
PHYSICAL REVIEW MATERIALS 3, 103601 (2019)

Exponent for the power-law relation between activation energy for dislocation
nucleation and applied stress

Anik H. M. Faisal
Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA

Christopher R. Weinberger
Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA

and School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado 80523, USA

(Received 6 June 2019; published 2 October 2019)

The strength of defect-free crystalline materials is known to be close to the theoretical strength of the material
and is typically governed by the nucleation of dislocations. Dislocation nucleation is controlled by the energy
barrier associated with the nucleation process, which is a function of both the temperature and stress. Previous
work has suggested that the energy barrier decreases with stress towards zero as a power-law relationship and that
there may be an exponent with universal value for nucleation. In this paper, we analyze atomistic simulations and
continuum models to determine if such a universal exponent exists. Fitting of all available atomistic data to the
power-law expression does not yield evidence of a universal power-law behavior. The examination of continuum
models, however, provides particular interesting insight. Sufficiently far away from the athermal limit, the energy
barrier decays with an effective exponent greater than one such that both the energy barrier and activation volume
decrease. However, very close to the athermal limit, the activation volume diverges, due to a divergent activation
area of the dislocation loop, resulting in a limiting exponent around 0.5. The divergent activation volume is a
result of including the generalized stacking fault energy and allowing the Burgers vector to go to zero during
nucleation. These results further provide insight into strategies for empirically modeling the activation energy
and activation volume, because they contradict the idea that the activation volume goes to zero, which is currently
assumed in most empirical forms of the activation energy.
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I. INTRODUCTION

Dislocations, line defects in crystals, are central to our
understanding of plastic deformation and mechanical strength
of crystalline materials. While bulk plasticity is well described
by continuum plasticity, it is well established that the rules
of plasticity change as crystal dimensions are reduced in
the microrange and the strength of materials becomes size
dependent [1,2]. This idea was examined by the works of
Brenner [3,4] on metallic whiskers and has been examined
more thoroughly by the microcompression and tension tests
on focus ion-beam (FIB) milled micropillars [5–7].

This interest in size affected flow created significant in-
terest in how pristine (defect free) materials would respond
to mechanical loading and when a transition between size
affected flow and dislocation nucleation would occur [8,9].
This has led to the investigation of the strength of metallic
nanowires [10–16], nanoparticles [17–19], and other nanos-
tructured materials [8,20,21]. The strength of many of these
materials, especially the nanowires, has been shown to ap-
proach the theoretical strength of the materials [16,22,23].
Finally, dislocation nucleation also occurs during nanoinden-
tation and can be attributed, sometimes, to the pop-in events
noted in load-displacement curves [24–26].

Molecular dynamics simulations have been instrumen-
tal in understanding the mechanisms of dislocation emis-
sion and evolution in nanostructures [27,28] which have, in

conjunction with the aforementioned experiments, provided
significant insight into plastic flow at small scales. However,
the difference in strain rates between molecular dynamics
and experiments is often many orders of magnitude, which
raises a concern as to the exact nature of the predictions of
this method. This, in turn, has created interest in exploring
dislocation emission as a classical nucleation process. From
this viewpoint, dislocation nucleation occurs when there is
sufficient energy and time, aided by applied stress, for the
dislocation to overcome the free energy barrier preventing
its spontaneous nucleation. The nucleation rate, following
transition state theory, is

ν = Nν0 exp

(
−�G∗(σ, T )

kBT

)
(1)

where N is the number of nucleation sites, ν0 is a frequency
prefactor, �G∗ is the activation Gibbs free energy, and kB is
Boltzmann’s constant [20,29]. The nucleation rate, accord-
ing to Eq. (1), is strongly dependent on the activation free
energy for dislocation nucleation and thus an understanding
of dislocation nucleation is tied to the stress and temperature
dependence of this activation energy. Zhu et al. [30] used
the free end nudged-elastic-band method (a chain-of-states
method) to examine the internal energy barrier for dislocation
nucleation in a copper nanowire as a function of stress. The
authors found, as expected, that the activation energy was a

2475-9953/2019/3(10)/103601(12) 103601-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.3.103601&domain=pdf&date_stamp=2019-10-02
https://doi.org/10.1103/PhysRevMaterials.3.103601


ANIK H. M. FAISAL AND CHRISTOPHER R. WEINBERGER PHYSICAL REVIEW MATERIALS 3, 103601 (2019)

strong function of stress and they fit their atomistic results to
an empirical equation:

�E∗(σ ) = E0

[
1 − σ

σ0

]α

, (2)

where E0 and α are fitting parameters, σ is the applied stress,
and σ0 is the athermal strength. This form comes from general
empirical models for activation energies used in the literature
[31]. However, this expression was only fit to activation
internal energies (or enthalpies) at 0 K. To account for finite
temperature, Zhu et al. used the thermodynamic compensation
law (Meyer-Neldel rule) so that the activation free energy can
be written as

�A∗(σ, T ) = E0

[
1 − σ

σ0

]α(
1 − T

Tm

)
, (3)

where Tm is a characteristic temperature at which the energy
barrier vanishes for all stresses. Zhu et al. then extended
nucleation equation [Eq. (1)] to predict the most probable
nucleation stress as

�G∗(σ, T )

kBT
= ln

kBT Nν0

Yε̇�(σ, T )
, (4)

where Y is the Young’s modulus of the material, ε̇ is the
applied strain rate, and � is the activation volume defined as
� = − d�G∗

dσ
.

