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The kink-pair activation enthalpy is a fundamental parameter in the theory of plasticity of body-centered
cubic (bcc) metals. It controls the thermally activated motion of screw dislocation at low and intermediate
temperatures. While direct atomistic calculations of kink pairs on screw dislocations have reached a high degree
of accuracy, they can only be practically performed using semiempirical interatomic force fields, as electronic
structure methods have not yet reached the level of efficiency needed to capture the system sizes required to
model kink-pair structures. In this context, an alternative approach based on standard three-dimensional elastic
models, which are efficient but lack atomic-level information, coupled to a substrate potential that represents
the underlying lattice, has been widely applied over the past few years. This class of methods, known as
‘line-on-substrate’ (LOS) models, uses the substrate potential to calculate the lattice contribution to the kink-pair
energies. In this work, we introduce the stress dependence of the substrate potential into LOS models to evaluate
its impact on kink-pair energies. In addition, we include asymmetric dislocation core energies as an extra
descriptor of the dislocation character. This asymmetry is also elevated to the continuum level by adding core
energies to the general LOS formulation and used to explain potential energy differences known to exist between
left and right kinks in bcc metals. More importantly, by matching the total LOS energies to previously calculated
atomistic energies of kink-pair configurations, we issue a rule to establish the value of the so-called core width
in nonsingular elasticity theories and reduce its arbitrariness as a mathematical construct.
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I. INTRODUCTION

In the field of dislocation physics, body-centered cubic
(bcc) metals are peculiar due to the existence of nonplanar
dislocations with screw character and thermally-activated mo-
bility that control plastic flow at low-to-intermediate temper-
atures. These dislocations have a Burgers vector b equal to
1/2〈111〉 and move on close-packed planes (primarily {110}
and {112}) [1–5]. Generally, this motion is understood to
occur over a periodic energy landscape known as the Peierls
potential via the thermally activated nucleation of steps on the
dislocation line, known as kink pairs, and their subsequent
sideward relaxation [6–12]. Screw dislocations in bcc mate-
rials often behave in noncrystallographic ways, giving rise to
phenomena such as pencil glide, asymmetry of the critical
stress in the twinning and antitwinning glide directions, asym-
metry of the critical stress under tension/compression loading,
or anomalous slip [13–23]. Most of these peculiarities are typ-
ically attributed to the highly compact (nonplanar) structure
of the 1/2〈111〉 screw dislocation core, which has naturally
attracted much attention over the last several decades mostly
in the form of atomistic models [24–26]. Based on recent work
using electronic structure calculations, a picture has emerged
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whereby the preferred dislocation core structure in bcc crys-
tals has been established to be a compact, nondissociated
core resting on an underlying sinusoidal Peierls potential, UP

[27–31].
The strong temperature dependence of the yield and flow

stresses displayed by most bcc metals is generally rational-
ized in terms of the thermally-activated nature of kink-pair
nucleation. As such, a principal objective of the materials
community in bcc alloys has been to develop models to
characterize the activation energy of kink pairs. These are
typically based on energy minimization of curved string con-
figurations lying on a static energy substrate in either one
[32,33] or two dimensions [34]. The energy of the string
is obtained by solving an integrodifferential equation in a
two-dimensional space defined by the glide x and screw z
directions that accounts for the elastic energy of the line, its
position on the substrate potential, and the mechanical work
done by the stress τ [35,36]. These so-called line-on-substrate
(LOS) approaches have been traditionally approximated by
models that reduce the double line integral (along x and z)
to discrete sums along one or both integration dimensions.
In the so-called line-tension (LT) model the integral along
the screw direction is replaced by a dislocation self-energy
which depends on the curvature of the line. The other integral
is solved along the glide coordinate, yielding the equilibrium
shape of the kink-pair configuration on the substrate potential.
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These activated configurations are usually referred to as
‘bulge’ structures as they resemble a protuberance on the
dislocation line projected along the glide direction. The LT
approach works well when this protuberance is small, i.e., at
high and intermediate stresses,1 but not at low stresses when
the equilibrium position of the line is near the minimum of
potential energy UP [32,33]. For low values of τ , the elastic
interaction (EI) between kinks governs the line energy, in
which case one can approximate the bulge configuration by
a polygon (typically a trapezoid) with mutually-interacting
elastic segments, reducing the double integral to a set of
discrete convergent sums [37,38]. While this is a general
consideration, irrespective of the material and the dislocation
type, the case of screw dislocations in tungsten does not really
follow this idea. This is because nonscrew segments of the
trapezoid are highly tilted towards the screw character (which
is a consequence of the core energy values and not uncommon
in bcc metals).

While insights gained from these models have improved
our understanding of the activated states of kink-pair configu-
rations, knowledge obtained from a decade or so of atomistic
calculations supports the need to augment LOS models with
inelastic contributions brought about by nonlinear effects of
atomistic nature. The most important of these are (i) the alter-
ation of the Peierls potential energy function in the presence
of resolved shear stress and (ii) the consideration of core
energies into the energy description of kink-pair configura-
tions. At low stresses, one can safely assume that UP remains
unchanged and the effect of stress on the dislocation can be
linearly decoupled from the underlying substrate in the form
of a mechanical work. However, at stresses approaching the
critical stress, referred to as the Peierls stress τP at 0 K, it
is insufficient to consider only the zero stress internal energy
to represent the Peierls trajectory. This trajectory is defined
as the rectilinear path, denoted by the reaction coordinate x,
between two equivalent equilibrium states (known as ‘easy
core’) on the Peierls potential, which has periodicity h0 =
a0

√
6

3 , where a0 is the lattice constant. As recent calculations
have shown, UP can couple to the applied stress in non-
negligible ways [39]. For its part, the inelastic contribution to
the total dislocation energy, referred to as the core energy, is
known to be potentially an important driving force in the mini-
mization of dislocation line configurations (e.g., the so-called
self-force in dislocation dynamics models). In particular, as
will be shown below, in bcc metals the dependence of the
core energy with dislocation character is periodic in the entire
[−π

2 , π
2 ] angular range of θ (taken to be equal to zero for the

screw orientation), contrary to other crystal structures, which
display a [0, π

2 ] periodicity. While this is a consequence of
a well-known asymmetry of the bcc crystal lattice [4,15,16],
it has not been included into continuum models of kink-pair
configurations to date.

