower temperatures, the system gets
trapped in superbasins containing several vacancy-cluster
shapes. To understand the limitations of the current F-KMC
algorithm and quantify the potential speedups of future de-
velopments, we tested two additional features in F-KMC
algorithm, namely,

(1) a dictionary-enhanced version denoted by FD-KMC:
Hash tables are used to store computed data about cluster
shapes and factorizations. The goal is to retrieve the stored
information when needed to avoid performing the same fac-
torizations many times. This algorithm is described in Chaps.
5 and 6 of Ref. [58].

(2) A graph-enhanced version denoted by FDG-KMC: The
nodes of the graph correspond to the cluster keys that have
been added to the dictionary. The edges of the graph corre-
spond to the previously encountered nonlocal transitions. The
goal is to save computational resources by making transitions
from one cluster shape to another one in the graph without
recalculating the cluster key. This algorithm is described in
Chap. 7 of Ref. [58].

Simulations at 600 K with increasing Mn cluster sizes
have been performed using the four algorithms and their
relative efficiencies are displayed in Fig. 12. The efficiency
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FIG. 12. Relative efficiencies of the algorithms as a function of
cluster size. Efficiency is evaluated as the ratio of the simulated
physical time to that of F-KMC for a given wall-clock time. Filling
around curves corresponds to the 68% confidence interval.

of KMC algorithm relative to F-KMC is observed to decrease
with increasing Mn content. This trend already reported in
Ref. [22] for FeCu is attributed to the increase of vacancy
trapping with cluster size. The observed increase of FD-KMC
efficiency with increasing Mn content is explained by the
concomitant increase in factorization costs: it is more and
more advantageous to store and retrieve the factored matrices,
as their sizes and computational costs increase. When cluster
sizes exceed 40, it is also beneficial to connect the various
clusters resorting to a graph using FGD-KMC algorithm. This
trend results from the fact that the kinetics repeatedly visit a
few cluster shapes, as observed in FeCu system [22]. These
simulations show that the use of hash tables and graphs are
also beneficial for KMC simulations on a rigid lattices. A
point left for future developments involves the optimal deal-
location of entries rarely looked up whenever the dictionary
memory reaches a given threshold.

V. DISCUSSION AND CONCLUSION

To summarize, the theory of absorbing Markov chains is
applied to characterize rare events occurring when the diffu-
sion process is trapped within a finite set of states. The initial
probability distribution corresponding to the trapped system
acts as an emitting source while the peripheral states of the
trap become an artificial absorbing sink. In this framework,
the theory yields formal expressions for the transient evolution
operator, the source-to-sink probability fluxes and the mean
residence times on transient states. Whenever the original
nonabsorbing diffusion process is reversible, we show that
the associated first-passage problem can be greatly simplified.
The absorbing process then inherits a reversibility property
that is conditional on that the dynamics has not reached the
absorbing state. It transiently satisfies Kolmogorov’s criterion:
the probability of any circular sequence of transient states
is equal to that of the time-reversed sequence, even though
probability currents are nonzero. This conditional reversibility
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entails in particular that the absorbing transition rate matrix is
similar to a symmetric definite negative matrix and that the
transformation matrix exhibits a simple diagonal form.

To compute mean first-passage times, exit probabilities and
source-to-sink probability fluxes in relatively small problems,
with less than 103 transient states, we implemented the path
factorization technique. This technique corresponds to a direct
and robust method for solving linear problems based on Gaus-
sian elimination. Its robustness stems from the preservation
of the transition rate property during the graph transformation
[27,40], i.e., the rank-one updates. Besides, by interpreting the
factorization in terms of paths, a randomization procedure is
formulated enabling first-passage times and exits to be drawn
directly from the exact distributions. The acceleration in KMC
simulations employing path factorization is substantial and
makes it possible to compute the mobility of kinetically stable
Mn clusters in iron down to the operating temperatures of
pressurized reactors/vessels.

Characterizing the transient distribution associated with
any absorbing processes is also an important problem to
solve, as no-passage distributions serve to synchronize defects
evolving in parallel within first-passage KMC simulations
[33–35]. Evaluating the distribution requires the knowledge
of both eigenvalues and eigenvectors of a symmetric positive
definite matrix. In practical applications, we observe that the
evolution on transient state is governed only by a fraction
of the eigenspectrum. The most contributing mode is the
one possessing the lowest eigenvalue, and its eigvenvector
corresponds to the quasistationary distribution. For the studied
emission problem, which exhibits a strong energetic trapping,
the quasistationary distribution overwhelmingly predominates
and correctly describes the transient evolution. For the ab-
sorption problem where trapping is essentially entropic, a
small but substantial fraction of the slow modes are observed
to contribute to the no-passage distribution and to govern
the slow decay of the survival probability. For problems
with more than 104 transient states, the transition rate matrix
becomes sparse and iterative solvers are to be used to evaluate
the eigenvalues and their contributions to no-passage distri-
butions on the fly. We advocate to perform reverse iterations
for extracting eigenvalues in ascending order. This can be
achieved by iteratively applying the inverted matrix resorting
to the LDLT factorization, which amounts to extracting the
largest eigenvalues of the inverted matrix. For very large trap
sizes, we show that resorting to a direct multifrontal LDLT

solver (possibly combined with block low-rank compression)
makes it possible to perform sink strength calculations for the
absorption of a vacancy from a cavity and also to compute
vacancy emission rates from the cavity. Computations can be
done using millions of transient states per processor, allowing
us to investigate realistic cavity concentrations in irradiated or
quenched aluminum.