Ryu et al. [32] reexamined the same copper nanowire
nucleation problem to specifically address the temperature
dependence and the thermodynamic compensation law using
umbrella sampling to directly calculate the activation free
energies. The authors demonstrated that the activation Gibbs
free energy and Helmholtz free energy are equal, �G∗ ≈ �A∗
and similarly �H∗ ≈ �E∗. Their work also points out that the
thermodynamic compensation law does not always work and
that the characteristic temperatures Tm depends on whether the
stress or strain is the controlled thermodynamic variable and is
not related to the melting temperature (or surface disordering
temperature) as is often assumed.

The computation of energy barriers in atomistics, never-
theless, is still a powerful method to gain insight into the
nucleation process even if the temperature dependence is still
not fully understood. Several investigators have used similar
approaches to study dislocation nucleation in gold nanowires
[33], from surface steps in fcc metals [34–36], and from pores
in aluminum [37]. In addition, these energy barrier calcula-
tions have been used in conjunction with continuum models
of dislocation nucleation to gain a better understanding of
the nucleation phenomenon or to develop better continuum
models of dislocation nucleation [38,39].

Despite the interest in calculating energy barriers directly
from chain-of-state atomistic calculations or similar methods,
these approaches are often expensive and difficult to use.
Thus, it is desirable to determine if such information can be
obtained from direct atomistic simulations. In an attempt to
solve this problem, recently Chachamovitz et al. [40] intro-
duced a method to extract the activation free energies from
direct molecular dynamics (MD) simulations by examining
statistical distribution of nucleation strengths as a function of
temperature during constant stress rate simulations. The key
point the authors make is that if we assume the nucleation rate

follows Eq. (1), then the cumulative distribution function of
failure is

F (σ, T ) = 1 − exp

[
− Nν0

σ̇

∫ σ

0
exp[−β�G∗(η)]dη

]
, (5)

where σ̇ is the applied stress rate and β = 1
kBT . This the-

oretical cumulative distribution function can then be fit to
cumulative distribution functions determined from direct MD
simulations as long as a functional form of �G∗ is assumed.
The authors further argue that the activation volume can be
directly related to the standard deviation of the nucleation
strengths, which simplifies the parametrization of �G∗. For
convenience, they assume a functional form of

�G∗(σ, T ) = G0

[
1 − σ

σ0

]α(
1 − T

Tm

)
(6)

with G0, α, and Tm (as well as ν0) determined from numerical
fitting of the cumulative distribution functions.

Chachamovitz et al. [40] used this method to examine
nucleation in their molybdenum nanoparticles and found that
the exponent, α, was approximately 1.68. They noted that
this exponent was close to the value of 1.5 that has been
argued to characterize plastic flow associated with dislocation
glide in bulk crystals near the yield point [41–43]. This led
to a hypothesis that perhaps an exponent of around 1.5 is a
universal exponent for dislocation nucleation near the point of
spontaneous nucleation, i.e., the athermal limit. One key point
to make by assuming such an exponent is that this implies the
activation volume goes to zero in the athermal limit, as would
be true for any exponent greater than 1.

The postulate of a universal exponent is intriguing and
a worthy point of investigation. It is further worth pointing
out that the only other exponent determined was 4.1 by Zhu
et al. which Chachamovitz et al. suggested was a result of
the predictions accounting for data too far from the athermal
limit. Hence, the objective of this paper is to explore the
nature of the activation energy as a function of stress. Notably,
we will attempt to determine if the exponent α is indeed
universal, i.e., does it have specific value for nucleation, and
generally should the activation volume approach zero as the
stress approaches the athermal limit. To this end, we analyze
atomistic data published in the open literature to determine if
there is a universal trend. In addition, we will also investigate
the energy barriers as a function of stress using continuum
models to understand how dislocation nucleation behaves in
the athermal limit of spontaneous nucleation.

II. ANALYSIS OF MD SIMULATION RESULTS AND
THE EXPONENT α

The first objective of this study is to determine if atomistic
simulations support a universal stress exponent. To this end,
we examined existing atomistic simulation data for the acti-
vation free energy as a function of stress. We fit the activation
free energy data from Zhu et al. [8], Aubry et al. [38], Jennings
et al. [39], and Weinberger et al. [33] to Eq. (2) in order to
extract the exponent. To determine α, we used a nonlinear
fitting procedure to minimize the mean-square error between
the atomistic energy barrier data and the power-law model.
An example of this fit is shown in Fig. 1(a) for a Cu nanowire
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FIG. 1. (a) The energy barrier vs stress for Cu under pure shear (Aubry et al.) and compression (Zhu et al.) (b) The energy barrier vs stress
for Au, Ag, Al, and Ni (Jennings et al.).

under pure shear (Aubry et al.) and in Fig. 1(b) for a Cu
nanowire under uniaxial compression (Zhu et al.). For the pure
shear data of Jennings et al., σ0 was included as a free variable
in the fitting as no such value was reported by the authors. For
the rest of the data, σ0 was fixed based on previous reported
values. In some cases, such as the data of Zhu et al., α is
sensitive to the inclusion of σ0 due to the lack of data near
the ideal strength limit. This sensitivity suggests that α may
not be an ideal parameter for characterizing the energy barrier
beyond an empirical fit.