In this work, we explore the effect of these features on
numerical LT and EI models of kink-pair configurations

1While the terms ‘low’ and ‘high’ stress used throughout this paper
are somewhat arbitrary, here, for reference, we have decided to assign
a value of 0.25σP as the high limit of the low stress region and 0.75σP

as the low limit of the high stress region.

modified to account for variations in UP(x) brought about by
the applied stress and character-dependent dislocation core
energies. Ultimately, we are testing the notion of whether
atomistic information based on (quasi-)2D simulations can be
effectively integrated into dislocation energy models of 3D
line configurations is correct to interpret bcc plastic behavior.
As well, we check whether fine details obtained in atomistic
models, such as, e.g., the energy asymmetry between left
and right-handed kinks that has been observed in several bcc
metals [40–42], can be accurately captured by this coupled ap-
proach. Our paper is organized as follows. First we introduce
the unprocessed physical inputs as obtained from atomistic
simulations. Next, we review the theoretical formulation of
the EI and LT models employed here. This is followed by
details about the coupling between atomistic information and
the discretized continuum models. We then show results for
two different atomistic force fields for tungsten. We conclude
the paper with a discussion of the results and some general
conclusions.

II. RAW ATOMISTIC INPUTS

Based on a prior analysis of several W interatomic po-
tentials for screw dislocation property calculations [43], we
have selected an embedded-atom method (EAM) [44] and a
modified-EAM (MEAM) potential [45] as the most suitable
in terms of physical accuracy and computational efficiency.
Using these two potentials, we have studied the dependence of
UP(x) on the resolved shear stress and of the dislocation core
energies on dislocation character. This furnishes what we refer
to as ‘raw’ atomistic inputs, i.e., before they are processed to
be in usable form for the LOS models.

A. Peierls potential

The Peierls potential UP(x) is obtained as the minimum
energy path along the reaction coordinate x joining two
adjacent equilibrium dislocation core configurations (known
as easy core configurations). This is done using the nudged
elastic band (NEB) method [46] in small atomistic super-
cells reflecting the structure of balanced dipole configurations
oriented along the [111], [1̄21̄], and [1̄01] directions, corre-
sponding, respectively, to the x, y and z directions. These
configurations permit the use of periodic boundary conditions
along all three supercell directions. The dimensions of the
simulation cell along the three coordinate axes were Lx =
13.6 Å (5b), Ly = 108 Å, and Lz = 107 Å, containing a
total of N = 10 000 atoms. The NEB trajectory is partitioned
into 30 images constrained to relax in configurational hyper-
planes defined by the normal axis along x (3N − 1 degrees of
freedom).

Prior to the NEB calculations, unconstrained energy mini-
mizations using LAMMPS [47] were carried out for the initial
and final configurations. NEB trajectories are generated as a
function of stress τ (resolved shear stress on the glide plane)
and the results are shown in Fig. 1. The paths shown in the
figure are generated by subtracting from the resulting NEB
trajectory the mechanical work, −τbx, for each image and
matching the equilibrium position, x0(τ ), and the associated
energy in each case to the origin of each curve.
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FIG. 1. Variation of (a) the enthalpy and (b) the Peierls potential with stress for the EAM potential. Graphs (a) and (b) are connected by
the term −τb, which is subtracted to the enthalpy to obtain UP.

B. Dislocation core energies

The dislocation core energy is a mathematical construct
designed to remove the singularity in the stress and strain
fields of elasticity theory. As such, the core region is emi-
nently inelastic in nature and can arbitrarily be defined by
a parameter a referred to as the core width. This effectively
partitions the total energy of a dislocation dipole into elastic
and inelastic parts, with the latter confined to the core region
within a [48–50] (cf. Sec. III A 2). This partition results in the
following definition of the core energy:

ec(θ, a) = eatm(θ ) − eel(θ, a)

2
(1)

where the angle θ = cos−1 ( b·t
b ) formed by the Burgers vector

b and the line direction t defines the dislocation character,
while the 1/2 factor reflects the existence of a dislocation
dipole.

The total energy eatm is obtained from conjugate gradient
minimizations of periodic atomistic supercells containing a
dislocation dipole much in the manner described in the above
section. The only difference resides in the orientation of the
supercell, whose axes z, y, and x are now oriented along the n,
t and (n × t ) directions, respectively. For its part, the elastic
energy eel is calculated by subtracting the interaction energy
due to the periodic dipole network (appearing by virtue of
using periodic boundary conditions) from the elastic energy
of a dislocation dipole. An example of the partition of energy
described by Eq. (1) is shown in Fig. 2. The core energies as-
suming a value of a = 2b for the EAM and MEAM potentials,
as well as for DFT calculations of pure screw (0◦) and edge
(90◦) configurations [51], are also given in Fig. 2. As the graph
shows, the angular periodicity of the core energy function
is (0, π ), as there is an asymmetry in the energies about
the pure edge orientation. This is not surprising, given the
natural crystallographic asymmetry of the bcc lattice, which
is most notoriously manifested in the existence of the so-
called M111 dislocation orientation [52]. As will be discussed
later, this asymmetry in the core energies leads to different
energies for ‘left’ and ‘right’-handed kinks, a phenomenon
commonly observed in atomistic calculations using a number

of interatomic potentials [40–42]. Further details about this
geometric particularity are provided in Appendix B.

III. GENERAL THEORY OF THE
LINE-ON-SUBSTRATE MODEL

Line-on-substrate model regards the dislocation as a line
resting on a periodic energy landscape (substrate) that reflects
the coupling between the dislocation line and the crystal
lattice. As mentioned in Sec. I, the two most widely used
versions of the LOS model are the elastic interaction (EI)
model and the line tension (LT) model. Here we provide a
description of the theoretical formulations employed here for
each of the two cases.

A. Elastic interaction model

In the EI model, a kink pair on a screw dislocation line
can be approximated by an open trapezoid connected to two
semi-infinite segments in the manner shown in Fig. 3: The
segments LA and DR are located on the first Peierls valley,
the segment BC is on the second Peierls valley, and AB and
CD are the kink segments that straddle both minima. w is
the width of the trapezoid, which we take to be the distance
between kinks, calculated as the distance between the two
midpoints of segments AB and CD. l1 and l2 are the widths
(along the z direction) of such two segments, calculated as
the z distance between the point at x = 0.05h0 + x0 and
that at x = 0.95h0 + x0. One can use the structure shown in
Fig. 3 to obtain stable configurations for the activated state by
optimizing the activation enthalpy of the system for a given
stress. The activated state can be characterized by the sum
of self-energies �Eself and interaction energies �Eint for all
segments shown in the figure. In addition, the contribution to
the energy of the underlying substrate �UP must be separately
considered for the case of screw dislocations in bcc metals.
The enthalpy is then obtained by subtracting the mechanical
work Wm performed by the stress τ from the three contribu-
tions mentioned above:

�H ({ri}, τ ) = �Eself ({ri}, θi ) + �Eint ({ri})

+ �UP({ri}) − Wm(τ, {ri}). (2)
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FIG. 2. Core energies obtained from atomistic simulations. (Left) Total atomistic energy (per unit length) for a computational cell
containing a screw dislocation segment modeled with the EAM potential. The total energy is partitioned between an elastic energy and a
core energy assuming a value of a = 2b. c1 represents the size of the box along a 〈110〉 crystallographic direction (separation of the dislocation
dipole). (Right) Dislocation core energies as a function of the character angle θ all for a = 2b. Results for both interatomic potentials, as well
as DFT data, are shown.