To conclude, symmetrizing the transition rate matrix asso-
ciated with reversible diffusion processes enables one to apply
efficient linear and eigenvalue solvers and to characterize the
important rare events governing the long-term microstructural
evolution of alloys, such as cluster mobilities, sink strengths
and associated first-passage distributions. All these physical
quantities are crucial input parameters for larger-scale simula-
tions employing object/event KMC methods or rate equation

cluster dynamics. The dependence of cluster mobilities on
their size and temperature can possibly be included in larger
scale models.
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APPENDIX A: ALGORITHMIC IMPLEMENTATION

1. Path factorization

Algorithm 1 is used to compute transition rates, to dis-
criminate transient and absorbing states and to assemble the
associated transition submatrices. Then, algorithm 2 is used
to make the path factorization. Note that the characterization
of transition rates and transient states can be done on the fly
in algorithm 2. This requires a selection rule for next transient
state based on the transformed transition probabilities, as done
in Ref. [22] for simulating the anomalous diffusion of a defect
on a disordered substrate.

2. Space-time randomization

At the N th rank-one update, stochastic probability matrix
P(N ) subsumes all possible transitions involving the deleted
states in the trapping basin E = {1, · · · , N}. Although any
intermediate matrix P(n) with n ∈ E can be used to randomly
generate escapes from any state i ∈ E, a trajectory generated
using P(N ) is the simplest containing a single transition. On the
other end, reverting back to a standard KMC simulation based
on P(0), a detailed escape trajectory that accounts for all tran-
sitions within E can be generated. Remarkably, it is possible
to efficiently construct statistically correct escape trajectories
without ever performing any detailed (and inefficient) KMC
simulation. Space-time randomization is based from the set of
conditional probabilities defined for all i and for j > n

R(n)
i j = P(n−1)

i j /P(n)
i j . (A1)

A particular R(n)
i j yields the probability that an nth order

transition from i to j > n avoids site n when decomposed
in term of (n − 1)th order transitions. The following defini-
tions are required to understand the space-time randomization
procedure described in algorithm 3. The binomial law of trial
number h ∈ N and success probability r is denoted by B(h, r).
The probability of s successes is (h

s)r
s(1 − r)h−s. The negative

binomial law of success number h and success (escape) prob-
ability 1 − p is denoted by NB(h, 1 − p). The probability of
f failures before the hth success is ( f + h − 1

f )pf (1 − p)h where
p is the failure or flicker probability (flickers will correspond
to roundtrips from a given state). The gamma law of shape
parameter h and timescale τ is denoted by j(h, τ ). Cα denotes
the categorical laws whose probability vector is the αth row
of P(N ) if α � N or of the stochastic matrix obtained from
P(0). The symbol ∼ means “is a random variate distributed
according to the law that follows.” Let A denote the set
of absorbing peripheral states. The set of states beyond the
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peripheral states (that are non transient and non absorbing) is
A ∪ E, the complementary of the union of A and E. State α

denote the current state of the system.
After implementation of algorithm 3, the system has

moved beyond the peripheral set and is disconnected to the
trapping basin reached: the current state α belongs to E ∪ A in
item (6). The gamma law j(Tn, τ

(0)
n ) in (23) simulates the time

elapsed after performing Tn consecutive Poisson processes of
rate 1/τ (0)

n . Indeed, after any hop or flicker performed with
P(0), the physical time must be incremented by a residence
time drawn in the exponential distribution of timescale τ (0)

n .
Note that algorithm (3) generalizes the time randomization
procedure proposed by Mason and coworkers [59] for the
second-order residence time algorithm [19].

In practice, several transitions exiting E are typically
recorded in the hopping matrix. As a result, the elapsed
physical time is generated for several escaping trajectories
simultaneously. The generated path may also return to the
same trap several times prior to reaching another trap. In
practice, the current path factorization is reused as many times
as necessary.

APPENDIX B: REFORMULATION OF PATH
FACTORIZATION

1. LU decomposition

We herein establish the connection between rank-one up-
dates of Sec. II J and the Gauss-Jordan elimination method on
the scaled transition rate matrix BA. Scaling matrix B is set to
τ I or Diag(A)−1 where τ = min(1/Aii : 1 � i � N ).