Table I lists the fitting parameters for the surveyed atom-
istic data. The exponent α for the nanowires exhibits a wide
range of values under uniaxial loading from 1.4 to 5.8 while
under pure shear the α values range from 0.8 to 1.9. Clearly,
these data do not support a hypothesis that α may have a
universal value over the stress range that we have considered.
Furthermore, we see that in some cases, especially in pure
shear, some of the exponents are close to 1 and in one case,
Ag, is less than 1. The case of silver is intriguing because
the exponent actually implies a divergent activation volume
as the stress approaches the athermal limit, a point that will
become important later. The lack of a universal exponent in
our data, however, does not completely rule out the hypothesis
of Chachamovitz et al. as their suggestion should be limited

to the athermal limit. However, in many of the atomistic
results, it would appear that the activation energies approach
the athermal limit with a constant slope, or an exponent of 1,
rather than a slope of 0 which is necessary for α to be greater
than 1.

III. CONTINUUM MODELS

Since the power-law fitting of the atomistic data does not
indicate any universal behavior of the exponent value but is
perhaps limited in scope, we proceed to the analysis of contin-
uum models for dislocation nucleation. The continuum mod-
els have the advantage of greatly reducing the complexity of
the problem to just a few variables, which makes the solutions
expedient and potentially quite general. Furthermore, these
models will be much easier to examine numerically in the
limit as the stress approaches its athermal limit. However, it
is important to note that continuum models can also introduce
artifacts associated with continuum approximations and this
must be kept in mind when analyzing and generalizing the
results of such models.

To start, we first examine a continuum model for the
nucleation of a circular dislocation under pure shear. While
we know that dislocations will not nucleate as a perfect

TABLE I. The best fit parameters for Eq. (2) for the atomistic data surveyed in the literature.

Metal Reference Loading condition σ0 (GPa) α

Cu Zhu et al. compression 5.2 4.1

Cu Aubry et al. pure shear 3.0 1.8

Au Jennings et al. pure shear 1.4 1.3
Ag 1.5 0.8
Al 3.3 1.9
Ni 4.8 1.1

Au Weinberger et al. 〈100〉 compression rectangular cross section 1.7 2.6
〈100〉 compression circular cross section 1.8 1.4
〈100〉 tension rectangular cross section 4.5 4.8

〈100〉 tension circular cross section 4.6 2.1
〈110〉 compression rectangular cross section 18.4 5.8

〈110〉 compression circular cross section 21.8 4.6
〈110〉 tension circular cross section 3.4 1.5
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FIG. 2. The real valued Lambert W function with branches W0

and W−1 [44].

circular loop, this assumption makes the model slightly sim-
pler without compromising too much of the physics. Our
approach follows the method of Aubry et al. [38], which is
an adaptation of the model in Anderson et al. [29], which
includes the energy of the nucleating dislocation line with a
constant Burgers vector. The model we will analyze here only
differs from that of Aubry et al. in the assumed form of the
line energy which is taken from [39]

�G(τ, R) = μb2

4

2 − ν

1 − ν
R ln

R

rc
− τbπR2, (7)

where �G represents the change in Gibbs free energy due to
the formation of the dislocation loop, μ is the shear modulus,
ν is the Poisson’s ratio, R is the dislocation loop radius, rc

is the dislocation core radius, τ is the applied shear stress,
and b is the Burgers vector of the nucleating dislocation. The
activation Gibbs free energy, �G∗(τ ), is typically taken as
the saddle of the �G(R, τ ) function and can be found by
solving R as a function of τ by finding the maximum of
�G∗ with respect to R. This saddle can be found by solving
∂�G
∂R (R, τ ) = 0, which establishes the critical radius R∗ for the

applied stress τ . Solving for R∗ gives an implicit equation:

R∗

rc
= A

[
ln

R∗

rc
+ 1

]
, (8)

where A = μb(2−ν)
8πrcτ (1−ν) . An analytical solution for Eq. (8) is

possible in the form of

R∗

rc
= −AW

(
− 1

Ae

)
, (9)

where W(x) is the Lambert’s W function or the product log
function. Lambert’s W function is a complex set of functions
with an infinite number of branches with only two of them
being real valued. If x is real, then for −1

e � x < 0 there are
two possible real values of W(x), as illustrated in Fig. 2.
The branch satisfying −1 � W(x) is denoted as W0(x) and is
referred to as the principal branch while the branch satisfying
W(x) � −1 is denoted as W−1(x) in the literature [45].

From ∂�G
∂R (R, τ ) = 0, we can define τ ∗ as

τ ∗ = μb(2 − ν)

8πR∗(1 − ν)

[
ln

R∗

rc
+ 1

]
; (10)

substituting this τ ∗ into Eq. (7) allows us to express the saddle
�G∗ as a function of R∗ as

�G∗ = μb2(2 − ν)

8(1 − ν)
R∗

[
ln

R∗

rc
− 1

]
. (11)

When �G∗ = 0, then we have spontaneous nucleation
which corresponds to the ideal strength τ0. From Eq. (11), this
will occur when [ ln R∗

rc
− 1] = 0, which results in R∗ = erc.