The stable configurations for the kink-pair structure shown
in the figure are obtained by optimizing the above expression
with respect to the coordinates rA, rB, rC , rD. Note that,
due to the asymmetry in the ec function described in the
previous section, in Fig. 3 the kink widths l1 and l2 do not
necessarily have to be equal. This sets our work apart from
other studies where it is commonly assumed that they are the
same [30,38]. The energies of the kink-pair configurations
shown in the figure need to be computed piecewise, adding
the contributions from all the dislocation segments. In the next
sections we provide expressions for each of the energy terms
introduced in Eq. (2).

1. The mechanical work

The mechanical work Wm in Eq. (2) is simply defined as:

Wm(τ, {ri}) = τbA (3)

where τ , b, and A are, respectively, the resolved stress on the
glide plane, the magnitude of the Burgers vector, and the area
swept by the kink pair. This area can be calculated as:

A = 1
2 (|AB × AC| + |DC × DA|). (4)

2. Self-energies of dislocation segments

In accordance with Hirth and Lothe [36] and Koizumi et al.
[38], the total elastic self-energy of the configuration in Fig. 3
can be written as:

�E el
self ({ri}) = E el

self (AB) + E el
self (BC)

+ E el
self (CD) − E el

self (AD). (5)

Here we use the nonsingular expressions for the self-energy of
a straight dislocation segment m defined by endpoints r1 and
r2, and Burgers vector b provided by Cai et al. [53], which give
these energies as a function of θ and a. In this work, we add
the core energy contribution to the above elastic energies as:

Eself (m) = E el
self (m) + ec(θ, a)‖m‖. (6)

3. Interaction energies

For the interaction energies, Hirth and Lothe [36] give the
following expression for a symmetric kink pair.

�Eint ({ri}) = 2[Eint (LA/AB) + Eint (LA/BC) + Eint (LA/CD)

+ Eint (AB/BC) − Eint (LA/AD)]

+ Eint (AB/CD) (7)

A

B C

Dx
z

h0

x0

h0 w

l1 l2L R

FIG. 3. Schematic representation of a kink-pair configuration on a straight screw dislocation. The points labeled L and R represent
arbitrarily distant locations to the left and right of A and D, respectively. We use a cartesian coordinate system such that the x direction is
along the glide direction, the y direction is normal to the glide plane, and z is oriented along the line. x0 is the equilibrium position of a straight
screw segment at a finite stress τ , defined in equation (12). h0 is the periodicity of the Peierls potential, w is the distance between kinks, and l1

and l2 are the widths of the kinks (projections of the AB and CD segments on x). The shaded region corresponds to the slipped area defined in
Eq. (4).
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where, by symmetry, the following equivalences can be estab-
lished:

Eint (LA/AB) ≡ Eint (DR/CD)

Eint (LA/BC) ≡ Eint (DR/BC)

Eint (LA/CD) ≡ Eint (DR/AB)

Eint (AB/BC) ≡ Eint (CD/BC)

Eint (LA/AD) ≡ Eint (DR/AD).

However, for an asymmetric configuration, only the last one
is true and, thus, the sum of interaction energies reads:

�Eint ({ri}) = Eint (LA/AB) + Eint (DR/CD) + Eint (LA/BC)

+ Eint (DR/BC) + Eint (LA/CD)

+ Eint (DR/AB)+Eint (AB/BC)+Eint (CD/BC)

− 2Eint (LA/AD) + Eint (AB/CD). (8)

The general expression within nonsingular isotropic elasticity
theory for the interaction energy of two segments m and n
with, respectively, endpoints r1 and r2, and r3 and r4 is:

Eint (m, n) = E∗(r4 − r2) + E∗(r3 − r1)

− E∗(r4 − r1) − E∗(r3 − r2) (9)

where the functional E∗ takes different forms depending on
the nature of the interaction. The nonsingular elastic expres-
sions used here to obtain E∗ are all given by Cai et al.
[53], which we include in Appendix C, in case they could be
valuable for the reader.

4. The Peierls potential

The kink pair structure shown in Fig. 3 rests on a periodic
energy landscape known as the Peierls potential, UP. Multiple
atomistic studies using DFT and semiempirical potentials
[28,54,55] have shown that UP is well represented by a
(co)sinusoidal function of the type:

UP(x) = U0

2(1 − α)

[
1 − cos

2πx

h0
− α

2

(
1 − cos

2πx

h0

)2
]

(10)

where x represents the reaction coordinate (along the glide
direction), U0 is known as the Peierls energy, and h0 is the
period of UP (h0 = a0

√
6/3 in bcc lattices). α is a parameter

that captures the deviation of UP from a pure cosine function.
The contribution to the total energy of a kink segment lying
across two Peierls valleys is:

�UP({ri}) =
∫

LABCDR
UP(x)d� −

∫
LADR

UP(x)d�. (11)

Both of the above integrals are evaluated from an equilibrium
position x0 to x0 + h0. x0 is obtained from the following
relation:

dUP(x)

dx

∣∣∣
x=x0

= τb. (12)

The infinitesimal differential d� follows along the kink seg-
ment and can be linearized as:

d� =
√

dx2 + dz2.

We now make the approximation that the straight segments
LA, BC, DR cancel with their respective counterparts in the
LADR configuration. Then the above integrals reduce to:

�UP({ri}) =
∫ x0+h0

x0

UP(x)(d�1 + d�2) − UP(x0)(l1 + l2).

(13)
To capture the effect of the resolved shear stress on the
shape of UP(x) revealed in Sec. II A, we consider a stress
dependence of both U0(τ ) and α(τ ), as will be shown in
Appendix A.

Equations (3), (5), (8), and (13) are combined to fully
define the activation enthalpy in Eq. (2), which is subsequently
optimized for the set of parameters w, l1, and l2 as a function
of stress. Each saddle point corresponds to the activated state
of the kink pair at each stress, from which the dependence
of �H (w, l1, l2) with τ can be calculated. The dimensions of
the trapezoid corresponding to each optimized configuration
are obtained as:

rA ≡ (x0, 0)

rB ≡ (x0 + h0, l1)

rC ≡ (x0 + h0, l1 + w)

rD ≡ (x0, l1 + w + l2).