More precisely, we show that path factorization entails de-
composition BA = L+DU+ when the initial stochastic matrix
P(0) is set to I − BA. Matrix D is diagonal and its diagonal
elements Dnn are equal to 1 − P(n−1)

nn , the escape probability
from state n. The quantity P(n−1)

nn is the probability of a
roundtrip from the same state. We next define three matrices
L+

i j , U −
i j and U +

i j whose entries are initially set to zero. At the
nth update, the nth columns L+

in and U −
in are filled by setting

L+
in =

{
P(n−1)

in −Iin

P(n−1)
nn −1

if i � n

0, if i < n
, (B1)

U −
in =

{
Iin if i � n
P(n−1)

in if i < n
. (B2)

The nth row U +
n j is filled as

U +
n j = P(n−1)

n j − In j

P(n−1)
nn − 1

. (B3)

We have

L+
in − U −

in D−1
nn = − P(n−1)

in

1 − P(n−1)
nn

, (B4)

DnnU
+
n j = P(n−1)

n j − In j . (B5)

Since P(n−1)
i j = 0 for j � n − 1, matrix U+ remains upper

triangular after the nth row addition. The nth rank-one update
of Sec. II J amounts to constructing P(n) as follows:

P(n)
i j = P(n−1)

i j + (
L+

in − U −
in D−1

nn

)
DnnU

+
n j, (B6)

where P(n)
i j = 0 for j � n, as required. This property holds by

induction up to n = N . Recall that the probabilities of tran-
sitions from i to j ( j > n) subsume the canceled probability
of all possible transitions from i to n. This ensures that the
transformed matrices P(n) remain stochastic.

Summing relation (B6) from n = i to n = N when i � N
yields the relation

P(N )
i j = P(i−1)

i j + L+
ii DiiU

+
i j −

N∑
n=i

U −
in U +

n j, (B7)

= Ii j −
N∑

n=i

U −
in U +

n j, (B8)

where we substituted Ii j for P(i−1)
i j + L+

ii DiiU
+
i j . Let U+ and

U− denote the N × N upper triangular submatrices obtained
by restricting U +

i j and U −
i j to the trapping states i, j � N . Since

P(N )
i j = 0 for i, j � N , we obtain

I = U−U+, (B9)

recalling that I is the N × N identity matrix. Relation (B9)
entails that U− is the inverse of U+. Summing relation (B6)
from � = 1 to � = i − 1 yields the relation

P(i)
i j = P(0)

i j +
i∑

n=1

L+
inDnnU

+
n j − U −

ii U +
i j .

Since P(i)
i j = Ii j − U −

ii U +
i j , we obtain the following factoriza-

tion:
i∑

n=1

L+
inDnnU

+
n j = Ii j − P(0)

i j = BiiAi j .

We eventually obtain the decomposition of the N × N scaled
rate matrix BA into the product of a lower triangular matrix, a
diagonal matrix D = diag(D11, D22, · · · , DNN ) and an upper
triangular matrix:

BA = L+DU+. (B10)

Matrix U− being the inverse of U+, inverting A from the
factorization still requires inverting the lower triangular ma-
trix L+. Let L− denote the inverse of L+. D being diagonal
and positive definite, its inverse, denoted below by D−1,
exists. Matrices L± can be written as products involving the
following elementary matrices

L±
n = I ±

∑
i �=n

eiL
+
inen. (B11)

We have in particular L+ = L+
1 L+

2 · · · L+
N and L− =

L−
N L−

N−1 · · · L−
1 . From the matrix products above and property

L+
n L−

n = I, we deduce that L+L− = I, hence L− corresponds
to the inverse of L+. The decomposition of L− and U− into
product of triangular elemental matrices are used in the updat-
ing rule (32) to compute �τ (N ), the vector of mean first-passage
times. The sequential procedure (32) amounts to applying
vector b = B�1 on matrices L−, D−1 and U−, successively:

b = (
τ

(0)
1 , τ

(0)
2 · · · , τ

(0)
N

)T
,

L−b = (
τ

(0)
1 , τ

(1)
2 · · · , τ

(N−1)
N

)T
,
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D−1L−b = (
τ

(1)
1 , τ

(2)
2 · · · , τ

(N )
N

)T
,

U−D−1L−b = (
τ

(N )
1 , τ

(N )
2 · · · , τ

(N )
N

)T
.

Replacing the product U−D−1L− by A−1B−1 in the last equa-
tion yields the expected expression for the mean first-passage
time:

A−1�1 = τ (N ).

As for time randomization (algorithm 3 of Appendix A),
the information processed to evaluate the conditional proba-
bilities R(n)

i j defined in (A1) can easily be retrieved by resorting
to (B6) and the stored entries of L+, D, U+, and U−.

2. Cholesky decomposition

Whenever the underlying Markov process is reversible, the
symmetric positive definite matrix AB = SR−1ARS can be
defined, where diagonal matrix R is defined in (15) from the

equilibrium distribution ρ. Cholesky decomposition can then
be applied, yielding

AB = LBDLBT , (B12)

where LB is a N × N lower triangular matrix with ones on the
diagonal. Since D, R and S commute, the absorbing transition
rate matrix writes

BA = (SR)LB(SR)−1D(SR)LBT (SR)−1. (B13)

Comparing to L+DU+ decomposition enables one to identify
the following relations:

L+ = (SR)LB(SR)−1,

U+ = (SR)LBT (SR)−1.

We deduce that U+ = (SR)2L+T (SR)−2 and that the inverse
of L+ is L− = (SR)2U−T (SR)−2.
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