Substituting R∗ = erc in Eq. (10), the athermal strength, or
ideal strength, τ0 can be determined as

τ0 = μb(2 − ν)

8π (1 − ν)

2

erc
. (12)

Using Eq. (9) and the definition of τ0 we can determine the
relationship between R∗ and τ as

R∗ = −erc

2

1

y
W

(−2y

e2

)
, (13)

where y = τ
τ0

. Now, substituting the expression for R∗ from
Eq. (13) in Eq. (11) we have

�G∗(τ ) = μb2(2 − ν)e

8(1 − ν)

[
− rc

2y
W

(−2y

e2

)]

×
{

ln

[
− e

2y
W

(−2y

e2

)]
− 1

}
. (14)

As discussed above and illustrated in Fig. 2, the real
valued branches of the Lambert-W function are W0 and W−1.
We consider the W−1 branch as it has been found to be
the solution to other dislocation problems [44] and provides
positive values of the change in Gibbs free energy here. We
note that W−1( −2y

e2 ) is infinitely differentiable at y = 1 and
thus Equation (14) has a power series expansion. This means
that α must be a non-negative integer. To determine the value
of α as τ → τ0, we expand �G∗ about τ = τ0 as

�G∗(τ ) = G0

[(
1 − τ

τ0

)
+ 2

(
1 − τ

τ0

)2

+ 8

3

(
1 − τ

τ0

)3

+ 10

3

(
1 − τ

τ0

)4

+ O
(

1 − τ

τ0

)5]
, (15)

where G0 = μb2(2−ν)erc

8(1−ν) . The power-series expansion clearly
demonstrates that α → 1 as τ → τ0. Detailed derivation of
this power-series expansion can be found in the Supplemental
Material (Sec. I) [46]. For stress values less than τ0, an em-
pirical fit of �G = G0(1 − τ

τ0
)α would give rise to an α > 0.

The activation volume can be analytically derived, since b =
constant, as

� = πR2b = e2r2
c

4

τ 2
0

τ 2
W2

−1

(
− 2τ

e2τ0

)
πb

= 1

4
e2r2

c πbW2
−1

(
− 2τ

e2τ0

)
.

In the limit τ → τ0, � approaches a constant:

�(τ = τ0) = e2r2
c πb. (16)

This result contradicts the postulate of an exponent of 1.5, but
also assumes that the activation free energy is referenced to a
loop of zero radius. This reference is problematic because a
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dislocation of zero radius is a local maximum as the energy
initially decreases with loop growth and reaches a real local
minimum of finite radius before it increases again to the sad-
dle. This is important because the universal exponent of 1.5,
a result of catastrophe theory [47], is derived by assuming the
saddle collides with a local minimum which is not analyzed
in the above derivation.

However, this simple model does predict a local minimum
and the system can be analyzed as the saddle (or maximum)
approaches this local minimum. The −1 branch of the Lam-
bert function corresponds with the saddle (maximum) and
thus the other branch, the 0 branch solution we discarded
earlier, corresponds to the minimum. Thus, we can define the
actual activation Gibbs free energy barrier as

�G† = �G∗
−1 − �G∗

0, (17)

where �G∗
−1 and �G∗

0 can be found by using the W−1 and
W0 branches of the Lambert-W function in Eq. (9) to solve
for R∗ and substituting R∗ into Eq. (11). In order for �G∗

−1

and �G∗
0 to collapse and give rise to �G† = 0, Eq. (9) needs

to be expanded about W( − 1
e ), the point where W−1 and

W0 converge, as shown in Fig. 2. This requires the term
A = μb(2−ν)

8πrcτ (1−ν) we defined for Eq. (9) to be unity. Since our
objective is to analyze the energy barrier near τ → τ0 we
have to redefine τ0 = μb(2−ν)

8πrc (1−ν) such that A = τ0
τ

. With this
definition of τ0 we can rewrite Eq. (9) as

R∗ = − rc

y
W

(
− y

e

)
,

where y = τ
τ0

. Now �G∗
−1 and �G∗

0 are

�G∗
−1 = K

(−1

y

)
W−1

(−y

e

)

×
{

ln

[(−1

y

)
W−1

(−y

e

)]
− 1

}
,

�G∗
0 = K

(−1

y

)
W0

(−y

e

){
ln

[(−1

y

)
W0

(−y

e

)]
− 1

}
,

where K = μb2rc (2−ν)
8(1−ν) .

A series expansion of W0 can be done at the branch point
by defining p = √

2(1 − y) where y = τ
τ0

resulting in

W0(z) = −1 + p − p2

3
+ 11p3

72
+ · · · .

For the W−1 branch, a similar series expansion is defined for
p = −√

2(1 − y) [48]. Substituting the series expansion in the
equations for �G∗

−1 and �G∗
0 and taking their differences in

Eq. (17) we obtain for y → 1

�G† = K

[
8
√

2

3
(1 − y)3/2[1 − (1 − y) + (1 − y)2 − · · · ]

+ 11
√

2

54
(1 − y)5/2[1 − (1 − y) + (1 − y)2 − · · · ]

]
.

(18)

The leading term on the right-hand side of the above equation
has an exponent of 3

2 in accordance with the results from

[41–43]. Derivation of this power-series expansion can be
found in the Supplemental Material (Sec. II) [46]. This re-
sult, even though it auspiciously matches the energy barrier
scaling prediction from the catastrophe theory, is fortuitous.
This is because the conditions under which the universal
exponent was derived are not met in this problem. First, the
derivation of the universal exponent of 3

2 assumes smoothness
of the free energy barrier near the collapse. However, in
this example the free energy is not smooth; it has a branch
point at the athermal limit which negates any universal expo-
nent behavior. Thus, we should not expect agreement of the
exponents.

Another reason, which is perhaps more important, is that
standard catastrophe theory assumes the driving force is as-
sumed to be linear in the reaction coordinate [47]. However,
this is not appropriate for dislocation nucleation. The gener-
alized driving force is the stress τ , which in nucleation scales
with the area and thus for a circular loop, R2.