B. The line tension model as a simplified LOS approach

At low stresses the stability of the kink-pair configuration
is controlled by the elastic interaction between the kink seg-
ments. However, as the stress increases and the shape of the
line resembles more a ‘bulged’ structure with low curvature.
In such cases, the elastic energy of the system is well ap-
proximated by a so-called line tension representation [56,57],
where the energy of the kink-pair structure is controlled by
the curvature of nonstraight segments. Within elasticity, the
line tension is defined as:

T (θ, a) = ∂Eself (θ, a)

∂�
(14)

which is the dislocation energy per unit length, depending
only on dislocation character θ and the core width a. For
small dislocation segment lengths �, the above expression
can be approximated by T (θ, a) ≈ Eself (θ,a)

�
. This form of

T (θ, a) replaces the self and interaction elastic energies in the
enthalpy expression for the kink-pair configuration. �H ({ri})
now reads:

�H (z, τ ) =
∫

dz[�T (θ (z), a) + �ec(θ (z), a)

+�UP(x(z), τ ) − Wm(τ )] (15)

=
∫

dz[(T (θ (z), a) − T (θ = 0, a))

+ (ec(θ (z), a) − ec(θ = 0, a))

+�UP(x(z), τ ) − Wm(τ )] (16)

where ec, Wm, and �UP are defined as in Secs. II B, III A 1,
and III A 4. Equation (15) can be represented as a piecewise
sum along the z direction of the contributions of individual
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FIG. 4. Representation of a discrete segment used to calculate the
enthalpy of the kink-pair configuration using the line tension LOS
model. x0 is calculated as in Eq. (12).

segments of length b [39]:

�H ({xi}, τ ) = b
∑

i

[
T (θi, a) − T (θ = 0, a) + (ec(θi, a)

− ec(θ = 0, a)) + �UP(xi, τ )

− τb

2
(xi+1 + xi − 2x0)

]
(17)

where UP(x, τ ) is given by equation (10), and θi =
tan−1 ( xi+1−xi

b ). The geometry of one discretization segment is
shown in Fig. 4 for the calculation of the mechanical work.

The expression utilized in Eq. (14) is derived from those
provided by Cai et al. [53], which expressed in piecewise form
for use in Eq. (17) is:

T (θ, a) = μb2

4π (1 − ν)

{
(1 − ν cos2 θ ) ln

b + √
b2 + a2

a

− 3 − ν

2

(√
b2 + a2 − a

b

)
cos2 θ

}
. (18)

The equilibrium configurations are obtained by minimizing
the value of �H in Eq. (17) as a function of the set of
coordinates {xi} at each stress point τ .

IV. IMPLEMENTATION AND PARAMETRIZATION
OF LOS MODELS

In this section we explain how to process the atomistic
results described in Sec. II for use in the EI and LT models
just presented. First, we discuss the expressions for the stress
dependence of the Peierls potential, followed by those pertain-
ing to the core energies.

A. The Peierls potential

For the EI model, the integral in Eq. (13) can be solved
analytically and used directly in expression (2):

�UP({ri}) =
(√

1 + l2
1

h2
0

+
√

1 + l2
2

h2
0

) ∫ x0+h0

x0

UP(x)dx − UP(x0)(l1 + l2)

= U0

2(1 − α)

⎧⎪⎨
⎪⎩

(√
1 + l2

1

h2
0

+
√

1 + l2
2

h2
0

)[
h0

(
1 − 3α

4

)
− h0(1 − α)

2π

(
sin

2π (x0 + h0)

h0
− sin

2πx0

h0

)

− h0α

16π

(
sin

4π (x0 + h0)

h0
− sin

4πx0

h0

)]
− (l1 + l2)

[
1 − cos

2πx

h0
− α

2

(
1 − cos

2πx

h0

)2
]⎫⎪⎬
⎪⎭ (19)

where we have used dzβ = lβ
h0

dx, with β = 1, 2. The atomistic
information provided in Sec. II A has been introduced into
this expression in the form of stress-dependent correlations
for U0 and α. We have seen that U0 scales as τ n whereas α is
a linear function of τ . The specific expressions and the fitting
procedure followed to obtain these correlations is described in
Appendix A.

For the LT model, UP(xi ) is evaluated directly using (10)
for each discretized segment xi. Summation over all segments
then gives us the total potential energy of the line, in accor-
dance with Eq. (17). The expressions for U0(τ ) and α(τ ) are
identical to those used in the EI model.

B. Core energies

The core energy results from atomistic calculations shown
in Sec. II B are introduced in the same manner in the EI and

LT models. In principle, the main features of ec that a fitting
procedure must capture are its dependence of both dislocation
character (i.e., angle θ ) and core width a. However, what
is different in this work is the slight asymmetry about the
edge character orientation displayed in Fig. 2. For this, we
additively separate the total core energy into an a-independent
term and an a-dependent one:

ec(θ, a) = f (θ ) + g(θ ) log
(a

b

)
(20)

where f (θ ) and g(θ ) are obtained by fitting the data in Fig. 2
to Fourier series expansions of the type:

y(θ ) = c0 +
3∑

k=1

ck sin(2kθ ) + dk cos(2kθ ). (21)
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FIG. 5. Dislocation core energies for EAM interatomic poten-
tials as a function of the dislocation character angle θ and the core
size a. The curves generated using Eq. (20) for nine different values
of a are also plotted.

These functions can yield the asymmetry about θ = π/2 and
naturally satisfy the condition that their first derivative is
equal to zero for θ = 0 and θ = π (zero self-force for screw
orientation). It is important to clarify that this partition of
the core energy is mathematically arbitrary, and other works
have opted for different approaches [58]. The dependence of
the dislocation core energy with both the character angle and
the core size is shown in Fig. 5. The details about the fitting
procedure and the numerical values of the coefficients ck and
dk are given in Appendix B.

C. Implementation details

1. Elastic interaction model

In the EI model, the kink-pair configuration itself repre-
sents the activated state between the two minima in the Peierls
potential representing the initial and final screw dislocation
configurations. As such, the enthalpy in Eq. (2) must be
maximized along the reaction path. This is done by obtain-
ing the saddle point of the entire structure as a function of
the position of points A, B, C, and D in Fig. 3. However,
standard (unconstrained) optimization algorithms are difficult
to stabilize in an energy landscape that is only conditionally
convergent [59]. The geometry of the configuration, however,
can be used to identify conditions that favor convergence.

This can be done, for example, by noting that the trapezoid
depicted in Fig. 3 represents a dislocation loop (with three
‘real’ segments and one ‘anti’ segment) whose elastic energy
is known to be finite. This imposes limits on the minimum and
maximum size of the trapezoidal structure that are discussed
below.

(i) The condition of finite energy means that the total
activation enthalpy in Eq. (2) is independent of the size of
segments LA and DR. Using isotropic singular linear elastic-
ity, the terms depending on the lengths of these segments are
seen to cancel in the analytical expressions for the total elastic
energy of the trapezoidal configuration. With the nonsingular
theory, things are not quite as simple, as analytical expressions
are not straightforward to obtain. However, the same premise
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FIG. 6. Elastic interaction and self energies as a function of the
length of LA and DR segments.

must still hold. Here, we have performed a numerical study
to confirm this and have established the minimum length of
segments LA and DR to have converged, length-independent
energies. Figure 6 shows the combined value of (�Eint +
�Eself ) in Eq. (2) as a function of the value of ‖LA‖ ≡
‖RD‖. Our results show that values of approximately 200b or
larger must be used to achieve length independence. In most
simulations, we have typically used a value of 1000b.

(ii) At the same time, the separation of segments AB and
CD (i.e., the value of w in Fig. 3) must be sufficiently small for
the elastic interaction energy to be finite within the numerical
tolerance of our minimization procedure. w changes with
stress, but we have found that, as a rule of thumb, at zero
stress, values of no less than 40b should be considered.

2. Line tension model

The case of the LT model differs from that of the EI model
just explained. In this case, the saddle point configuration
corresponds to a bulged structure that lies somewhere along
the x coordinate. This configuration does not generally corre-
spond to one where the line lies on either of the minima of
UP. Therefore, one must vary the size of the bulge, defined
by a variable h along the x path between x0 and h0 until
the system’s enthalpy goes through a maximum. At each
stress, this path is discretized and the saddle point structure
found. This is expected to yield minimum energy paths that
are substantially equivalent to dynamic trajectories [60]. To
improve the rate of convergence, here we invert the potential
energy landscape by altering the sign of the mechanical work
along the path as to balance the rest of the terms in the
enthalpy and have net zero effect on the total energy. This
approach has proven robust for the calculations undertaken in
this work.

Once the saddle-point configuration is found for each
stress, we approximate the left and right sides of the bulged
structure with an arc tangent function. All the corresponding
outputs (i.e., w, l1, l2, etc.) are calculated upon mathematical
analysis of the best approximants obtained for each case.
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TABLE I. Interatomic potential-specific parameters. The top half
of the table includes atomistic parameters used in the LOS models:
a0 is the lattice constant, τP is the Peierls stress, Ulk and Urk are the
energies of left and right kinks, respectively, and �H0 = Ulk + Urk

is the zero-stress kink-pair activation enthalpy. The bottom half of
the table lists values of parameters extracted from the LOS model
calculations, separated between EI and LT calculations: a is the core
width, p and q are the exponents of the phenomenological kink-pair
enthalpy expressions, �H∗

0 is the intercept of the kink-pair activation
enthalpy with the vertical axis, and τa is the stress at which the
activation enthalpy vanishes, equivalent to the athermal stress in
experimental tests.

EAM MEAM

a0 [Å] 3.19 3.14
τP [GPa] 2.0 3.4
Ulk [eV] 0.71 0.81
Urk [eV] 0.92 0.99
�H0 [eV] 1.63 1.80

EI LT EI LT

a [b] 0.70 0.80 0.15 0.50
p 0.41 0.83 0.45 0.80
q 1.05 1.38 1.09 1.46
�H∗

0 [eV] 1.68 1.84
τa [GPa] 1.84 1.99 3.22 3.61

V. RESULTS

The first-principles method used here for parametrizing
and benchmarking the LOS model calculations are atomistic
calculation results using two different interatomic potentials,
EAM and MEAM. All atomistic calculations were done using
molecular statics at 0 K. Table I (top half) gives several
parameters of importance obtained for each potential. Below,
we discuss the most important results for the EI and LT mod-
els. Most results are shown in normalized form to facilitate
intercomparison: (i) the stress is expressed as the fraction of

the Peierls stress, s = τ/τP, (ii) energies are plotted relative
to the zero-stress activation enthalpy �H0, and (iii) lengths
are expressed in Burgers vector units b or Peierls potential
wavelength h0.

A. System length scales: Line shapes, kink
separation, and kink widths

For the sake of clarity, we only show results for the EAM
potential in the main body of the text and discuss MEAM
results in the context of each EAM graph (more discussion
provided in Sec. VI and Appendix D).

Figure 7 shows the optimized saddle point configurations
for kink pairs as a function of stress under the EI and LT
models for the EAM potential (the configurations obtained
using the MEAM potential are qualitatively similar to those
obtained using the EAM potential). The graphs for the EI
model results do not show segments LA and DR in their
entirety but a diminishing kink separation w can generally be
observed as the stress increases. This variation of w with τ

is plotted in Fig. 8. In accordance with elasticity theory, the
kink-pair length diverges at zero stress, decreasing gradually
with stress to a final value of ≈2b. For its part, lacking an
interaction energy, the results for w in the LT model are less
significant, but they are weakly dependent on stress. Inter-
estingly, LT predictions for the EAM and MEAM potentials
result in differences of about a factor of two between both
atomic models (higher for MEAM). As well, EAM values
are in very good agreement with the corresponding atomistic
results (around 10b, from Ref. [41]).

As shown in Fig. 7 for the LT model, the activated state
for the dislocation is a bulged configuration straddling the
Peierls potential. The amplitude of this bulge is plotted in
Fig. 9 as a function of stress for the EAM potential. As the
figure indicates, this amplitude coincides with the wavelength
of UP(x), h0 at zero stress, and is zero at the Peierls stress,
consistent with the definition of the activated state at both
ends of the stress range. Our results show excellent agreement
with the expected analytical form for h in line tension models
[60,61] (shown as lines in Fig. 9).
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FIG. 7. Optimized kink pair configurations as a function of stress for the EAM potential. (a) Elastic interaction model. (b) Line tension
model.
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FIG. 8. Kink separation in the kink pair under stress (normalized
to the corresponding Peierls stress). The EI results indicate diver-
gence at zero stress, in accordance with elasticity theory, while the
LT values are finite at all stresses. Atomistic results for the EAM
potential are shown for comparison, showing very good agreement
with predictions by the LT model.

While these results are interesting, one of the most impor-
tant aspects in this work is the asymmetry in the dislocation
core energies introduced in Sec. II B. This asymmetry mani-
fests itself as differing kink ‘widths’, i.e., the spreading length
along the dislocation line (z coordinate) of the segments
connecting two consecutive Peierls valleys. These are labeled
l1 and l2 in Fig. 3.