To extend the ideas developed previously in catastrophe
theory specifically to dislocation nucleation we consider a
general form for the activation Gibbs free energy for nucle-
ation, �G∗ as

�G(τ, R) = f (R) − 1
2τR2 (19)

with the assumption, for a simple model, that the Burgers
vector b is a constant. The function f (R) represents the
line energy of the dislocation nucleus which presumably is
quadratic in R near R = 0 and linear in R for large R. We
will further assume that the function f (R) is smooth. We have
dropped some of the constants (such as a factor of 2π ) for
simplicity.

The minimum of the function is assumed to occur at R = 0
and the saddle can be found by taking ∂�G

∂R (R, τ ) = 0 which
results in

τ = 1

R∗ f ′(R∗)

and provides a relationship between the stress and radius at
the saddle point. This can be substituted back into the Gibbs
free energy equation to obtain

�G∗ = f (R∗) − 1
2 R∗ f ′(R∗). (20)

However, again we need to write this equation in terms of τ

and the athermal strength τ0, notably in terms of (1 − τ
τ0

).
The athermal strength can be defined as stress at which

R∗ → 0. This can be obtained by examining the functional
form of f (R) for small R which, based on our previous
assumptions, is

f (R∗) = a2R∗2 + a3R∗3 + a4R∗4 . . . . (21)

Thus, the athermal strength is

τ0 = lim
R∗→0

1

R∗ f ′(R∗)

= 2a2 = f ′′(0).
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FIG. 3. (a) The activation free energy barrier vs stress behavior for homogeneous dislocation nucleation for the model with variable Burgers
vector, i.e., model 2. Activation energies are calculated from Eq. (24). (b) The activation volume vs stress behavior for dislocation nucleation
for the augmented model proposed in Eq. (24).

This allows us to write an expression for (1 − τ
τ0

) as

1 − τ

τ0
= 1 − f ′(R∗)

R f ′′(R∗)

= −3

2

a3

a2
R∗ − 2

a4

a2
R∗2 − · · · ,

which, for sufficiently small R∗, is

R∗ = −2

3

a2

a3

(
1 − τ

τ0

)
. (22)

Now, substituting Eq. (22) into Eq. (20) we have

�G∗(R∗) = 1

2
a3

[
2

3

a2

a3

(
1 − τ

τ0

)]3

− a4

[
2

3

a2

a3

(
1 − τ

τ0

)]4

+ · · · .

So, for small R∗

�G∗ ∝
(

1 − τ

τ0

)3

.

If an f (R) is chosen such that a3 = 0, e.g., f (R) is an even
function about R = 0, then the R∗ scales with (1 − τ

τ0
)1/2

which results in

�G∗ ∝
(

1 − τ

τ0

)2

.

We verify these two scaling relations, first by choosing an
f (R) such that it is consistent with our assumed power-series
expansion given in Eq. (21) at R∗ = 0,

f (R) = R tanh

(
R

rc

)
+ R2 exp

(−R

rc

)

=
(

1 + 1

rc

)
R2 − R3

rc
+ (3rc − 2)R4

6r3
c

+ · · · .

To verify this, the saddle point ( d�G
dR = 0) is computed relative

to the minimum and examined as τ → τ0 which results in a
numerical result of

�G∗ ∝
(

1 − τ

τ0

)3

.

The exponential term is included above because it ensures
that the equation has a cubic term, resulting in an exponent
of 3. If we eliminate this term, f (R∗) = R∗ tanh(R∗/rc) is

FIG. 4. (a) A plot of Burgers vector corresponding to saddle point b∗
f as a function of τ

τ0
, asymptotic behavior of the Burgers vector near

τ → τ0 can be observed. (b) A plot of critical dislocation loop radius R∗ vs τ → τ0. R∗ diverges as τ → τ0.
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even and hence lacks all odd exponents. Numerical analysis
demonstrates that the free energy scales as

�G∗ ∝
(

1 − τ

τ0

)2

, (23)

in agreement with the results of the power-series expansion.
Thus, it is clear that scaling of the activation free energy

with the applied stress varies with the choice of line tension
term and the continuity of that term at the bifurcation point
as we have seen exponents of 2, 3 and, in one special case,
1.5. While this behavior does not contradict the atomistic data
presented above (the lack of a universal exponent), this result
may still be an artifact of the simple nature of the model.
The athermal strength τ0 is set artificially by a cutoff radius
or regularization parameter rc, instead of the more common
notion that τ → τ0 as the Burgers vector, b → 0. This is
precluded in the simple model since the Burgers vector is held
constant. Thus, our analyzed behavior near τ = τ0 may be an
artifact of fixing the Burgers vector and an improved model
where b is a variable is needed to better understand how �G∗
should behave near the athermal limit.

To examine the shortcomings of the first continuum model,
we also analyze an augmented model where the variable
Burgers vector b f is allowed to vary between 0 and b0, again
following the ideas of Aubry et al. but with a line tension term
of R tanh(R/rc) which is the same f (R) we have used in our
generalized simple model that produces α = 2. The change in
free energy in this model due to the nucleation of a circular
dislocation loop is

�G(τ, R, b f ) = μb2
f

4

2 − ν

1 − ν
R tanh

R

rc
− τb f πR2

+πR2[γ (u0 + b f ) − γ (u0)], (24)

where γ is the generalized stacking fault (GSF) energy
and the displacement u0 along the Burgers vector direc-
tion can be determined by equating the derivative of the
GSF energy and the applied stress: dγ

du |
u0

− τ = 0 [39]. For
the purpose of examining general nucleation, we choose
to first analyze the nucleation of a perfect dislocation. In
this case, the GSF curve can be readily modeled with a
sinusoidal function as γ (u) = γ0

2 [1 − cos ( 2πu
b0

)]. We were
unable to find an analytical solution for the activation free
energy, so a numerical approach is used. In order to numer-
ically solve for the saddle point �G∗, the material constants
were nondimensionalized in the above equation [Eq. (24)]
as follows: μ = 4π2, ν = 0.0, b0 = 1.0, rc = 1.0, γ0 = 1

2π
.

τ0 can be determined by finding the maximum stress the
crystal can withstand, defined by the GSF curve, prior to
rigid sliding of the crystal. This is the maximum of dγ

du ,
which can be solved analytically as τ0 = π

γ0

b0
. The value

of τ can be related to the GSF curve as noted above, as
τ = dγ

du |
u0

.
Now, to find the activation Gibbs free energy �G∗ which

is the saddle point of �G(b f , R, τ ) we differentiate Eq. (24)
with respect to both R and b f . Then, we set ∂�G

∂b f
= 0 and

∂�G
∂R = 0. The two equations ∂�G

∂R = 0 and ∂�G
∂b = 0 were

numerically solved using the Newton-Raphson method.

FIG. 5. A log-log plot of dln�G∗
dln(1− τ

τ0
) as a function of (1 − τ

τ0
) for

the augmented model of Eq. (24). The exponent α approaches a value
of 0.5 as τ → τ0.

Figure 3(a) shows the behavior of the activation free energy
as computed by our numerical solution. As τ → τ0 we can
see in this augmented model that the activation free energy
abruptly drops to zero at τ0, which in this case is defined as
dγ

du |max. This behavior implies

lim
τ→τ0

∂�G∗

∂τ
→ −∞.

To verify this behavior, we note that the activation volume can
be directly computed from � = − ∂�G∗

∂τ
, or

� = πR2b f − πR2

[
∂γ (u0 + b f )

∂τ
− ∂γ (u0)

∂τ

]

= πR2b f − πR2

(
d2γ

du2

∣∣∣∣
u0

)−1[
dγ

du

∣∣∣∣
u0+b

− dγ

du

∣∣∣∣
u0

]
. (25)

It is interesting to note that the activation volume, in this
case, is not simply the dislocation loop area times the Burg-
ers vector. It is now altered because of the stress depen-
dent generalized stacking fault energy. This expression also
gives us a direct method to compute the activation volume
in addition to numerically differentiating the activation free
energy.

Figure 3(b) plots the computed activation volume as a
function of τ

τ0
. The activation volume exhibits a shallow

decrease as the stress increases in agreement with the shape of
the activation free energy up until a critical stress, here about
0.93τ0, at which point it increases and begins to diverge. Note
that the activation volume computed from Eq. (25) is indeed
the total derivative of the activation energy with respect to
stress, which we verified numerically.

If the activation volume does diverge, then the dislocation
loop radius at the saddle, R∗, must diverge as well since we
expect that b∗

f decreases monotonically. To verify this, Fig. 4
shows the plot of b∗

f and R∗ as a function of τ
τ0

. From this
plot we can observe that R∗ diverges near τ → τ0 as expected.
The rate at which b∗

f approaches zero is faster than the rate
R∗2 diverges which takes �G∗ to zero since the activation free
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FIG. 6. (a) A contour plot of the free energy surface, �G(R, bf ) modeled as Eq. (26) for τ

τ0
= 0.683 over the range R ∈ [0, 50] and

b ∈ [0, 1]. (b) Free energy surface over the range R ∈ [0, 1] and b ∈ [0, 1].

energy can be written as

�G∗ = 1

2

μb∗2
f

4

2 − ν

1 − ν
R∗[tanh(R∗/rc) + sech2(R∗/rc)]

Moreover, as τ → τ0 we expect that � → ∞ as long as

b f −
(

d2γ

du2

∣∣∣∣
u0

)−1[
dγ

du

∣∣∣∣
u0+b

− dγ

du

∣∣∣∣
u0

]
→ 0

slower than R∗2 → ∞, which is evidently true given the
results in Fig. 4.

Now that we have �G∗ as a function of τ numerically,
we can compare its behavior to the power-law form. Near
the athermal limit, τ → τ0, we can see that α < 1 because
� → ∞. However, we cannot simply fit the power-law be-
havior with a single α value. So, to determine the exponent at
distinct stress regimes, we examine the behavior of dln(�G∗ )

dln(1−τ/τ0 ) ,
which is plotted as a function of ln(1 − τ/τ0) in Fig. 5. This
plot shows that as τ → τ0, dln(�G∗ )

dln(1−τ/τ0 ) approaches 0.5, which

establishes that �G∗ is ∝ (1 − τ
τ0

)1/2, i.e., α = 1
2 . Similar

analysis can be carried out on R∗ and b∗
f , which gives a result

that b f ∝ (1 − τ
τ0

)1/2 and R∗ ∝ (1 − τ
τ0

)−1/2.
To explore how the line tension argument affects this new

exponent α, we carried out a similar numerical analysis of the
augmented model with an alternative line energy term which
is the same f (R) we have used in our generalized simple

model that produces α = 3 as

�G(τ, R, b f ) = μb2
f

4

2 − ν

1 − ν
[R tanh(R/rc) + R2 exp(−R/rc)]

− τb f πR2 + πR2[γ (u0 + b f ) − γ (u0)].