The results for these two lengths are shown in Fig. 10. With
the EI model, there are slight differences between the left and
right kinks, with the left one l1 being larger than the right
one l2. Contrary to the situation of the kink-pair separation
w, here the EAM kinks spread over approximately twice the
distance of the MEAM ones. These results also show a slow
decrease of l1 and l2 with stress (kinks approaching the edge
orientation), although interestingly these widths are around
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FIG. 9. Amplitude of the saddle-point configuration for the LT
model as a function of stress. The results for EAM (black squares)
agree well with theoretical predictions [61] (solid line).
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FIG. 10. Kink widths, l1 and l2 (refer to Fig. 3), as a function of
stress.

1.5b for the MEAM potential and between 3 and 4b for EAM.
This stands in contrast to atomistic results, which predict kink
widths of approximately 25b for EAM calculations [41]. For
their part, LT results show no appreciable difference between
l1 and l2. Here too calculations for the EAM potential result in
larger kink widths than for the MEAM potential, between 4.5
and 6b vs 3 and 4b, respectively. However, l1 and l2 display a
different dependence with stress in this case, reaching a mini-
mum at low stresses but growing with stress subsequently.

B. System energies: Kink energies and activation enthalpies

The most important physical quantity to extract from our
models is the kink-pair activation enthalpy as a function of
stress. This is used in a number of approaches to describe
thermally-activated screw dislocation motion in bcc metals (as
it has been done in our works in the past, e.g., Refs. [41,62]).
In Fig. 11 we show the results for the EI and LT models.
To facilitate comparison, we normalize the enthalpies by the
unstressed activation enthalpy obtained in atomistic calcula-
tions in each case, �H0, and the stresses by the Peierls stress
τP. These parameters are all given in Table I. Note that (i)

0.0

0.2

0.4

0.6

0.8

1.0

Δ
H

(Δ
H

0)

0.0 0.2 0.4 0.6 0.8 1.0

s

EI
LT

FIG. 11. Kink-pair activation enthalpy for the EI and LT models.
The results are normalized to the unstressed activation enthalpy
obtained in atomistic calculations and the Peierls stress in each case
(refer to Table I).
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FIG. 12. Energies of individual kinks for LT models for EAM
potential. The differences are due to the asymmetry of the core
energy functions about the edge orientation.

the enthalpy at zero stress for the EI model is undefined and
therefore the data point shown in Fig. 11 is the atomistic value,
and (ii) that the actual intercept of the activation enthalpy
curves for the LT model with the vertical axis does not
necessarily correspond to the atomistic value.2 This is what
is labeled as �H∗

0 in Table I. Similarly, intercepts with the
stress axis in all cases do not necessarily match the value of
τP, with the actual values labeled as τa in Table I. We interpret
these stresses as being the ‘athermal’ limits for the kink-pair
mechanism in each case.

Most importantly, the values of a used in Eqs. (6), (8), and
(18) to obtain these energies have been chosen as to provide
the best fit of the activation enthalpy curves to the known
atomistic values of �H0 and τP. In other words, we arbitrarily
set the core width value to match known ‘first-principles’
calculations of the potential in question. These values of a are
provided also in Table I and, as can be seen, are always less
than one Burgers vector distance. We will return to this issue
in Sec. VI.

Finally, it is common practice to fit the curves in Fig. 11 to
the Kocks-Ashby-Argon phenomenological expression [63]:

�H (τ ) = �H0

(
1 −

(
τ

τP

)p)q

, (22)

where p and q are exponents that describe the asymptotic
behavior of �H (τ ) in the limits of zero stress (q = 1.25) and
the Peierls stress (p = 0.5) for isotropic linear elasticity [57].
Since tungsten is elastically isotropic, our model provides an
excellent testbed for these values, which have indeed been
reproduced for stress-independent UP and symmetric ec(θ, a).
These exponents are also provided in Table I. Note that we use
Eq. (22) only to facilitate comparison across the atomistic, EI,
and LT model results (and for the EAM and MEAM cases)
via the values of p and q, without implying its validity for any
specific case.

2It is also important to note that �H0 is obtained atomistically via
procedures that are insensitive to periodic image interactions [40].

To evaluate again the effect of the core energy asymme-
tries on the energetics of the activated states, we calculate
in Fig. 12 the individual kink energies as a function of τ .
As no appreciable difference was found for the LT model
predictions, we omit them from the figure for clarity. The
energies shown include the interaction and self-energies in
the EI model of the kink segments only. Only a noticeable
difference can be found for the EAM results, approximately
10%, whereas kinks energies are practically identical for the
MEAM potential. The individual atomistic kink energies are
given in the table above as well (for zero stress), differing
about 20% between themselves. We also discuss this more in
depth in the next section.

VI. DISCUSSION

A. Comparisons between LOS models

As indicated in Sec. I, different approximations to the line
integral along the x (glide) direction to calculate the energy of
the activated kink-pair state result in different LOS model for-
mulations, each with its own advantages and disadvantages.
The EI model approximates the bulge configuration better at
low stresses, when the activated state extends across the entire
Peierls potential period and the kink-pair energy is dominated
by elastic interactions between kink segments. This allows the
use of a simple trapezoidal structure to represent the system,
which has the benefit of consisting of only four degrees of
freedom. This considerably speeds up convergence of the
energy minimizations, which allows us to study the parametric
space of the model efficiently. The aspect of the EI model used
here is the asymmetry of the left and right kinks, by virtue of
the character dependence of the core energy function. Regard-
ing this, the EI model results predict differences of less than
1% in the kink widths for both EAM and MEAM parameters
(Fig. 10), while the difference in enthalpy is slightly larger
(Fig. 12).

For its part, the LT model is best suited for lines with small
curvature, when the bulge configuration is small, a situation
typically encountered at high stresses. The implementation of
the LT approach involves, however, up to hundreds of discrete
segments, which increases the computational time severalfold
compared to the EI model. LT results show no discernible
difference in the values of both the energies and the kink
widths. Thus, it appears that the LT model is less sensitive
to the core energy asymmetry than the EI model.

In terms of EAM vs MEAM differences, as shown in
Fig. 11, when normalized to the corresponding values of
�H0 and τP, the shapes of the LT and EI models differ
in less than 3%. This is an encouraging result as it could
potentially indicate that normalized LOS model predictions
can be transferred across different potentials, which would
eliminate a common source of variability in dislocation prop-
erty calculations.

B. Defining the core size by matching LOS
models to atomistic data

The size of the dislocation core (a in this work) is a
mathematical construct introduced to remove the singularity
inherent to the theory of elasticity. As such, it does not possess
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any intrinsic physical meaning, serving instead as an arbitrary
limit between the elastic and inelastic regions. However, one
can remove some of this arbitrariness by matching the LOS
model calculations to atomistic results of the total energy
of kink pair configurations. By adjusting the value of a to
partition the elastic and core energies in Eqs. (1) and (20)
in such a way as to match the atomistic kink-pair energies at
zero stress (obtained independently for the EAM and MEAM
potentials), one can relate the value of the core width to the
size of a region that contains the inelastic contribution to the
total energy. Following this approach, we obtain values of
0.7b (EI) and 0.8b (LT) for the EAM case (�H0 = 1.63 eV)
and 0.2b and 0.5b for MEAM (�H0 = 1.78 eV). The fact
that these are between half and a full Burgers vector may be
indicative of the order of magnitude to be expected for this
parameter. However, we emphasize that this is one attempt
to establish the value of a using a physical criterion, but it
is difficult to ascertain how accurate or valid it is relative to
other approaches [64–66]. In any case, we believe this to be
an interesting aspect of our calculations and worth reporting
as an original application of LOS models.

C. Building 3D kink-pair models from 2D atomistic data

One of the advantages of studying straight dislocations
is the existence of translational symmetry along the line
direction, which generally reduces the study of its properties
to quasi-2D structures that need only capture the minimum
repeatable translational unit along the dislocation line. For
screw dislocations, this length is of course the Burger’s vector,
which is typically the shortest lattice vector of the crystal. For
this reason, general dislocation properties can be efficiently
and accurately calculated using thin atomistic supercells,
which makes them amenable to electronic structure calcu-
lations. The existence of kink pairs breaks the translational
symmetry of screw dislocations in bcc (and other) crystals.
Being the fundamental structure governing screw dislocation
dynamics, this necessitates using 3D configurations which
precludes the use of computationally demanding approaches
such as DFT. Consequently, it has been a goal of the bcc
plasticity community to assess whether 2D information such
as what has been presented here (Secs. V A and V B) suffices
to capture 3D behavior when incorporated into efficient con-
tinuum models of dislocation line configurations.

Our calculations provide a testbed for this idea, in line
with prior efforts [55], as they allow a direct comparison
to strictly atomistic results of kink-pair configurations using
EAM [41,62]. This is illustrated in Fig. 13, where a good
agreement between the LOS results and the atomistic calcu-
lations can be appreciated. As the figure shows, the LT model
agrees with the atomistic result at low stresses, while the EI
model produces a better match at high stresses. While this may
appear contradictory with the common assumption that the EI
is better suited for low stresses and the LT model for high
stresses, the nonscrew segments of the trapezoid in the EI case
are highly tilted towards the screw character due to the com-
bined action of dislocation self and core energies,which is not
unusual in bcc metals. This makes the standard assumption
of the EI model weakly true in this case. For its part, the LT
model works well at low stresses not due to the shape of the
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FIG. 13. Comparison of EI, LT, and atomistic models for the
EAM potential fitted to Eq. (22). The gray dashed line corresponds to
LT results assuming no asymmetry in the core energies and no stress
dependence of the Peierls potential (p = 0.88, q = 1.37), while the
gray dotted line is the equivalent EI curve (p = 0.50, q = 1.29). The
vertical dashed lines indicate the limits of the ‘low’ and ‘high’ stress
regions, defined ad hoc to be at 0.25σP and 0.75σP, respectively.

kinks but because it provides stable kink-pair configurations
at stresses where elastic models do not converge. Partially,
this is because dislocation segments do not interact with one
another in the LT framework, the driving force is only the
curvature of the line, which is always minimized for a given
applied stress. At high stresses, the LT fails because the line is
‘bulged’, i.e., it has so much curvature that the noninteraction
assumption starts to fail. In the intermediate stress range, the
EAM calculations lie in between both LOS approaches. Albeit
restricted to very specific conditions, this verification result
suggests that continuum models parameterized with atomistic
2D results can indeed be good approximants of full atomistic
behavior in tungsten. While it is not clear how much of this
agreement can be attributed to specific features of W, such
as elastic isotropy or the choice of interatomic potential, we
can cautiously conclude that LOS models that employ 2D
information can be trusted to provide acceptable estimates of
�H in other bcc metals.

D. Discussion of other works

Researchers have been calculating kink-pair activation en-
thalpies using continuum elastic models since the 1950s.
As atomistic information involving fundamental dislocation
properties has become available [28,58], we have been able
to enrich continuum formulations and increase their physical
accuracy. There are several examples of this in the literature
[39,52,55,66], each highlighting one specific aspect of the
physics of kink pairs in screw dislocations in bcc metals.
However, this work constitutes a LOS formulation to simul-
taneously integrate (i) the stress dependence of the Peierls
potential, (ii) the asymmetry of the dislocation core energies
with respect to dislocation character, and (iii) the extraction of
the core width by matching LOS results with atomistic results.
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VII. CONCLUSIONS

Our first conclusion is that one can successfully incor-
porate atomistic data obtained in quasi-2D conditions into
continuum elastic models of 3D kink-pair configurations. We
have demonstrated that the stress dependence of the Peierls
potential and results for core energies as a function of dislo-
cation character can be integrated into elastic interaction and
line tension models in a straightforward manner. Moreover,
we report a slight asymmetry in the core energies about the
edge orientation in W, in accordance with a periodicity of
(0, π ) for the dislocation character space in bcc metals.

The asymmetry in the dislocation core energies accounts
for no more than 10% difference in left and right kink energies
(compared to no less than 20% in atomistic results) and
results in very slight variations in their spreading lengths.
Thus, we conclude that, while they are likely one of several
contributions to this energy asymmetry, core energies alone
cannot capture it in its entirety. However, a representation of
core energies in terms of the core width parameter is helpful
to extract the value of this parameter by matching to atomistic
data. In our particular case, we find that this core width is
always less than one Burgers vector distance.

Including the stress dependence of the Peierls potential in
the models appears to shift the athermal stresses to higher
values compared to when just the zero stress potential is used,
more in line with the atomistic values of the Peierls stress.
However, this effect is small as well.

Finally, our results suggest that atomistic calculations of
kink-pair configurations result in activation enthalpies that are
in between elastic interaction and line tension predictions. In
particular, at low stresses atomistic data agree better with line
tension calculations, while at high stresses the agreement is
better with full elastic models.
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APPENDIX A: FITTING PROCEDURE OF THE STRESS
DEPENDENCE OF THE PEIERLS POTENTIAL

Here we explain how to introduce the resolved shear-stress
dependence in Eq. (10). The τ dependence enters through
the parameters U0 and α and our goal here then is to obtain
compact expressions for U0(τ ) and α(τ ). To this end, we first
plot the values of U0 and α with stress in Figs. 14 and 15 for
the EAM and MEAM potentials, respectively.