A similar analysis of this model also gives rise to α = 0.5
for this version of the augmented model. Finally, we have
also analyzed the case in which the dislocation energy term is

linear in R, i.e.,
μb2

f

4
2−ν
1−ν

R, which also results in α = 0.5. Thus
we infer that α = 1

2 is relatively invariant to the choice of the
line tension term as long as �G is continuous when the saddle
meets the minimum. We further point out that the results
are not dependent on the choices of rc or γ0 in this model;
the exponents remain the same.

At this point, we return to the augmented model proposed
by Jennings et al. in [39]:

�G(τ, R, b f ) = μb2
f

4

2 − ν

1 − ν
R ln

R

rc
− τb f πR2

+πR2[γ (u0 + b f ) − γ (u0)]. (26)

The simple version of this model, which does not include the
generalized stacking fault energy penalty term, introduces an
artificial minimum. This required the introduction of �G†,
which was the difference between the saddle (maximum)
and the artificial minimum, which was discontinuous at the

FIG. 7. (a) The activation volume vs stress behavior for dislocation nucleation modeled by Eq. (26). (b) A log-log plot of dln�G∗
dln(1− τ

τ0
) as a

function of (1 − τ

τ0
) for the augmented model of Eq. (26). The exponent α approaches a value of 0.4 as τ → τ0.
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FIG. 8. (a) A contour plot of the free-energy surface �G(R, bf ) modeled as Eq. (24) for τ

τ0
= 0.683 over the range R ∈ [0, 50] and

b ∈ [0, 1]. (b) Free-energy surface over the range R ∈ [0, 1] and b ∈ [0, 1].

athermal limit and resulted in an exponent of 1.5. As we will
demonstrate later, the function �G as represented by Eq. (26)
does not have a local minimum. Instead there is only a saddle
point and a local maximum at (R, b f ) = (0, 0) for all τ � τ0.
The local minimum artificially introduced by the logarithm
term is no longer a minimum but creates a path in which
there is no free energy barrier for dislocation nucleation as
the Burgers vector can grow unbounded.

To illustrate this behavior, consider a numerical im-
plementation of Eq. (26). For this example, we con-
sider the numerical case where τ = 0.684τ0, μ = 4π2,
ν = 0.0, b0 = 1.0, rc = 1.0. The GSF term is described by
γ (u) = γ0

2 [1 − cos ( 2πu
b0

)] as before with γ0 = 1
2π

. A contour
plot of �G as a function of R and b is shown Fig. 6 which
shows that for small R, as the Burgers vector is increased
�G continuously decreases [Fig. 6(b)]. While this is certainly
mathematically possible, it is often ignored as an artifact in the
dislocation model. Nevertheless, it makes the (R, b f ) = (0, 0)
a maximum and not a minimum due to the ability to decrease
the free energy by increasing R.

Despite the obvious mathematical issues with this model,
it is still insightful to examine how the saddle approaches
the (R, b f ) = (0, 0) maximum as this has been regularly used
in modeling dislocation nucleation. The solution strategy is
exactly the same as that used for the other models with varying
Burgers vectors. The two key pieces of information obtained
from the analysis are shown in Fig. 7, the behavior of the
activation volume and a plot of the effective exponent. Just
as occurred in the other cases, the activation volume diverges
when the stress reaches the athermal limit. Figure 7(b) shows
that as the stress reaches the athermal limit, the exponent
approaches a value of approximately 0.4, distinctly different
from that of the other models with variable Burgers vectors in
which the exponent was 0.5. The difference in exponents be-
tween the models appears to be a result of the (R, b f ) = (0, 0)
point being a maximum in this case, as opposed to a minimum
in the case of the other models. To illustrate more clearly the
differences in the free-energy models, consider a contour plot
of the free energy using the model of Eq. (24) as shown in
Fig. 8. This figure shows in this case there is a clear saddle and
that the point (R, b f ) = (0, 0) is indeed the local minimum. A
zoomed in region near the origin, Fig. 8(b), confirms that the
function is a minimum at the origin.

To ensure the generality of our results, we have also
computed the exponents for different GSF terms. For exam-
ple, models of the dislocation nucleation process originally
used a GSF term of the form γ (u) = γ0

2 [1 − cos ( 2πu
b0

)] where
b f represents the Burgers vector of a perfect dislocation.
Alternatively, we can also analyze the model with a GSF
term that represents the nucleation of a partial dislocation,
as Aubry et al. did [38]. To achieve this in our numerical
implementation in which a continuous GSF is needed, we fit
the GSF curve for copper given in [38] using a fifth-order
polynomial with the first two coefficients set to zero. This GSF
model was implemented into our free-energy calculations and
while the numerical values of the free energies changed, the
extracted exponents did not.

IV. SUMMARY AND DISCUSSION

For bulk plastic deformation [41,42], dislocation nucle-
ation [40], and transitions from elastic to inelastic deformation
[43,47,49–51], it has been proposed that �G ∝ (1 − τ/τ0)α

with a universal α = 3
2 . In this work, we examined all previous

atomistic data in which the energy barriers were explicitly
computed from atomistic chain-of-states methods, and found
the exponents varied between 0.8 and 5.8, indicating that there
is little support for a universal exponent from such atomistic
simulations. However, the analysis was performed on all
available data and not necessarily just limited to the athermal
limit and as such, we cannot refute a universal exponent for
dislocation nucleation from available atomistic data.

To provide additional insight into the behavior of the
activation free energy as a function of stress, we analyzed
several continuum models of dislocation nucleation. For stress
sufficiently far from the athermal limit, it is clear that an
empirical model of the form �G = G0(1 − τ/τ0)α can be
used and will predict a value of α > 1, but this value is not
a constant and will depend on the range of stresses used in the
empirical fit. As for applied stress τ → τ0 the numerical value
of the exponent will depend on the assumed form of the line
energy as well as how the driving force scales with dislocation
loop radius. For a defect-free crystal, where a dislocation
has to be nucleated first to induce failure, the applied stress
scales with R∗2 since the stress is applied over the dislocation
loop being nucleated. These considerations suggest that the
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equation [Eq. (2)] introduced by Zhu et al. [8] is best described
as an empirical relationship.

In the first class of continuum models we analyzed, the
Burgers vector was held constant which allowed us to derive
an analytic expressions for the activation free energy and
activation volume as a function of stress by setting an artificial
athermal strength. In all of the cases analyzed, the exponent
was greater than 1 and the activation free energy and activation
volume decreased to 0 at the athermal limit. The value of the
exponent depended on the form of the line energy. For the line
energy that scaled as Rln(R/rc), the exponent was 3

2 , a result
of the lack of continuity when the saddle collides with the
minimum. When the line energy is continuous, the exponent
was found to be 3 if the line energy term has third-order
power in its expansion and a value of 2 if the first term in the
expansion is fourth order. Presumably, other exponents would
be found if the expansion of the free energy was missing the
fourth-order term in the expansion of the free energy.

In the second class of models, we allow the Burgers vector
to change and include an energy penalty associated with the
generalized stacking fault energy as a function of the Burgers
vector. In this case, if the line energy creates a minimum at
R = 0 and the function is smooth, the activation volume is
found to diverge. The divergence of the activation volume is a
result of the critical radius diverging while the Burgers vector
goes to zero. The extracted activation energy exponent α is
1
2 . However, if the line energy includes the standard logarithm
term, we find that the behavior is similar but that the exponent
becomes roughly 0.4.

These exponents appear to violate catastrophe theory as
well as our previous results regarding the general nature
of exponents in dislocation nucleation. However, we should
also note that the exponents derived in this way assume, as
noted before, that the free energy is smooth when the saddle
approaches the minimum. In the cases when the exponent is
less than 1, the radius diverges invalidating the assumptions
made regarding smoothness. It is further clear that it is the
introduction of the GSF term that causes the radius to diverge
while allowing the Burgers vector to go to 0. The GSF term
acts to cause the activation free energy to rapidly decrease to
0, which in turn causes the activation volume to diverge.

This raises a question regarding the divergence of the
activation volume; can this be physical or is it a numerical
artifact? We know that exponents that are larger than 1 as
derived in our first class of models in which the Burgers vector
is held constant are indeed artifacts of the model. This is
because the athermal strength in each case is directly related to
rc, a regularization constant used to create a smooth quadratic
local minimum. However, in the cases where the Burgers
vector was allowed to change and R → ∞, the result appears
to be a physically meaningful result. As τ approaches the
ideal strength, b f → 0 and thus the crystal is able to rigidly

shear, which can readily occur over the whole crystal at once
and thus physically represents R → ∞. Thus, it is possible to
accept the results obtained here on physical grounds, not just
mathematical ones.

This then raises the question of what is the correct exponent
in the athermal limit, the value of 1

2 or the value of roughly
0.4. While we cannot say for sure, we can speculate that the
value of 1

2 appears more appropriate. As noted previously,
all the models that have a minimum at (R = 0, b f = 0) also
have an exponent of 1

2 . The only exception is the model with
the Rln(R/rc) line energy term which, as stated before, has
some numerical artifacts as a result of the logarithm term.
Given that the logarithm may not be representative of the
energy for R values less than rc physically, the free energy
near the athermal limit may not be particularly accurate for
dislocation nucleation. Thus, we speculate that the exponent
of 1

2 is the most likely correct exponent for dislocation
nucleation.

While the detailed continuum models provide some insight
into how the activation energy and activation volume behave
very close to the athermal limit, these results may not, at first,
appear particularly relevant to actually modeling dislocation
nucleation. However, these results, in conjunction with the
atomistic modeling results, do offer some important insights
into empirical modeling of the activation energy equations.
To better understand this, consider the empirical activation
energy equation proposed by Zhu et al. [30]. The assumed
form of the activation energy predicts an activation volume
of: � = E0α

τ0
(1 − τ/τ0)α−1(1 − T/Tm). This particular form

almost entirely precludes the possibility of having a constant
activation volume at τ → τ0. If we examine the results of our
continuum model the activation volume goes to a constant
before sharply diverging. Similar conclusions can be drawn by
visual examination of the activation energy plots from direct
atomistics, as shown earlier: the activation volume appears to
approach a constant. This suggest that empirically fitting the
activation volume to an equation that enforces the activation
volume to go to zero in the athermal limit can cause numerical
issues in the modeling dislocation nucleation, especially when
the activation volume is determined and integrated to the
activation energy. If this is the case, it would appear choosing
an empirical form for the activation energy that can accom-
modate a nonzero activation volume at the athermal limit is
beneficial. Such a form has been proposed by Weinberger
et al. [33], although this is not the only form that one could
suggest.
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