As the figures show, generally there is a nonlinear depen-
dence of U0 with stress and a linear one for α. Consequently,
we use power laws for U0(τ ) and linear relationships for α(τ ).

(i) Fitting of U0:
(a) EAM: Due to the change of convexity of the EAM U0

data, we split the fitting into two regions.
(1) In the low stress region, τ � 0.8 GPa,

U0(τ ) = 0.005τ 1.49 + 0.06 (A1)

(2) In the high stress region, τ > 0.8 GPa,

U0(τ ) = 0.21(τ − 0.7643)0.005 − 0.14 (A2)

(b) MEAM:

U0(τ ) = 0.003(τ − 0.13)1.6742 + 0.11 (A3)

with U0 expressed in [eV/b] when τ is expressed in GPa.
(ii) Fitting of α:
(a) EAM:

α = 0.077τ + 0.152 (A4)

(b) MEAM:

α = 0.115τ − 0.515 (A5)

with α nondimensional when τ is in GPa.
We emphasize that these expressions have no implied

physical meaning and are simply used for convenience in the
range of stresses considered here.
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FIG. 14. Fitting of U0 and α for the EAM potential.
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FIG. 15. Fitting of U0 and α for the MEAM potential.

APPENDIX B: FITTING OF CORE ENERGY DATA

As it was shown in Sec. II B, dislocation core energies
expressed as:

ec(θ, a) = f (θ ) + g(θ ) log
(a

b

)
where both f (θ ) and g(θ ) are Fourier series of the type:

y(θ ) = c0 +
3∑

k=1

ck sin(2iθ ) + dk cos(2iθ ).

Note that this form for f (θ ) and g(θ ) depends only on θ , with
the a dependence contained exclusively in the logarithmic
term. This mimics the partition represented by Eq. (1). The
coefficients in these expressions are obtained by least-squares
fitting to the atomistic data points obtained from Fig. 2 by
varying a and θ , and are listed in Table II. f (θ ) and g(θ )
are plotted as a function of θ in Fig. 16 along with the
corresponding Fourier series curves for the EAM and MEAM
potentials.

APPENDIX C: EXPRESSIONS OF THE FUNCTIONAL E∗

FOR THE INTERACTION ENERGIES

The functional E∗ that appears in the formulation of the
interaction energies Eint (cf. Sec. III) takes different forms
depending on the nature of the interaction. In the following,
the nonsingular elastic expressions given by Cai et al. [53] for
parallel and nonparallel segments are provided. In both cases,
the common Burgers vector to both segments is b.

1. Nonparallel segments

This is relevant for the interaction between kink segments
and screw segments. The energy functional E∗(r) ≡ Enp(r) is
defined as:

Enp(r) = μ

4π (1 − ν)(u · u)

⎧⎪⎨
⎪⎩r · ln [Ra + r · t ′]((A1

− A′
2)v′ + A′

3u) + r · ln[Ra + r · t]((A1 − A2)v

+ A3u) + A4Ra + (A1 − A5)[2(r · u)2 + (u · u)a2]√
(r · u)2 + (u · u)a2

× arctan

{
(1 + t · t ′)Ra + r(t + t ′)√

(r · u)2 + (u · u)a2

}⎫⎪⎬
⎪⎭ (C1)

where t = (r2 − r1)/Lm and t ′ = (r4 − r3)/Ln are the respec-
tive line tangents (Lm = ‖r2 − r1‖ and Ln = ‖r4 − r3‖), u =
t × t ′, v = u × t , v′ = t ′ × u, and:

Ra =
√

r · r + a2

A1 = (1 + ν)(b · t )(b · t ′)

A2 = (b2 + (b · t )2)(t · t ′)

A′
2 = (b2 + (b · t ′)2)(t · t ′)

TABLE II. Values of the Fourier coefficients in Eq. (21) for the EAM and MEAM potentials.

Potential Function c0 c1 d1 c2 d2 c3 d3

EAM f 1.1017 0.0149 −0.7895 0.0082 −0.0634 −0.0331 −0.0078
g 0.7067 −0.1141

MEAM f 0.8390 0.0092 −0.5730 −0.0191 −0.0325 −0.0118 −0.0122
g 0.7275 −0.1179

103603-13



SICONG HE et al. PHYSICAL REVIEW MATERIALS 3, 103603 (2019)

0.00

0.37

0.75

1.13

1.50

f
(θ

)
(e

V
/Å
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potentials.

3200 MPa
2800 MPa
2000 MPa
1600 MPa
1200 MPa
800 MPa
400 MPa
0 MPa

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

U
P

(e
V

/b
)

0 0.2 0.4 0.6 0.8 1

x (a0

√
6

3
)

FIG. 17. MEAM potential: Peierls potential variation with stress.
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FIG. 21. MEAM potential: Kink widths l1 and l2 as a function of
stress.

A3 = 2(b · u)(b · v)
t · t ′

u · u

A′
3 = 2(b · u)(b · v′)

t · t ′

u · u

A4 = ((b · t )(b · v) + (b · t ′)(b · v′))(t · t ′)

A5 = 2(b × u)2 t · t ′

u · u

where b = ‖b‖. These expressions simplify significantly for
perpendicular segments.

2. Interaction energy between two parallel segments

This interaction includes the interaction of segments of
pure screw character with one another and the interaction of
kink segments of the same kind with one another. As above,
the Burgers vector is assumed to be the same for all segments.
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FIG. 22. MEAM potential: Kink-pair activation enthalpy for the
EI and LT models.

The interaction energy functional has the form E∗(r) ≡ E‖(r):

E‖(r) = μ

4π (1 − ν)

{
[2b(b · r) − b2(t · r)(3 − ν)]

× ln {Ra + t · r} + Rab2(2 − ν)

− Ra

2

(b · r − bt · r)2 − a2b2(ν − 1)

R2
a − (t · r)2

}
, (C2)

where t is the common line tangent to both segments.

APPENDIX D: CALCULATION USING MEAM POTENTIAL

Here we show the series of calculations for the MEAM
potential. Except for full atomistic kink-pair enthalpy calcu-
lations under stress, the database for the EAM and MEAM
potentials is equivalent (cf. Table I). Shown are the variation
of Peierls potential with stress (in Fig. 17), Fourier fits of
the core energies (Fig. 18), kink separation (in Fig. 19), kink
height (Fig. 20), kink widths (in Fig. 21), and activation
enthalpy in Fig. 22.
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